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Quantum error correction codes are designed to identify and locate errors such that they can be
properly corrected by recovery operations. Here, we demonstrate that, in realistic error environ-
ments, if a syndrome measurement indicates an error has occurred the assumed recovery will not,
in general, lead to a corrected state. The efficacy of the recovery operation properly depends on the
likelihood of different error types, the relative probability an error may have occurred at strategic
points during the error correction process itself, and on the error correlations between the qubits
taking part in a two qubit gate.
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Quantum error correction (QEC) [1–3] will be a vital
component of any realistic realization of quantum com-
putation. To implement QEC a given number of qubits
of quantum information are stored in a larger number
of physical qubits. Should an error occur on a physi-
cal qubit, measurement of the parity between groups of
physical qubits, known as a syndrome measurement, will
allow us to identify, locate, and thus correct, the error.

QEC alone, however, is not sufficient to guarantee suc-
cessful quantum computation. One of the primary rea-
sons for this is because the encoding of the quantum in-
formation into the QEC code and the implementation of
the syndrome measurements are themselves imperfect.
The framework that allows for successful quantum com-
putation despite errors in basic computational compo-
nents is quantum fault tolerance (QFT) [4–7]. Comput-
ing within the QFT framework requires: implementing
quantum operations in such a way that errors will not
spread to multiple qubits, and the repetition of certain
protocols in order to relegate errors to second order in
error probability. For example, QFT dictates repeating
each syndrome measurement until the same outcome is
measured twice in a row. In this way an error during syn-
drome measurement must occur twice for the syndrome
measurement to be incorrect.

In this work we analyze what happens when a non-
zero syndrome is measured signaling the presence of an
error. We show that the standard and expected response,
applying the appropriate recovery operation will not, in
general, correct the state of the system. Whether it will
or not depends on a number of factors including: the type
of errors that are likely to occur, the ratio of the proba-
bility of an error on the qubit identified by the syndrome
readout to the probability of an error occurring during
the syndrome measurement itself, and the correlation of
errors between qubits under the evolution of a two-qubit
gate. With respect to the first factor, dominant σx errors
in Shor state construction lead to high fidelity. With re-
spect to the second factor, the larger the ratio the better
the recovery operation will fix the error. With respect
to the third factor, the larger the correlation the more
accurate the identification of the qubit which has expe-

rienced an error. To demonstrate how and why this is so
we perform simulations using the [7,1,3] or Steane QEC
code [8].

We start with an arbitrary pure state |ψ(α, β)〉 =
cosα|0〉+e−iβ sinα|1〉 perfectly encoded into seven qubits
of [7,1,3] QEC code except for one error. For the mo-
ment it is not important which error occurs just that the
error certainly happened and it has affected only one of
the seven ‘data’ qubits. Certainly, perfectly implemented
QEC will detect the error and the appropriate recovery
operation (perfectly applied) will correct the error. If
QEC is noisy, assuming it is not too noisy, we would still
expect it to work, especially if its implementation is loyal
to the tenets of QFT. Assuming instead a probabilistic
error on a data qubit, with small probability, p ≪ 1,
the likelihood is that syndrome measurements will not
detect the error and the data qubits will be projected
back into their proper state. In realistic systems, where
the syndrome measurement itself must be assumed im-
perfect, measuring each syndrome twice will ensure that
the measurement outcome did not arise from an error
during the syndrome measurement. Thus, if a non-zero
syndrome is measured (twice) we would assume that the
error arose from the data qubit, apply the appropriate re-
covery operation, and recover the correct state. However,
this assumption is incorrect. In this paper we demon-
strate that, in general, the recovery operation will not
correct the state of the system.

To explore the consequences of measuring a non-zero
syndrome we perform simulations of the [7,1,3] QEC code
in a nonequiprobable Pauli operator error environment
[9]. As in [10], this model is a stochastic version of a
biased noise model that can be formulated in terms of
Hamiltonians coupling the system to an environment. In
the model used here the probabilities with which the dif-
ferent error types take place is left arbitrary: qubits un-
dergo a σj

x error with probability px, a σj
y error with

probability py, and a σj
z error with probability pz, where

σj
i , i = x, y, z are the Pauli spin operators on qubit j. We

assume that qubits taking part in a gate operation, ini-
tialization or measurement will be subject to error and,
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for now, we assume that errors are completely uncorre-
lated. Qubits not involved in a gate are assumed to be
perfectly stored. This idealization is partially justified
in that it is generally assumed that idle qubits are less
likely to undergo error than those involved in gates (see
for example [11]). In addition, in this paper, accuracy
measures are calculated only to second order in the error
probabilities pi thus the effect of ignoring storage errors
is likely minimal.

Several methods of syndrome measurement for the
[7,1,3] QEC code are compatible with QFT requirements
[8, 12]. Here, we utilize four-qubit Shor states [5] for syn-
drome measurements. Shor states are simply GHZ states
with a Hadamard applied to each qubit. Their construc-
tion must also be performed in the nonequiprobable error
environment and, following the dictates of QFT, undergo
one verification step [13]. The syndrome measurement
then consists of controlled-NOT (CNOT) gates between
the data qubits and Shor state qubits and the parity of
the measurements of the four Shor state qubits gives the
result of the syndrome measurement. Note that no Shor
state qubit ever interacts with more than one data qubit
thus stemming the spread of any possible error. As each
syndrome measurement is done twice, to comply with the
requirements of fault tolerance, 12 Shor states are needed
for QEC application. The complete QEC process (but
with each syndrome measurement pictured only once) is
shown in Fig. 1.

As a baseline we simulate a state with a definite er-
ror undergoing noisy QEC. We will calculate the proba-
bility that the error will be detected and the fidelity of
the state after error correction and recovery operation.
Let ρ(α, β) = |ψL(α, β)〉〈ψL(α, β)| where |ψL(α, β)〉 =
cosα|0L〉 + e−iβ sinα|1L〉 and |0L〉, |1L〉 are the logical
basis state for the [7,1,3] code. Our initial state is then
σ1
zρ(α, β)σ

1
z . If QEC was done perfectly the error would

be identified by the final phase-flip syndrome measure-
ment (as shown in Fig. 1) with unit probability and would
be corrected by the appropriate recovery operation, σ1

z .

When QEC is performed in the nonequiprobable er-
ror environment (with each syndrome measurement im-
plemented twice) the probability of detecting the er-
ror is no longer unity and is instead given by 1 −
167px − 257py − 209pz. Upon applying the appropri-
ate recovery operation the fidelity, F (px, py, pz, α, β) =
〈ψL(α, β)|ρf |ψL(α, β)〉 of the output state, ρf , is 1 −
73px − 19py − 7pz. This result is about what would be
expected given the gate imperfections. The imbalance
between px and pz is due to the σx syndromes being
measured first, and the use of imperfect Shor states [13].

We now turn to the case where σ1
z error is possible,

and the initial state is thus ρp1
z

= (1 − pz)ρ(α, β) +
pzσ

1
zρ(α, β)σ

1
z . The fidelity of the output state after noisy

QEC reveals a σ1
z error and the appropriate (noisy) recov-

ery operation is applied is shown in Fig. 2. Immediately
we note the wide range of possible fidelity values based

FIG. 1: Fault tolerant bit-flip and phase-flip syndrome mea-
surements for the [7,1,3] code using Shor states (here the Shor
states are assumed to have not had the Hadamard gates ap-
plied). CNOT gates are represented by (•) on the control
qubit and (⊕) on the target qubit connected by a vertical
line. H represents a Hadamard gate. The error syndrome
is determined from the parity of the measurement outcomes
of the Shor state ancilla qubits. To achieve fault tolerance
each of the syndrome measurements is repeated twice. In
later simulations only the highlighted CNOT gate (between
data qubit 3 and the second Shor state qubit in the second
phase-flip syndrome) is subject to error and all other gates
are simulated without error.
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FIG. 2: Fidelity of output state after noisy error correction
on the state ρp1

z

reveals a σ1

z error and a recovery operation
is applied. Each subfigure is for a given σz error probability.

on the error probabilities. Even when all error proba-
bilities are ≤ 10−5 the fidelities range from .5 to .9999.
Specifically we note that when px = py = pz < 10−6 a
weak depolarizing environment, the fidelity is .708. How
could the fidelity values be so low even though proper
QFT protocol was followed? To analyze this we look at
a contrived QEC process in which only one gate is subject
to errors.
Utilizing the same initial state, ρp1

z

, we apply perfect
error correction (using perfect Shor states and repeat-
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ing each syndrome measurement twice) except for one
CNOT gate during which the control and target qubits
each independently undergo a phase-flip error with prob-
ability pz . We choose the one noisy CNOT gate to be
the CNOT between the third data qubit and the sec-
ond Shor state qubit during the second phase-flip syn-
drome measurement (the second time this syndrome is
implemented only). Under this error model, if no error
is detected (each syndrome measures zero twice in row),
which will occur with probability 1− 3pz(1− pz), the fi-

delity is given by (1−pz)(1−2pz)
1−3pz+3p2

z

which, in the limit pz → 0,

goes to 1. However, if an error on the first qubit is de-
tected (the final phase-flip syndrome measurement yields
a one twice in a row), which will happen with probability
pz(2 − 3pz), the fidelity of the state after QEC is 1−2pz

2−3pz

which, in the limit pz → 0 goes to .5. The reason why
is clear. A measurement of 1 on the last phase-flip syn-
drome indicates a phase-flip error on either qubits 1, 3,
5 or 7. Were errors only to have occurred before QEC
application then errors on qubit 3, 5, or 7 would have
caused at least one additional syndrome measurement to
be a one. However, errors during QEC application can
allow an error on qubits 3, 5, or 7 to cause a measure-
ment of one on only the final syndrome. Thus, in our
simulation, there are two possible error sources that can
induce a final phase-flip syndrome measurement of one:
the error on qubit one of the initial state, and the error
on qubit 3 during the only noisy syndrome measurement
CNOT. This latter error happens during the QEC im-
plementation itself and is thus not detected by any other
syndrome measurement. As both error paths occur with
probability pz, the final state after error correction is a
mixed state with each of these two possibilities having
equal weight. The recovery operation will correct only
one of the states of the mixture leading to a fidelity of .5.
Note that the probability of measuring this syndrome is
first order in pz.

The above analysis explains the low fidelity points seen
in Fig. 2. If pz or py is greater than px we are in a sit-
uation similar to our contrived model. An error during
QEC can cause a syndrome measure of one in the final
phase-flip syndrome without being detected by previous
syndrome measurements thus reducing the fidelity to be
of order .5. However, if px is dominant we will see that er-
rors in the Shor state construction have the most weight
causing the syndrome to correctly detect the original er-
ror.

Our simplified simulation suggests three strategies to
successfully avoid low fidelity output states when mea-
suring a non-zero syndrome. The first strategy is to ar-
range that the probablility of error in the initial state
is higher than the probability of error during the gates
of the syndrome measurement. Using our example this
would mean raising the error probability on qubit one of
the initial state thus raising the probability of that part

of the post-error correction mixed state and attaining a
higher fidelity.

We analyze this strategy by simulating a perfect QEC
sequence except for the same CNOT gate identified
above. This time, however, our intial state will include
an error on the first qubit larger than the error prob-
ability of the CNOT gate: ρkp1

z

= (1 − kpz)ρ(α, β) +
kpzσ

1
zρ(α, β)σ

1
z where k is a positive, non-zero constant.

If no error is detected, which will occur with probability
1− (2 + k)pz + 3kp2z, the fidelity of the state after QEC

is, (1−2pz)(1−kpz)
1−(2+k)pz+2kp2

z

which, as above, will go 1 in the limit

pz → 0. If the error on the first qubit is detected, which
will occur with probability pz(1 + k − 3kpz) the fidelity
will depend on k as follows: k−2kpz

1+k−3kpz

, which in the small

pz limit goes as F (k) = k
k+1 . The top line of the bottom

inset to Fig. 3 is a log-log plot of 1− F (k). Note that to
reach a fidelity of 1− 10−5 requires a k of 105.

During an actual computation ensuring that the ini-
tial state is more error prone then the gates of the QEC
implementation can be realized by implementing many
gates in a row before applying QEC. As explained in [14],
if many gates are done without QEC the error probability
on the data qubits will steadily increase. Nevertheless,
all these errors are correctable via QEC applied after the
sequence of gates. The increase in error probability on
the data qubits becomes important if the syndrome mea-
surement yields a one.

The second strategy that can be used to avoid low fi-
delity output states upon measuring a non-zero syndrome
is to ensure correlated errors between the two qubits of
a two-qubit gate. In our example we have assumed a
possible σz errors in the CNOT on qubit three and a
Shor state qubit during the second phase-flip syndrome
measurement. If the errors between qubit three and the
Shor state qubit were correlated an error on qubit 3 could
only occur if the same error happened on the Shor state
qubit. The error on the Shor state qubit would be imme-
diately detected by the second phase-flip syndrome mea-
surement. Given that the second phase-flip syndrome
measurement does not detect an error we can rest assured
that there was no error on qubit 3. Then, a measurement
of one on the final phase-flip syndrome certainly means
that qubit one has an error.

To analyze this strategy we again simulate a perfect er-
ror correction sequence except for the same CNOT gate
identified above. We now use a correlated error model
for the CNOT such that a phase-flip error will occur in-
dependently on the control or target qubit with proba-
bility pz(1 − c) and correlated phase-flip errors will oc-
cur on both the control and target qubits with probail-
ity cpz, where c is a correlation parameter ranging be-
tween 0 and 1. Once again our intial state is ρp1

z

. If
no error is detected, which will occur with probabil-
ity 1 + pz(c − 3 + pz(3 − 2c)), the fidelity of the state

after QEC is (1−pz)(1+pz(c−2))
1−pz(3−3pz+c(2pz−1)) which in the limit
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FIG. 3: One minus the fidelity versus px/pz for simulations
that have one CNOT gate subject to σz errors with prob-
ability pz, and σx errors with probability px at all points
of Shor state construction and verification. When px is too
high the fidelity again starts to decrease. Insets: Log-log plot
of 1 − F (c, k) as a function of initial state error probability
strength k (lower) for correlation c = 0, .5, .9, .99, .999, .9999
(top to bottom), and c (upper) for initial state error proba-
bility strength k = 1, 10, 100, 1000, 10000, 100000 (top to bot-
tom).

pz → 0 goes to 1 independent of c. If the error on the
first qubit is detected, which will occur with probability
pz(2 − c) + p2z(−3 + 2c), the fidelity of the state after

QEC and recovery will be 1−pz(2−c)
2−3pz−c(1−2pz)

which, in the

limit pz → 0, is F (c) = 1
2−c

. F (c) goes to .5 for c = 0
and 1 for c = 1. The top line of the top inset to Fig. 3 is
a log-plot of 1 − F (c) and demonstrates the importance
of highly correlated errors if we hope to have a high fi-
delity output state from a QEC application that has a
non-zero syndrome measurement. The possibility of en-
gineering error correlations in a practical system would
depend on the physical system.
When both strategies are used, we start with the initial

state ρkp1
z

and use a correlated error the identified CNOT
gate, the probability of not detecting an error will be
1+pz(c−2)+kpz(pz(3−2c)−1) in which case the fidelity

of the state after QEC will be 1+pz(c−2)(1−kpz)
1−(2−c+k)pz+(2c−3)kp2

z

. The

probability of detecting the error on the first qubit is
pz(1−c+k+kpz(2c−3)) and the fidelity of the resulting

state is then k(1+pz(c−2))
1+k−3kpz+c(2kpz−1) which, in the limit pz →

0, goes to:

F (c, k) =
k

1− c+ k
. (1)

1 − F (c, k) is plotted in the insets to Fig. 3 and will go
to one in either the limit c→ 1 or k → ∞.
The final strategy that can be used to avoid low fidelity

output states upon measuring a non-zero syndrome is
to utilize Shor states with dominant bit-flip errors. To
demonstrate this we use our contrived error model where
only one gate during QEC implementation is noisy, but
now with Shor states that have been subjected to σx

errors during initialization of the qubits, construction
gates, and verification gates with probability px. The
fidelity of the output state then increases as the ratio of
px to the initial state and noisy CNOT error probability
pz increases. This explains the success of the noisy QEC
protocol when px is the dominant error. The fidelity of
the state after error correction as a function of the ratio
px/pz is shown in Fig. 3.

In conclusion, we have demonstrated that, in realistic
error environments, a non-zero syndrome measurement
can cause output states to have unacceptably low fideli-
ties. Whether this will occur depends on the relative
probabilities of σx errors in Shor state construction com-
pared to σy and σz errors in the QEC implementation,
the relative probability of errors on the input state com-
pared to probability of error during syndrome measure-
ment, and the strength of the error correlation between
two qubit gates evolving under a two-qubit gate. Sys-
tems may be engineered so as to retain a high fidelity
even upon a non-zero syndrome measurement. For ex-
ample, implementing a sequence of gates with QEC ap-
plied only at the end will raise the probability of error on
the input state above the error probability of the gates
during QEC and thus increase the fidelity. While all of
our simulations have been done in for the [7,1,3] QEC
code the results are immediately applicable to other CSS
codes and perhaps to a broader range of codes as well.
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