
© 2013 The MITRE Corporation. All rights reserved.

XML Risks and Mitigations
R o g e r L . C o s t e l l o

Approved for Public Release; Distribution Unlimited. 13-2445

| 2 |

© 2013 The MITRE Corporation. All rights reserved.

Objective

This course examines XML to identify
some inherent vulnerabilities , some
of which could be maliciously
exploited.

The course discusses the strengths
and weaknesses of various ways to
mitigate the vulnerabilities .

| 3 |

© 2013 The MITRE Corporation. All rights reserved.

Other Sources of Information

� The CWE/CVE databases are excellent resources for in formation
about security vulnerabilities.

– CVE provides vulnerabilities found in commercial and open source
software, including information about patches

– CWE provides a listing of the types of vulnerabilities

� Searching the CVE database for “XML” returns thousan ds of
hits. For more information about weaknesses and vulnerabilities
related to XML, visit http://cwe.mitre.org and http://cve.mitre.org .

http://cwe.mitre.org/
http://cve.mitre.org/

| 4 |

© 2013 The MITRE Corporation. All rights reserved.

Toolbox

� The material in these slides are a set of tools.

� Some tools may be useful to you, some may not.

� You will be exposed to the tools so that you know th ey exist and
can be used, if desired.

| 5 |

© 2013 The MITRE Corporation. All rights reserved.

Table of Contents

� Security Terminology
� XML lacks inherent security
� A valid XML document can still cause trouble
� Security considerations when processing XML document s

– Reading inputs from external URLs and XInclude (external entities)
– Attack surface
– Pros and cons of spending the resources to check inputs

� Miscellaneous security topics
– Expanding entities
– Poorly constructed regular expressions
– Manual editing of XML documents (problems with copying and pasting)
– Unconstrained markup and data

� A brief introduction to XML security tools and capabilities
– Canonicalization
– XML Digital Signatures (Integrity)
– XML Encryption (Confidentiality)

| 6 |

© 2013 The MITRE Corporation. All rights reserved.

Categories of Vulnerabilities

� Many of the vulnerabilities described in the followi ng slides fall
into one or more of these categories:

– Data attack

– Data hiding

– Data disclosure

| 7 |

© 2013 The MITRE Corporation. All rights reserved.

Data Attack

This is where malicious code resides within
the data, and the data has been crafted to
compromise a vulnerability in the software
responsible for parsing the content.

| 8 |

© 2013 The MITRE Corporation. All rights reserved.

Data Hiding

This is where information is purposely
hidden within the file and never seen by the
application.

| 9 |

© 2013 The MITRE Corporation. All rights reserved.

Data Disclosure

This is where information is accidentally
leaked.

| 10 |

© 2013 The MITRE Corporation. All rights reserved.

CIA Triad

� Three core goals of information security are confide ntiality,
integrity, and availability of the information [1]:

– Confidentiality refers to assurance that information is not
disclosed to unauthorized users

– Integrity means that information is protected against unauthorized
modification, whether by accident or malicious activity

– Availability means ensuring that data can be accessed when
needed

[1] http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf

| 11 |

© 2013 The MITRE Corporation. All rights reserved.

Confidentiality Examples

� Information you want kept confidential:

– Your medical records

– Your salary

– Your credit card number

– Your bank PIN number

– A company’s proprietary information

– Classified information

| 12 |

© 2013 The MITRE Corporation. All rights reserved.

Integrity Examples

� Information you want accurate (not accidentally or d eliberately
altered):

– Your retirement account

– Your bank account

– If your system crashes, you want the Word document that was
open closed without corruption

| 13 |

© 2013 The MITRE Corporation. All rights reserved.

Availability Examples

� Information you want available in a timely manner:

– You want to purchase tickets for a popular event that will sell out
quickly

– You are at an ATM machine and you need to know your current
bank balance

– You heard about a hot stock and you want to access the web site
that is selling the stock

| 14 |

© 2013 The MITRE Corporation. All rights reserved.

You are here.

Table of Contents

� Security Terminology
� XML lacks inherent security
� A valid XML document can still cause trouble
� Security considerations when processing XML document s

– Expanding entities (XML bomb)
– Reading inputs from external URLs and XInclude (external entities)
– Attack surface
– Pros and cons of spending the resources to check inputs

� Miscellaneous security topics
– Poorly constructed regular expressions
– Manual editing of XML documents (problems with copying and pasting)
– Unconstrained markup and data

� A brief introduction to XML security tools and capabilities
– Canonicalization
– XML Digital Signatures (Integrity)
– XML Encryption (Confidentiality)

| 15 |

© 2013 The MITRE Corporation. All rights reserved.

XML is Text

� An XML document is a plain text document.

� It’s not a binary document (although there is a bina ry form of
XML called EXI).

� Virtually every computing platform worldwide has at least one
text-editing application.

Consequence Explosive growth of information sharing

| 16 |

© 2013 The MITRE Corporation. All rights reserved.

Every Windows

machine has

Notepad and

WordPad.

Many have

Word. They are

“text” editors.

| 17 |

© 2013 The MITRE Corporation. All rights reserved.

Implications

� The ease of viewing and editing text elevates the im portance of
mechanisms that support confidentiality and integrity

� The XML specification does not provide these mechani sms, so
additional measures must be used to provide confidentiality and
integrity

– XML Encryption can help protect against loss of confidentiality

– XML Digital Signature can help protect against loss of integrity

| 18 |

© 2013 The MITRE Corporation. All rights reserved.

XML Characters are Encoded
using an Encoding Scheme

<?xml version="1.0" encoding="______"?>

ASCII, iso-8859-1,
UTF-8, UTF-16, etc.

| 19 |

© 2013 The MITRE Corporation. All rights reserved.

• ASCII: basically the characters on your keyboard
• iso-8859-1 : all the ASCII characters plus characters in the European

alphabets – À, Á, Â, Ã, Ä, etc.

• UTF-8, UTF-16: all the characters from every language in the world.
UTF-8 is the default and the predominate character encoding

Characters in Encoding Schemes

| 20 |

© 2013 The MITRE Corporation. All rights reserved.

Number of Characters in Encoding
Schemes

� ASCII: 128 characters

� iso-8859-1: 256 characters

� UTF-8, UTF-16: 1,112,064 characters

| 21 |

© 2013 The MITRE Corporation. All rights reserved.

UTF-8: A Boon to Internationalization

<?xml version="1.0" encoding="utf-8" ?>
<Собирание версия="1.2-3">

<Объект id="12">
<НомерОбъекта>45-3454-123</НомерОбъекта >
<ВНаличии>123</ВНаличии >
<Описание xml:lang="ja">第二発電機 </ Описание>

</Объект>
<Объект id="64">

<НомерОбъекта>45-7894-456</НомерОбъекта >
<ВНаличии>123</ВНаличии >
<Описание xml:lang="ja">手動ウォーター・ポンプ </ Описание>

</Объект>
</Собирание >

This XML document uses the Russian alphabet for
markup and has Japanese content

Consequence Easy to share information across
languages and cultures

| 22 |

© 2013 The MITRE Corporation. All rights reserved.

Applications that Process XML

UTF-8
1,112,064 characters

Your English language
application is likely to be
designed to deal with only this
subset of all the characters.
(The English alphabet is about
0.01 percent of the size of the
UTF-8 space.)

| 23 |

© 2013 The MITRE Corporation. All rights reserved.

Consequence of a Large Character Set

� The XML specification does not provide mechanisms to validate
that XML instance documents contain only a particular subset of
characters, so additional measures must be used.

– Validation languages such as XML Schema or Relax NG can be
used to validate that XML documents contain only the expected set
of characters.

| 24 |

© 2013 The MITRE Corporation. All rights reserved.

Text is Flexible in Expressing Ideas

� The number 25000 can be expressed as 25000 or 25,000 or 2.5 x
104 or twenty five thousand

� Humans can easily understand data in its various exp ressions

� Applications cannot process data in arbitrary expres sions

� Most applications are designed to expect data in a g iven type
(data type) with a standardized format

| 25 |

© 2013 The MITRE Corporation. All rights reserved.

Consequence of Flexible Data

� The XML specification does not provide mechanisms to enforce
standard data formats, so additional measures must be used.

– XML validation languages such as XML Schema or Relax NG can
be used to enforce that XML documents contain data in an
expected format.

| 26 |

© 2013 The MITRE Corporation. All rights reserved.

Lessons Learned

XML lacks inherent security

Therefore, XML must be supplemented with additional
measures:
• validation (XSD, RNG)
• confidentiality (XML Encryption)
• integrity (XML Digital Signature)

| 27 |

© 2013 The MITRE Corporation. All rights reserved.

Resources

� My tutorial on XML digital signatures and XML encryp tion: see
the papers folder, in there is a Powerpoint document,
How-to-transfer-XML-documents-securely-with-integrity.pptx

� The specification for the XML Encryption Syntax and Processing
is available at http://www.w3.org/TR/xmlenc-core/

� The specification for the XML Signature Syntax and Processing
is available at http://www.w3.org/TR/xmldsig-core/

� The ASCII characters: http://en.wikipedia.org/wiki/ASCII

� The iso-8859-1 characters:
http://en.wikipedia.org/wiki/ISO/IEC_8859-1

� The UTF-8 characters: http://en.wikipedia.org/wiki/UTF-8

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://en.wikipedia.org/wiki/UTF-8

| 28 |

© 2013 The MITRE Corporation. All rights reserved.

You are here.

� Security Terminology
� XML lacks inherent security
� A valid XML document can still cause trouble
� Security considerations when processing XML document s

– Expanding entities (XML bomb)
– Reading inputs from external URLs and XInclude (external entities)
– Attack surface
– Pros and cons of spending the resources to check inputs

� Miscellaneous security topics
– Poorly constructed regular expressions
– Manual editing of XML documents (problems with copying and pasting)
– Unconstrained markup and data

� A brief introduction to XML security tools and capabilities
– Canonicalization
– XML Digital Signatures (Integrity)
– XML Encryption (Confidentiality)

Table of Contents

© 2013 The MITRE Corporation. All rights reserved.

Hidden Markup

| 30 |

© 2013 The MITRE Corporation. All rights reserved.

Five Reserved Characters

� The XML specification lists five reserved characters :
< > & " '

� Those characters are reserved because they have a predefined
meaning. For example, the '<' character means, “ Hey, this is the
beginning of a start or end tag.”

| 31 |

© 2013 The MITRE Corporation. All rights reserved.

Text with Escaped Characters

� If the reserved characters are to be used as plain t ext
characters, they must break out of (escape) their predefined
meaning.

� Suppose we want the content of a <Thermostat> elemen t to be
this text string:

if temperature < 32 then add heat

� The '<' character is a reserved character. To use it as a plain text
character in the string, it must be escaped.

| 32 |

© 2013 The MITRE Corporation. All rights reserved.

3 Ways to Escape Reserved Characters

Reserved
Character

XML Entity Character
Entity

CDATA Section

< < < or < <![CDATA[<]]>

> > > or > <![CDATA[>]]>

& & & or & <![CDATA[&]]>

" " " or " <![CDATA["]]>

' ' ' or ' <![CDATA[']]>

Hex codepoint Decimal codepoint

| 33 |

© 2013 The MITRE Corporation. All rights reserved.

3 Ways to Represent <Thermostat>

XML Entity <Thermostat>
if temperature < 32 then add heat

</Thermostat>
Character
Entity

<Thermostat>
if temperature < 32 then add heat

</Thermostat>
CDATA
Section

<Thermostat>
<![CDATA[if temperature < 32 then add heat]]>

</Thermostat>

| 34 |

© 2013 The MITRE Corporation. All rights reserved.

Escaping is Good

� XML entities, character entities, and CDATA sections are
essential for creating text strings that contain reserved
characters.

� They make it straightforward for XML processes and X ML
applications to process text strings without concern that the
reserved characters will be acted upon in their predefined role.

| 35 |

© 2013 The MITRE Corporation. All rights reserved.

• An XML parser is a software program that parses XML
documents, checking that they conform to the syntax rules
of XML.

• XML applications build on top of XML parsers.

XML

XML Parser

XML Application
(e.g., XML Schema validator)

XML Parser

| 36 |

© 2013 The MITRE Corporation. All rights reserved.

All Map to the Same Parsed
Representation

X
M
L

P
a
r
s
e
r

| 37 |

© 2013 The MITRE Corporation. All rights reserved.

Application

Applications Operate on the Parsed
Representation

| 38 |

© 2013 The MITRE Corporation. All rights reserved.

XML Serialization

When an XML application outputs a text node, the application can be designed to
escape or not escape reserved characters. Well-behaved XML applications,
such as XSLT processors, automatically escape any reserved characters in text
nodes. This combination of outputting and escaping is called XML serialization.

serialize

| 39 |

© 2013 The MITRE Corporation. All rights reserved.

Caution

� There is no guarantee that every XML application will escape the
reserved characters in text nodes when writing output.

� In fact, XSLT processors can be instructed to not escape
reserved characters when writing output [1].

� Subsequent processing of the output would therefore attempt to
parse the reserved characters as markup, causing unexpected
or even malicious results.

[1] disable-output-escaping="yes" See http://www.w3.org/TR/xslt#disable-output-escaping

| 40 |

© 2013 The MITRE Corporation. All rights reserved.

Could a Problem Occur if an
Application Doesn't Escape
Reserved Characters?

An attacker could exploit an XML application that does not
escape reserved characters upon serializing.

The attacker injects malicious markup in the form of
escaped text, hoping to bypass malware filtering.

Later, in the lifecycle of the XML document, the attacker
intends for the XML application that doesn’t serialize
properly to convert the escaped text back into markup that
is actually executable malicious code.

| 41 |

© 2013 The MITRE Corporation. All rights reserved.

<Thermostat>
<JavaScript>malicious code</JavaScript>

</Thermostat> ELEMENT
Thermostat

TEXT

<JavaScript>malicious code</JavaScript>

<Thermostat>
<JavaScript>malicious code</JavaScrip t>

</Thermostat>

<Thermostat> <![CDATA[
<JavaScript>malicious code</JavaScript>

]]> </Thermostat>

Disable output
escaping or
improper
serialization

<Thermostat>
<JavaScript>malicious code</JavaScript>

</Thermostat>

1

2

Transform
To HTML

HTML with
malicious

JavaScript 3

4

| 42 |

© 2013 The MITRE Corporation. All rights reserved.

If you are concerned about

undesirable markup, know that it

can be inserted into XML

documents using any of the three

escaping mechanisms.

Key Point

| 43 |

© 2013 The MITRE Corporation. All rights reserved.

Mitigating the Risk

� Option 1: Use an XML Schema to ensure data element a nd
attribute content does not contain reserved characters. Validate
the XML document against the constrained XML Schema.

� Example of an XML Schema that prohibits the '<' char acter:

<simpleType name="String-without-less-than">
<restriction base ="string">

<minLength value= "1" />
<maxLength value= "100" />
<pattern value= "[a-zA-Z 0-9]*" />

</restriction>
</ simpleType>

Allowed chars: a-z, A-Z, space, digits

| 44 |

© 2013 The MITRE Corporation. All rights reserved.

• Option 2: Write a program that removes text containing XML
entities, character entities, or CDATA sections:

44

<Thermostat>
<JavaScript>malicious code</JavaScript>

</Thermostat>

<Thermostat></Thermostat>

delete text

Mitigating the Risk

| 45 |

© 2013 The MITRE Corporation. All rights reserved.

Disadvantage of Option 2

Perfectly good data is removed:

<Thermostat> if temperature < 32 then add heat </Thermostat>

delete text

<Thermostat></Thermostat>

| 46 |

© 2013 The MITRE Corporation. All rights reserved.

• Option 3: Reject XML documents containing escaped reserved
characters.

• This approach might be acceptable in certain high threat
environments.

• Not acceptable in most normal situations.

Mitigating the Risk

| 47 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 1

� Using oXygen XML, open the planets.xml file in the
lab01/unaltered folder.

� planets.xml contains data about the planets in our s olar system.

� I created an XSLT program (planets.xsl) which extrac ts the data
in planets.xml and embeds the data into an HTML document.

Continued �

| 48 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 1 (cont.)

Apply the XSLT program

by clicking on this

| 49 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 1 (cont.)

The data from the XML

document has been

extracted and placed in

an HTML document.

| 50 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 1 (cont.)

� Next, open planets.xml in the lab01/altered folder.

� It is the same XML document, but an attacker has inj ected
JavaScript in it.

� Can you spot the JavaScript?

Continued �

| 51 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 1 (cont.)

| 52 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 1 (concluded)

� Apply the (same) XSLT program to planets.xml

� The browser will execute the JavaScript. (Click on “ Allow
blocked content at the bottom of the browser”)

© 2013 The MITRE Corporation. All rights reserved.

Unused Namespaces

| 54 |

© 2013 The MITRE Corporation. All rights reserved.

Example of an Unused Namespace

� An unused namespace in an XML document is a namespac e that
is not associated with any element or attribute in the document.

<Test xmlns:ns1="http://www.example.org">

<data>Value1</data>

</Test>

This namespace is unused

| 55 |

© 2013 The MITRE Corporation. All rights reserved.

Applications Ignore Them

� The XML specification is silent on unused namespaces , so in
general, applications—including validation programs—ignore
them.

Application

XML w/
unused

NS

XML w/
unused

NS

| 56 |

© 2013 The MITRE Corporation. All rights reserved.

Unconstrained

� Unused namespaces can be of any length and can conta in any
legal XML characters.

� There can be duplicate namespaces.

| 57 |

© 2013 The MITRE Corporation. All rights reserved.

Risk

� Unused namespaces could be exploited by an adversary to
embed unauthorized or malicious content that is not subject to
schema validation.

� Even if unused namespaces do not contain malicious d ata, the
presence of one or more very large namespaces could degrade
performance or be used in a denial-of-service attack.

| 58 |

© 2013 The MITRE Corporation. All rights reserved.

Mitigating the Risk

� Delete all unused namespaces in the XML document.

| 59 |

© 2013 The MITRE Corporation. All rights reserved.

Caution

� Be sure the namespace really is unused before deleti ng it.

� Determining that a namespace is unused can be a bit tricky.

| 60 |

© 2013 The MITRE Corporation. All rights reserved.

Where are Namespaces Used?

� An element name may be bound to a namespace:
<bk:Bo ok xmlns:bk="…">

� An attribute name may be bound to a namespace:
<Document icism:classification="…"

xmlns:icism="…">

� Data (name) may be bound to a namespace:
<fault >soap:client</fault>

| 61 |

© 2013 The MITRE Corporation. All rights reserved.

QName

QName = namespace-qualified name

bk:Book (element name is a QName)

icism:classification (attribute name is a QName)

soap:client (data value is a QName)

| 62 |

© 2013 The MITRE Corporation. All rights reserved.

QName Data Type

� XML Schema provides many data types:
string, integer, boolean, etc.

� One data type it provides is: QName

� In your XML Schema you can declare, “ The value of this element
must be a QName.”

<element name="fault" type=" QName" />

<fault> soap:client </fault>

XML Schema:

XML Instance:

| 63 |

© 2013 The MITRE Corporation. All rights reserved.

<Test xmlns:ns1="http://www.example.org">

<data>... </data>

</Test>

Is this namespace unused?

| 64 |

© 2013 The MITRE Corporation. All rights reserved.

<Test xmlns:ns1="http://www.example.org">

<data>... </data>

</Test>

The namespace isn’t used by the elements,

and there are no attributes.

| 65 |

© 2013 The MITRE Corporation. All rights reserved.

<Test xmlns:ns1="http://www.example.org">

<data>... </data>

</Test>

The namespace might be used in this data value.

| 66 |

© 2013 The MITRE Corporation. All rights reserved.

<Test xmlns:ns1="http://www.example.org">

<data>ns1:Foo </data>

</Test>

Now what’s your answer, is this

namespace unused?

| 67 |

© 2013 The MITRE Corporation. All rights reserved.

Suppose the <data> element is declared like so:

<element name="data" type="string" />

| 68 |

© 2013 The MITRE Corporation. All rights reserved.

<Test xmlns:ns1="http://www.example.org">

<data>ns1:Foo </data>

</Test>

Is this namespace unused?

| 69 |

© 2013 The MITRE Corporation. All rights reserved.

Suppose the <data> element is declared like so:

<element name="data" type="QName" />

| 70 |

© 2013 The MITRE Corporation. All rights reserved.

<Test xmlns:ns1="http://www.example.org">

<data>ns1:Foo </data>

</Test>

Is this namespace unused?

| 71 |

© 2013 The MITRE Corporation. All rights reserved.

Answers

The namespace is unused when <data> is declared of
type string.

<element name="data" type="string" />

<Test xmlns:ns1="http://www.example.org">
<data> ns1:Foo </data>

</Test>

The namespace is used when <data> is declared of
type QName.

<element name="data" type="QName" />

<Test xmlns:ns1="http://www.example.org">
<data> ns1:Foo </data>

</Test>

| 72 |

© 2013 The MITRE Corporation. All rights reserved.

Lessons Learned

� Determining if a namespace is unused is a bit tricky .

� Don’t delete a namespace declaration unless you are sure it’s
unused.

– Refer to the XML Schema

� Do delete all unused namespace declarations.

| 73 |

© 2013 The MITRE Corporation. All rights reserved.

Canonical XML

� “Canonicalization” means: put the XML into a standar d format.

– Examples of things a canonicalizer tool does: delimit all
attribute values with double quotes, convert all empty
elements to paired start and end tags.

� One thing a canonicalizer tool does is it removes un used
namespaces.

� Caution : some canonicalizers erroneously remove namespaces
that are in fact being used within data values.

© 2013 The MITRE Corporation. All rights reserved.

The QName data type in
XML Schema

| 75 |

© 2013 The MITRE Corporation. All rights reserved.

<element name="CountryCode" type= "QName" />

<Document xmlns:iso ="http://www.iso.org" >

<CountryCode> iso:US </CountryCode>

</D ocument>

XML Schema:

XML Instance:

The value of <CountryCode> is a QName,
as required by the XML Schema

| 76 |

© 2013 The MITRE Corporation. All rights reserved.

Constrain the QName Value

� That element declaration provides no constraints on the length
of QName values nor on the set of characters used in values.

� To reduce risk, the data type should be constrained using
facets.

<element name="CountryCode" type= "QName" />XML Schema:

| 77 |

© 2013 The MITRE Corporation. All rights reserved.

<element name="CountryCode" >
<simpleType>

<restriction base ="QName">
<maxLength value ="10" />
<pattern value ="[a-zA-Z:]+" />

</restriction>
</simpleType>

</element>

<Document xmlns:iso ="http://www.iso.org" >

<CountryCode> iso:US </CountryCode>

</Document>

XML Schema:

XML Instance:

The value of <CountryCode> is constrained to
no more than 10 characters and the characters
must be the letters of the alphabet and colon.

| 78 |

© 2013 The MITRE Corporation. All rights reserved.

Wrong!

� The maxLength facet is ignored for the QName data ty pe!
1.3 if {primitive type definition} is QName or NOTATION, then any {value} is
facet-valid.
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405 /#rf-maxLength

� To constrain the length and characters of a QName va lue use
the pattern facet:

<element name="CountryCode" >
<simpleType>

<restriction base ="QName">
<pattern value =" [a-zA-Z:]{1,10} " />

</restriction>
</simpleType>

</element> 1 to 10 characters

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/#rf-maxLength

| 79 |

© 2013 The MITRE Corporation. All rights reserved.

<Document xmlns:iso ="http://www.iso.org" >

<CountryCode> iso:US </CountryCode>

</D ocument>

Okay, now we’ve constrained this

| 80 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 2

� In the Lab 2 folder you will find CountryCode.xsd; o pen it in
oXygen XML.

� It constrains the content of <CountryCode> to a QNam e that is
no longer than 10 characters in length.

<element name="CountryCode" >
<simpleType>

<restriction base ="QName">
<pattern value =" [a-zA-Z:]{1,10} " />

</restriction>
</simpleType>

</element>

Continued �

| 81 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 2 (cont.)

� Also in the Lab 2 folder is CountryCode.xml

� Open it in oXygen XML and validate it

Click on this button to validate
this XML document against
CountryCode.xsd

Continued �

| 82 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 2 (cont.)

� Extend the QName value so that it is longer than 10 characters
in length and then validate

Extend the QName value and then validate

Continued �

| 83 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 2 (concluded)

� Set the QName value back to iso:US

� Extend the iso namespace to a long value and then va lidate

Set the QName value to iso:US, make the iso namespace long, and then validate

What did you learn?

| 84 |

© 2013 The MITRE Corporation. All rights reserved.

<Document xmlns:iso ="http://www.iso.org" >

<CountryCode> iso:US </CountryCode>

</D ocument>

These are totally unconstrained

| 85 |

© 2013 The MITRE Corporation. All rights reserved.

Sensitive Data in the Namespace

<Document xmlns:iso ="This is a long string containing sensitive data" >

Passing unconstrained and
unvalidated data into a process, even
via a namespace, provides a way to
attack the process.

| 86 |

© 2013 The MITRE Corporation. All rights reserved.

<Document xmlns:This_is_a_long_prefix_containing_sensitive_dat a="..." >

In general, applications, including
validation programs, ignore namespace
prefixes.

Thus, namespace prefixes can
conceivably be exploited to transmit
sensitive information.

Sensitive Data in the Prefix

| 87 |

© 2013 The MITRE Corporation. All rights reserved.

How to Constrain the Namespace

<schema xmlns ="http://www.w3.org/2001/XMLSchema"
xmlns:iso =" http://www.iso.org " >

<element name="Document" >
<complexType>

<sequence>
<element name="CountryCode" >

<simpleType>
<restriction base ="QName">

<enumeration value ="iso:DE" />
<enumeration value ="iso:FR" />
<enumeration value ="iso:US" />

</restriction>
</simpleType>

</element>
</sequence>

</complexType>
</element>

</schema>

Enumerate

the QName

values

Declare the namespace here, in

the schema, at design time

| 88 |

© 2013 The MITRE Corporation. All rights reserved.

<Document xmlns:iso ="ht tp://www.iso.org " >

<CountryCode> iso:US </CountryCode>

</D ocument>

The only country codes allowed are: DE, FR, US

This is the only namespace that can be used

| 89 |

© 2013 The MITRE Corporation. All rights reserved.

<Document xmlns:i so="http://www.iso.org" >

<CountryCode> iso :US</CountryCode>

</D ocument>

The namespace prefix is still unconstrained

| 90 |

© 2013 The MITRE Corporation. All rights reserved.

Prefix Rewrite

� Check that namespace prefixes do not contain sensiti ve
information.

� Where appropriate, rewrite namespace prefixes to neu tral
prefixes such as ns1, ns2, ns3.

� Namespaces can be rewritten using a simple search an d replace
tool or program.

| 91 |

© 2013 The MITRE Corporation. All rights reserved.

Careful when Rewriting

� Rewriting what appears to be namespace prefixes in e lement or
attribute values must be undertaken with care.

� For example, can we rewrite ex1 in the following XML
document?

<test xmlns: ex1 ="http://www.example.com">
<item> ex1 :Value2</item>

</test>

| 92 |

© 2013 The MITRE Corporation. All rights reserved.

<test xmlns: ex1 ="http://www.example.com">
<item> ex1 :Value2</item>

</test>

The ex1 on the test element is a namespace prefix.
However, the ex1 in the value of item might or might
not be a prefix. If there is an XML Schema for the
document that specifies the value of item is QName
then ex1 is a prefix and it can be rewritten in both
places. If the value of item is not QName, then ex1 in
the value of item must not be changed.

| 93 |

© 2013 The MITRE Corporation. All rights reserved.

Lessons Learned

� Valid XML documents can still cause trouble:

– There may be hidden markup

– There may be unused namespaces

– Unconstrained namespaces and namespace prefixes may be
exploited

| 94 |

© 2013 The MITRE Corporation. All rights reserved.

You

are

here

Table of Contents

� Security Terminology
� XML lacks inherent security
� A valid XML document can still cause trouble
� Security considerations when processing XML document s

– Reading inputs from external URLs and XInclude (external entities)
– Attack surface
– Pros and cons of spending the resources to check inputs

� Miscellaneous security topics
– Expanding entities
– Poorly constructed regular expressions
– Manual editing of XML documents (problems with copying and pasting)
– Unconstrained markup and data

� A brief introduction to XML security tools and capabilities
– Canonicalization
– XML Digital Signatures (Integrity)
– XML Encryption (Confidentiality)

© 2013 The MITRE Corporation. All rights reserved.

XML Bombs

| 96 |

© 2013 The MITRE Corporation. All rights reserved.

Definition of “XML Bomb”

A block of XML that is both well-formed
and valid according to the rules of an
XML schema but which crashes or
hangs a program when that program
attempts to parse it.

| 97 |

© 2013 The MITRE Corporation. All rights reserved.

Definition of “XML Entity”

An XML entity is an abbreviation.

<?xml version="1.0" encoding="UTF-8"?>
<Example>

if A < B then ...
</Example>

“lt” is a built-in entity. By “built-in” we mean
that every XML parser recognizes this entity
and knows that the replacement text for “lt”
is “<“

| 98 |

© 2013 The MITRE Corporation. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>
<Example>

if A < B then ...
</Example>

XML Parser

<?xml version="1.0" encoding="UTF-8"?>
<Example>

if A < B then ...
</Example>

XML Application
(XSLT

processor, XML
Schema

validator, etc.)

The XML parser has
“resolved” the entity
reference. That is, it replaced
the entity reference with its
replacement text.

| 99 |

© 2013 The MITRE Corporation. All rights reserved.

You can Create your Own Entities

<?xml version="1.0" encoding="UTF-8"?>
<Example>

<Airplane>
<Altitude>12,000 &units;</Altitude>

</Airplane>
<Mountain>

<Height>5,000 &units; </Height>
</Mountain>

</Example>

User-defined entities are
entities that you (the user)
created. Thus, you must
define it. Define an entity with
an ENTITY declaration.

| 100 |

© 2013 The MITRE Corporation. All rights reserved.

ENTITIES are Declared in DOCTYPE

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!E NTITY units "feet">
]>
<Example>

<Airplane>
<Altitude>12,000 &units;</Altitude>

</Airplane>
<Mountain>

<Height>5,000 &units; </Height>
</Mountain>

</Example>

Must match

| 101 |

© 2013 The MITRE Corporation. All rights reserved.

Here’s how to Declare an ENTITY

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!E NTITY units "feet">
]>
<Example>

<Airplane>
<Altitude>12,000 &units;</Altitude>

</Airplane>
<Mountain>

<Height>5,000 &units; </Height>
</Mountain>

</Example>

ENTITY
declaration

| 102 |

© 2013 The MITRE Corporation. All rights reserved.

ENTITIES are Useful

� As the previous slide shows, you can avoid repeating yourself
by declaring an entity once and reusing it multiple times.

� Here’s another example that illustrates the value of entities:
create a “disclaimer” entity:
<?xml version="1.0"?>
<!DOCTYPE letter [

<!ENTITY disclaimer "DISCLAIMER GOES HERE">
]>
<letter>

<salutation>
Dear <customerName>Valued Customer</customerName>,

</salutation>
<body>

...
</body>
<closing>Sincerely,</closing>
<signature>Customer Service Employee 334992</signature>
&disclaimer;

</letter>
Example is from:
http://www.ibm.com/developerworks/xml/library/x-tipgentity/index.html

| 103 |

© 2013 The MITRE Corporation. All rights reserved.

ENTITY Declaration

<!ENTITY name "replacement text">

The name of your ENTITY

The string that will be used by the XML
parser to replace your ENTITY reference

| 104 |

© 2013 The MITRE Corporation. All rights reserved.

ENTITIES can be Used in any
XML Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE schema [
<!ENTITY US_ASCII_CHARACTER "	
 -">
]>
<schema xmlns ="http://www.w3.org/2001/XMLSchema" >

<element name="Description" >
<simpleType>

<restriction base ="string" >
<pattern value ="[&US_ASCII_CHARACTER;]*" />

</restriction>
</simpleType>

</element>

</schema>

An ENTITY is used in this
XML Schema pattern facet
regular expression.

| 105 |

© 2013 The MITRE Corporation. All rights reserved.

ENTITIES can Use Other ENTITIES

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!E NTITY day "18">
<!ENTITY month "February">
<!ENTITY year "2013">
<!ENTITY date "&month; &day;, &year;">
]>
<Example>

<Todays-Date> &date; </Todays-Date>
</E xample>

The replacement
text for date is the
replacement text for
month, day, and
year.

| 106 |

© 2013 The MITRE Corporation. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!ENTITY day "18">
<!ENTITY month "February">
<!ENTITY year "2013">
<!ENTITY date "&month; &day;, &year;">
]>
<Example>

<Todays-Date> &date; </Todays-Date>
</Example>

XML Parser

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!ENTITY day "18">
<!ENTITY month "February">
<!ENTITY year "2013">
<!ENTITY date "&month; &day;, &year;">
]>
<Example>

<Todays-Date> February 18, 2013 </Todays-Date>
</Example>

| 107 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 3

� In the lab03 folder you will find: Todays-datetime.x ml

� Open it in oXygen XML and observe that it has some u ser-
defined entities.

� Drag and drop it into a browser. The browser will di splay the
resolved entities.

� Create another entity and call it datetime2. Set its replacement
text to be two datetime entities. Then, within the <Todays-
Datetime> element reference your datetime2 entity. Drag and
drop the XML document into a browser.

| 108 |

© 2013 The MITRE Corporation. All rights reserved.

Alert!

The ability of an ENTITY to use other
ENTITIES can result in exponential string
length.

| 109 |

© 2013 The MITRE Corporation. All rights reserved.

Expanding ENTITY

<?xml version="1.0"
encoding="UTF-8"?>
<!DOCTYPE Example [
<!E NTITY ha1 'ha'>
<!ENTITY ha2 '&ha1;&ha1;'>
<!ENTITY ha3 '&ha2;&ha2;'>
<!ENTITY ha4 '&ha3;&ha3;'>
<!ENTITY ha5 '&ha4;&ha4;'>
]>
<Example>

&ha5;
</Example>

| 110 |

© 2013 The MITRE Corporation. All rights reserved.

ENTITY Replacement text

ha1 ha

ha2 haha

ha3 hahahaha

ha4 hahahahahahahaha

ha5 hahahahahahahahahahahahahahah
aha

The length of the replacement text is growing
at an exponential rate.

| 111 |

© 2013 The MITRE Corporation. All rights reserved.

Billion Laughs Attack

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!E NTITY ha1 'ha'>
<!ENTITY ha2 '&ha1;&ha1;'>
<!ENTITY ha3 '&ha2;&ha2;'>
<!ENTITY ha4 '&ha3;&ha3;'>
<!ENTITY ha5 '&ha4;&ha4;'>
…
<!ENTITY ha128 '&ha127;&ha127;'>
]>
<Example>

&ha128;
</Example>

The length of the replacement text for ha128 is a string of
length: 2128 =
6,800,000,000,000,000,000,000,000,000,000,000,000

| 112 |

© 2013 The MITRE Corporation. All rights reserved.

The Billion Laughs Attack causes XML Parsers
to consume lots of memory and CPU cycles as it
resolves the ENTITY references.

The net effect is a Denial-of-Service attack or
even a system crash.

| 113 |

© 2013 The MITRE Corporation. All rights reserved.

Other Names

� The Billion Laughs Attack is also called:

– An XML bomb

– Exponential entity expansion attack

| 114 |

© 2013 The MITRE Corporation. All rights reserved.

Quadratic Blowup Attack

Instead of defining multiple expanding ENTITIES,
create one long ENTITY and reference it many
times:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!E NTITY A "AAAAAAAAAAAAAAAAAAAAAAAAAAA ...">
]>
<Example>

&A;&A;&A;&A;&A;&A;&A;&A;&A; ...
</Example>

| 115 |

© 2013 The MITRE Corporation. All rights reserved.

Internal vs. External ENTITIES

� In the previous examples we created an entity and sp ecified its
replacement text. That’s called an internal entity declaration.

� You can also create an entity and provide a URL to i ts
replacement text. That’s called an external entity declaration:

<!ENTITY name SYSTEM "url">

Keyword, indicates that what follows is a URL.

| 116 |

© 2013 The MITRE Corporation. All rights reserved.

Google Web Service

� Google has a web service that you can invoke to get information
about a city.

� Here’s how to get info about Boston:

� We can use external entities to pull into our XML documents data from

web services (such as Google’s web service)

http://maps.googleapis.com/maps/api/geocode/xml?address=Boston,%20MA&sensor=false

| 117 |

© 2013 The MITRE Corporation. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Example [
<!ENTITY Boston SYSTEM "http://maps.googleapis.com/maps/api/geocode/xml?address=Boston,%20MA&sensor=false">
]>
<Example>

&Boston;
</Example>

XML Parser

XSLT
Processor

identity.xsl

See next page

| 118 |

© 2013 The MITRE Corporation. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>
<Example >

<GeocodeResponse>
<status>OK</status>
<result>

<type>locality</type>
<type>political</type>
<formatted_address>Boston, MA, USA</formatted_address>
<address_component>

<long_name>Boston</long_name>
<short_name>Boston</short_name>
<type>locality</type>
<type>political</type>

</address_component>
…

</GeocodeResponse>
</ Example >

Run the example: in the examples/expanding-entities folder
apply identity.xsl to External-ENTITY.xml

| 119 |

© 2013 The MITRE Corporation. All rights reserved.

Know What is Addressed by the URL

<!ENTI TY name SYSTEM"url">

If the resource at this URL is
under the control of an attacker,
then three types of attacks are
possible:
1. The resource never returns,

stalling your application.
2. A huge amount of data is

returned.
3. Malicious code is returned.

| 120 |

© 2013 The MITRE Corporation. All rights reserved.

XML External Entity Attack (XXE)

� XXE (Xml eXternal Entity) attack is an attack on an application
via XML that brings in external input.

| 121 |

© 2013 The MITRE Corporation. All rights reserved.

Mitigating the Risk

� Configure your XML parser so that:

– Entity expansion is turned off (“Hey parser, don’t resolve any
ENTITIES.”)

– The number of entity expansions is set to a max limit (“Hey parser,
stop evaluating ENTITIES once N expansions have been done.”)

– The number of characters that entities can expand to is set to a
max limit (“Hey parser, stop expanding an ENTITY once you’ve
output N characters.”)

� All, some, or none of these options may be available to you
depending on what XML parsing API you are using.

| 122 |

© 2013 The MITRE Corporation. All rights reserved.

Sample Code

XmlReaderSettings settings = new XmlReaderSettings();
settings.ProhibitDtd = false;
settings.MaxCharactersFromEntities = 1024;
XmlReader reader = XmlReader.Create(stream, settings);

XercesDOMParser parser;
parser.setValidationScheme(XercesDOMParser::Val_Always);
parser.setDoNamespaces(true);
parser.setDoSchema(true);
SecurityManager sm;
sm.setEntityExpansionLimit(100);
parser.setSecurityManager(&sm);

| 123 |

© 2013 The MITRE Corporation. All rights reserved.

References

� This blog nicely explains the attacks and contains c ode for
configuring Apache Xerces to mitigate the risk of these attacks:

� This web site explains external entity attacks:

http://cytinus.wordpress.com/2011/07/26/37/

http://www.securityfocus.com/archive/1/297714

| 124 |

© 2013 The MITRE Corporation. All rights reserved.

References

� This StackOverflow post has info about available web services:

� Here’s the original reporting of the Billion Laughs Attack:

http://stackoverflow.com/questions/55901/web-service-current-time-zone-for-a-city

http://www.securityfocus.com/archive/1/303509/2002-12-13/2002-12-19/0

| 125 |

© 2013 The MITRE Corporation. All rights reserved.

� This is a good article: “XML Denial of Service Attacks and
Defenses”:

http://msdn.microsoft.com/en-us/magazine/ee335713.aspx

References

© 2013 The MITRE Corporation. All rights reserved.

Attack Surface
(External Inputs)

| 127 |

© 2013 The MITRE Corporation. All rights reserved.

Attack Surface

� The term “attack surface” refers to the ways that an adversary
can get inside.

� Your home has an attack surface. It includes the win dows and
doors. But it also includes the water, gas, communication, and
electrical connections.

� What are the ways that sensitive or malicious conten t could get
inside your XML document?

What is XML's attack surface?

| 128 |

© 2013 The MITRE Corporation. All rights reserved.

XML’s Attack Surface

XML

resource resource
External ENTITY

data

XInclude

data

| 129 |

© 2013 The MITRE Corporation. All rights reserved.

XML’s Attack Surface

� There are two avenues for outside content to get ins ide your
XML document:

1. XML/text obtained from external entities.

2. XML/text obtained using XInclude elements.

� The content may come from either local or network re sources.

� The content is added by the XML parser as it resolve s the
external entity references and the <xi:include> elements.

| 130 |

© 2013 The MITRE Corporation. All rights reserved.

You need to be aware of some security implications of
external entities and XInclude. Consider the following:

<?xml version="1.0"?>
<!D OCTYPE BookStore [
<!ENTITY systemfile SYSTEM "/etc/passwd">
]>
<BookStore>

&systemfile;
</BookStore>

If a system allows an external client to provide XML or XSLT
stylesheets to it and the system will return the results of
processing that XML or stylesheet, then the system
shouldn't allow external entities or XInclude unless they are
limited to some 'safe' sandbox.

Marc Hadley

| 131 |

© 2013 The MITRE Corporation. All rights reserved.

XML
Schema

resource resource
include

data

import

data

XML Schema’s Attack Surface

| 132 |

© 2013 The MITRE Corporation. All rights reserved.

� An XML Schema document is an XML document, so it has all
the attack avenues of XML plus its own unique avenues:
– XML obtained from the xs:import element.
– XML obtained from the xs:include element.
– XML obtained from the xs:redefine element.
– XML obtained from the xs:override element.
– XML obtained from the XPath doc() function.
– XML obtained from the XPath collection() function.

� Content may come from either local or network resources.
� The content is added by the XML Schema processor as it

executes the XML Schema.

XML Schema’s Attack Surface

| 133 |

© 2013 The MITRE Corporation. All rights reserved.

XSLT

resource resource
xsl:document

data

doc()

data

XSLT’s Attack Surface

| 134 |

© 2013 The MITRE Corporation. All rights reserved.

XSLT’s Attack Surface

� An XSLT document is an XML document, so it has all t he attack
avenues of XML plus its own unique avenues:

– The input XML document that is specified when the XSLT
processor is invoked.

– XML obtained from the document() function.

– XML/text obtained from extension functions/elements.

– XML obtained from the xsl:import and xsl:include elements.

– XML/text obtained from global xsl:param elements.

– Text obtained from the system-property() function.

– XML obtained from the XPath doc() and collection() functions.

� Content may come from either local or network resour ces.

� The content is added by the XSLT processor as it exe cutes the
XSLT program.

| 135 |

© 2013 The MITRE Corporation. All rights reserved.

Mitigating the Risk

� Check the location (URL) of all external inputs to e nsure they are
appropriate

– Validate each URL against a whitelist of approved external input
locations

� XML applications should not be able to write to any arbitrary file,
whether on the local hard disk (such as a password file) or
somewhere across the network

– Validate the output URL against a whitelist of approved locations

| 136 |

© 2013 The MITRE Corporation. All rights reserved.

References

� For a description of XInclude see:
http://blogs.gnome.org/shaunm/2011/07/21/understandi ng-
xinclude/

http://blogs.gnome.org/shaunm/2011/07/21/understanding-xinclude/

© 2013 The MITRE Corporation. All rights reserved.

Should you check inbound
XML?

| 138 |

© 2013 The MITRE Corporation. All rights reserved.

Web Service

Application

XML

Should the Application check the XML before
processing it?

Sender

| 139 |

© 2013 The MITRE Corporation. All rights reserved.

A web service needs to check inbound XML
documents (for the presence of malware and other
bad things) only if the documents come from unknown
sources. So, online web services should have a
strong set of checks since the data can come from
anywhere. For trusted sources, however, there is no
need to check inbound XML documents. So, a web
service running on, say, SIPRNet doesn't need to
check inbound XML documents.

The days of trusting inbound XML documents are over. All
inbound XML documents must be checked, even if they come
from a so-called trusted source. “Treat all systems as
compromised. There’s no such thing as ‘secure’ anymore.”
[Deborah Plunkett, NSA Information Assurance Directorate].
Every data exchange has been, will be, or could be tampered
with by attackers. So, even if one is exchanging data
exclusively on the SIPRNet, one must assume that the data
may be compromised and therefore must be checked (for the
presence of malware and other bad things).

| 140 |

© 2013 The MITRE Corporation. All rights reserved.

Trust No One

Trust but Verify

Wisdom from the infosec list

| 141 |

© 2013 The MITRE Corporation. All rights reserved.

How much Testing?

� Cost/benefit analysis needed

– What is the potential impact of bad input in terms of cost and lives?

– What is the cost of testing the input?

� If the application is, say, a currency converter the n perhaps little
testing is needed

� If the application is determining an aircraft’s flig ht path based on
XML inputs from weather sensors, then lots of input testing is
warranted

| 142 |

© 2013 The MITRE Corporation. All rights reserved.

XML

Filter

Blacklist

Some applications determine whether or not to reject an input by scanning the input to see
if it contains a prohibited string. The list of prohibited strings is called a blacklist.

Application

Remove
non-

Unicode
characters,
convert to
Unicode

Normalizati
on Form C

(NFC)

XML
Schema
Validator

XML Schema

| 143 |

© 2013 The MITRE Corporation. All rights reserved.

You are here.

� Security Terminology
� XML lacks inherent security
� A valid XML document can still cause trouble
� Security considerations when processing XML document s

– Reading inputs from external URLs and XInclude (external entities)
– Attack surface
– Pros and cons of spending the resources to check inputs

� Miscellaneous security topics
– Expanding entities
– Poorly constructed regular expressions
– Manual editing of XML documents (problems with copying and pasting)
– Unconstrained markup and data

� A brief introduction to XML security tools and capabilities
– Canonicalization
– XML Digital Signatures (Integrity)
– XML Encryption (Confidentiality)

Table of Contents

© 2013 The MITRE Corporation. All rights reserved.

Exponential
Regular Expressions

| 145 |

© 2013 The MITRE Corporation. All rights reserved.

Ubiquity of Regular Expressions

� The regular expression language is powerful. Regular
expressions are used in many of the XML technologies:

– XML Schema: regular expressions are used in the pattern facet

– XPath: regular expressions are used in these functions:
matches(), tokenize(), and replace()

– XSLT: regular expressions are used in the analyze-string element

| 146 |

© 2013 The MITRE Corporation. All rights reserved.

Example: Constraints on Surnames

Allowable Set of
Characters

Example Family
Name

The letters a–z,
A–Z

Smith

Hyphen Parsons-Kerns
Apostrophe O’Donnel
Space de La Cruz
Period St. Ives

English language family names are under 100 characters in
length and consist of the characters a–z, A–Z, space,
hyphen, apostrophe, and period.

Regex: [a- zA-Z' \.-]+

| 147 |

© 2013 The MITRE Corporation. All rights reserved.

Understanding a Regex

[a-zA-Z' \.-]+

[...] means “pick one of the characters listed within the
brackets”

a-z means range: the characters from ‘a’ to ‘z’

A-Z means range: the characters from ‘A’ to ‘Z’

\. means “the period character” (in regular expressions the
period character has a special meaning; by preceding it with
backslash we break out of (escape) its normal meaning)

+ means “one or more occurrences”

So, the regex means “One or more letters of the alphabet
(upper and lowercase), space, period, and dash.”

| 148 |

© 2013 The MITRE Corporation. All rights reserved.

“Does this string match that regex?”

Regex engine

[a-zA-Z' \.-]+

O'Donnel matches

Regex engine

[a-zA-Z' \.-]+

Roberts/Adams does not match

| 149 |

© 2013 The MITRE Corporation. All rights reserved.

Example of a Regex in XML Schema

<simpleType name="English-language-family-name">
<annotation>

<documentation> The vast majority of English language
family names are at least 1 character long, under 100 characters,
and consist of the characters: a-z, A-Z, space, hyphen, period,
and apostrophe.</documentation>

</annotation>
<restriction base="string">

<minLength value= "1" />
<maxLength value="100" />
<pattern value="[a-zA-Z' \.-]+ " />

</restriction>
</simpleType>

Regular expression

<element name="Family-name" type="English-language-family-name" />

See Family-name.xsd in the regexes folder

| 150 |

© 2013 The MITRE Corporation. All rights reserved.

Instance Document

If the value of Family-name exceeds the length constraint or
uses characters other than those defined by the regex then an
XML Schema validator will report that the data is “invalid.”

See Family-name.xml in the regexes folder

| 151 |

© 2013 The MITRE Corporation. All rights reserved.

Regex’s are Good

� The regular expression language is concise and power ful.

� With a regex you can precisely specify the set of st rings – the
language – that is permitted.

| 152 |

© 2013 The MITRE Corporation. All rights reserved.

oXygen XML has a Tool for Testing
Regexes

| 153 |

© 2013 The MITRE Corporation. All rights reserved.

Type your regex here

Type your string here

Green means the string

matches the regex

| 154 |

© 2013 The MITRE Corporation. All rights reserved.

Definition of “Exponential Regex”

Time

Length of string

A regular expression is said to be exponential if, as the length of an
invalid string increases a little, the time it takes to determine that it is
invalid increases a great deal (exponentially).

| 155 |

© 2013 The MITRE Corporation. All rights reserved.

Email Address

johndoe@somewhere.army.mil

Email addresses follow this

pattern:

• Start with some letters

• Then a ‘@’ character

• Then some more letters

• Repeat any number of times:

• The “.” character

• Some more letters

Note: this is not a complete description of the pattern followed by email addresses.

| 156 |

© 2013 The MITRE Corporation. All rights reserved.

[a-z]+@[a-z\.]+[a-z]+

This regex is not exponential

Start with
some letters

Then a ‘@’
character

Some more
letters and a
period

After the last
period insert
some more
letters

Email Regex, Version #1

| 157 |

© 2013 The MITRE Corporation. All rights reserved.

Email Regex, Version #2

[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+

Start with
some letters

Then a ‘@’
character

More letters

This regex is exponential

More letters or
periods

Period
Repeat After the last

period insert
some more
letters

| 158 |

© 2013 The MITRE Corporation. All rights reserved.

XML Schema with Exponential Regex

<element name="email">
<simpleType>

<restriction base="string">
<pattern value=" [a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+ " />

</restriction>
</simpleType>

</element>

| 159 |

© 2013 The MITRE Corporation. All rights reserved.

Short, Invalid Email

<email>johndoe@somewhere.org.mil.biz.net0</email>

Last character is invalid

| 160 |

© 2013 The MITRE Corporation. All rights reserved.

Quickly Generates an Error

| 161 |

© 2013 The MITRE Corporation. All rights reserved.

Long, Invalid Email

<email>johndoe@somewhere.org.mil
.bi z.net.com.edu.info.jobs.aero.
cat.coop.org.mil.biz.net.com.edu
.info.jobs.aero.cat.coop.org.mil
.biz.net.com.edu.info.jobs.aero.
cat.coop.org.mil.biz.net.com.edu
.info.jobs.aero.cat.coop.org.mil
.biz.net.com.edu0</email>

Last character is invalid

| 162 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 4

� In the Lab04 folder you will find Email.xsd and Emai l.xml

� Email.xsd contains a regex that is exponential.

� Open Email.xml in oXygen XML and validate it.

Click on this button to validate

| 163 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 4 (cont.)

� Now add an erroneous character (a digit) at the end of the email
address and then validate

Add this erroneous digit and then validate

| 164 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 4 (concluded)

� Make the email address very long and then add an err oneous
digit on its end

Make it long and then validate

| 165 |

© 2013 The MITRE Corporation. All rights reserved.

Churns for Hours

It continues validating for hours

| 166 |

© 2013 The MITRE Corporation. All rights reserved.

Regular Expression Denial of Service
(ReDos) Attack

XML
with long

invalid
string XML

Schema
validator

XML Schema
with exponential

regex

Applicationif XML is valid

Scenario: A system validates inbound XML documents against an XML Schema. Only if the XML Schema

validator indicates that the XML document is “valid” does the system process the document. The XML

Schema is publicly available so that users know how to interact with the system. An adversary examines

the XML Schema and discovers that it is using an exponential regex. He/she exploits this vulnerability in

the XML Schema as follows: He/she sends the service an XML instance document. For the element with

the exponential regex, he/she provides a value that causes the XML Schema validator to run for hours or

days. Thus, the adversary has successfully accomplished a DoS attack.

| 167 |

© 2013 The MITRE Corporation. All rights reserved.

Change to Another Validator

Click on this

| 168 |

© 2013 The MITRE Corporation. All rights reserved.

Click on this

| 169 |

© 2013 The MITRE Corporation. All rights reserved.

Click on this

| 170 |

© 2013 The MITRE Corporation. All rights reserved.

Select this1

Click on this2

| 171 |

© 2013 The MITRE Corporation. All rights reserved.

Click on this

| 172 |

© 2013 The MITRE Corporation. All rights reserved.

Click on this

You are now validating the XML document
using XERCES. Notice that XERCES
immediately generates an error.

Previously you were using SAXON.

| 173 |

© 2013 The MITRE Corporation. All rights reserved.

Uses Different Regex Engines

Regex

A

Regex
engine

A

SAXON

Regex

B

Regex
engine

B

XERCES

| 174 |

© 2013 The MITRE Corporation. All rights reserved.

With a long, invalid string
the oXygen regex tool
immediately determines
it doesn’t match

Why?

© 2013 The MITRE Corporation. All rights reserved.

Answer: The oXygen regex
tool uses XERCES’s regex
engine

| 176 |

© 2013 The MITRE Corporation. All rights reserved.

(a+)+

a+ Not exponential

Exponential

Simple Regex

| 177 |

© 2013 The MITRE Corporation. All rights reserved.

Patterns of Regexes that are Exponential

(a+)+
(a*)*(a*)+
(a+)*

When you see regexes with the same
form, suspect exponential behavior.

| 178 |

© 2013 The MITRE Corporation. All rights reserved.

Cause of Exponential Time

� Backtracking is the cause of the exponential time. H ere’s how
some regex engines work:

– “I took this path and it failed so I’ll backup and try another path. Oh,
that didn’t work, so I’ll back up and try still another path. And on
and on.”

� The number of possible paths grows exponentially.

| 179 |

© 2013 The MITRE Corporation. All rights reserved.

Mitigating the Risk

� Craft your regexes carefully

– See the first paper referenced on the next slide

� Use an XML Schema validator that doesn’t backtrack, such as
XERCES

| 180 |

© 2013 The MITRE Corporation. All rights reserved.

References

� In the folder, papers, see this:
Guidelines_for_Regular_Expressions_with_XML_Schemas- 29-June-
2012.pdf

� The real cause of exponential time: some regex engin es have
too much computation power
See the paper titled, Use Minimal Computational Power in the papers
folder

© 2013 The MITRE Corporation. All rights reserved.

Copying and Pasting
Text into XML

| 182 |

© 2013 The MITRE Corporation. All rights reserved.

Manual Editing of XML is Common

� XML documents are intended for machine processing.

� However, XML documents are also easy to edit manuall y
because they are text documents and text editors are
ubiquitous.

� Problems can arise when manually copying text from a n
arbitrary document and pasting it into an XML document.

| 183 |

© 2013 The MITRE Corporation. All rights reserved.

Copy & Paste

The copied text includes an end-tag
but not the start-tag. Consequently,
the resulting XML document is not
well-formed .

| 184 |

© 2013 The MITRE Corporation. All rights reserved.

Copy &

Paste

The copied text contains a character that
is reserved in XML. Consequently, the
resulting XML document is not well-
formed .

| 185 |

© 2013 The MITRE Corporation. All rights reserved.

Copy &

Paste

If the copied text comes from a document or
application that uses a different character
encoding than the XML document, then the text
that is pasted could differ from the text that was
copied. For example, if the right arrow character
� from a Word 2010 document is copied and
pasted into a text editor such as Notepad, then
the box character will result instead of the arrow.

| 186 |

© 2013 The MITRE Corporation. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Test [
<!E NTITY IMHO "In my humble opinion">
]>
<MovieReview>

&IMHO; it was a great movie.
</MovieReview>

Copy &

Paste

The copied text might contain user-
defined XML entities that cannot be
resolved in the destination XML
document.

| 187 |

© 2013 The MITRE Corporation. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>
<mag:Magazine xmlns:mag ="http://www.magazine.com" >

<mag:Title> Scientific American </mag:Title>
</mag:Magazine>

Copy &

Paste

Namespace prefix in the copied
text might not be resolvable.

| 188 |

© 2013 The MITRE Corporation. All rights reserved.

Copy &

Paste

If the copied text contains an IDREF value without
the matching ID value, then the target document
has a dangling reference , which is an error.

| 189 |

© 2013 The MITRE Corporation. All rights reserved.

<altitude uom="feet" >

</a ltitude>

Copy &

Paste

The copied text
might not be of an
appropriate data
type for the
destination XML
document.

| 190 |

© 2013 The MITRE Corporation. All rights reserved.

Mitigating the Risk

� If manual copying and pasting of XML content is nece ssary,
check for any of the problems listed on the previous slides.

© 2013 The MITRE Corporation. All rights reserved.

Visual Spoofing

| 192 |

© 2013 The MITRE Corporation. All rights reserved.

Manual Inspection of XML is Common

� XML documents are intended for machine processing.

� However, XML documents are often manually inspected. Or, the
data in XML documents are transferred to a Web page and the
Web page is manually inspected.

� If the inspection results in a “thumbs up” approval, then the
XML is sent downstream for usage/processing.

� Problems can arise when data is manually inspected.

| 193 |

© 2013 The MITRE Corporation. All rights reserved.

Homograph Attack

This is not the Latin letter ‘c’, it is the
Cyrillic letter “es”. Message recipients
have no way to discern that by looking at
the address. Customers who click on the
web address will not go to the citibank.com
web site but rather to the Cyrillic ‘c’
itibank.com web site. If customers do not
recognize the web site as bogus, they
might give away their user names and
passwords.

Homoglyph: the identical appearance of two or more glyphs (characters). For
example, the Latin small letter ‘c’ (U+0063) and the Cyrillic small letter ‘es’
(U+0441) have the same glyph: c.

| 194 |

© 2013 The MITRE Corporation. All rights reserved.

Visual Spoofing

Visual spoofing occurs when a malicious
actor deliberately replaces a character with
another character that is similar in
appearance. In other words, the two
characters have identical or nearly identical
glyphs. The intent is to deceive users
visually so that they take unsafe actions.

| 195 |

© 2013 The MITRE Corporation. All rights reserved.

Direction of Text

� Many languages are written and read from left to right, but some
languages, such as Arabic and Hebrew, have an inherent right-
to-left direction.

� Unicode makes it possible to represent both types of languages
in a document.

| 196 |

© 2013 The MITRE Corporation. All rights reserved.

Bidirectional Text Spoofing

An XML document was opened in a browser and here’s what the user saw:

<Part-of-Czechoslovakia-Annexed-by-Germany>
http://www.example.org/annexe.jpg

</Part-of-Czechoslovakia-Annexed-by-Germany >

The value of the element appears to be the URL to a harmless JPG file.

However, when the XML is viewed in a text editor a completely different story is
seen. It is not a URL to a JPG file; instead, it is a URL to an exe file. The
Unicode Right-to-Left Override (RLO) and Pop Directional Formatting (PDF)
characters bracket gpj.exe which instructs the browser to reverse the
characters. Here is the XML viewed in a plain text editor:

Continued �

| 197 |

© 2013 The MITRE Corporation. All rights reserved.

Bidirectional Text Spoofing

<Part-of-Czechoslovakia-Annexed-by-Germany>
http://www.example.org/ann‮gpj.exe‬

</Part-of-Czechoslovakia-Annexed-by-Germany>

RLO – “Start reversing the text”

POP – “Stop reversing the text”

| 198 |

© 2013 The MITRE Corporation. All rights reserved.

Lab 5

� In the lab 05 folder you will find INVOICE.xml

� Open a browser, drag and drop INVOICE.xml into the b rowser.
Note the URL.

� Next, open oXygen XML, drag and drop INVOICE.xml int o
oXygen. Notice that the URL is not what you thought it was.

| 199 |

© 2013 The MITRE Corporation. All rights reserved.

� If manual inspection of XML content is necessary:
– Display the content in different fonts to help discern different

characters.
– Display the content in a plain text editor that doesn’t resolve

entities.

Mitigating the Risk

| 200 |

© 2013 The MITRE Corporation. All rights reserved.

References

� Unicode Technical Report #36, Unicode Security
Considerations; http://www.unicode.org/reports/tr36/

© 2013 The MITRE Corporation. All rights reserved.

Unconstrained Markup and
Data

| 202 |

© 2013 The MITRE Corporation. All rights reserved.

Common Practice

� XML Schema developers regularly declare XML elements with a
string data type.

� And they use the XML Schema <any> element to allow f or
extensions.

� They do this to maximize flexibility.

<element name="Book">

<complexType>
<sequence>

<element name="Title" type="string"/>
<element name="Author" type="string"/>
<element name="Date" type="string"/>
<element name="ISBN" type="string"/>
<element name="Publisher" type="string"/>
<any minOccurs="0"/>

</sequence>
</complexType>

</element>

XML elements

with a string

data type

“Hey, you can have
anything after Publisher.”

| 203 |

© 2013 The MITRE Corporation. All rights reserved.

Problem #1

� Erroneous data not caught:

– One purpose of schema validation is to catch erroneous data.

– If the data can be any string or any markup and data, then that
purpose is defeated – erroneous data is not caught.

� Consequence:

– Developers insert additional checks inside procedural code.

– These checks are hard to change and difficult for managers to
know what checks are implemented.

| 204 |

© 2013 The MITRE Corporation. All rights reserved.

Problem #2

� The “string” data type can contain any number of UTF -8
characters, including Chinese, Cyrillic, and Arabic.

� So that means those characters are valid in an XML d ocument.

� This is an easy avenue for passing undesirable, sens itive, or
malicious data.

| 205 |

© 2013 The MITRE Corporation. All rights reserved.

Problem #3

� There is no limit to the number of characters.

� XML documents with huge amounts of text are valid.

� Recall from the section on expanding entities that t he long
strings could be dynamically generated.

| 206 |

© 2013 The MITRE Corporation. All rights reserved.

Mitigating the Risk

� Constrain the XML Schema data types.

� Don’t use an unconstrained string data type or any o f its derived
types

� Don’t use the <any> element
the <anyAttribute> element,
or the anyType data type.

| 207 |

© 2013 The MITRE Corporation. All rights reserved.

How much Constraint?

� So you decide to constrain the length of strings.

� What should be the maximum allowable length of strin gs?

� A max length of, say, 20 is very constrained (and lo w risk).

� Perhaps, however, that is too constrained (your data is longer
than 20 chars).

� You decide that 256 chars is a good max length.

| 208 |

© 2013 The MITRE Corporation. All rights reserved.

Two Constraint Axes

� Length is just one of the constraint axes. The other is character
set. Be sure to constrain the set of allowable characters.

� 256 ASCII characters may be of acceptable risk, but 256
characters that may include Arabic, Cyrillic, and Chinese
characters may not.

� To constrain the character set, use the XML Schema p attern
facet.

| 209 |

© 2013 The MITRE Corporation. All rights reserved.

References

� In the papers folder you will find the NSA Publicati on: Security
Guidance for the use of XML Schema 1.0/1.1 and RELAX NG

| 210 |

© 2013 The MITRE Corporation. All rights reserved.

You

are

here.

� Security Terminology
� XML lacks inherent security
� A valid XML document can still cause trouble
� Security considerations when processing XML document s

– Reading inputs from external URLs and XInclude (external entities)
– Attack surface
– Pros and cons of spending the resources to check inputs

� Miscellaneous security topics
– Expanding entities
– Poorly constructed regular expressions
– Manual editing of XML documents (problems with copying and pasting)
– Unconstrained markup and data

� A brief introduction to XML security tools and capabilities
– Canonicalization
– XML Digital Signatures (Integrity)
– XML Encryption (Confidentiality)

Table of Contents

© 2013 The MITRE Corporation. All rights reserved.

Canonical XML

| 212 |

© 2013 The MITRE Corporation. All rights reserved.

Are these the Same?

<Publisher>Harper & Row</Publisher>

<Publisher>Harper & Row</Publisher>

<Publisher><![CDATA[Harper & Row]]></Publisher>

The hex value for the
ampersand sign is 26.

All 3 forms indicate that the publisher is Harper & Row.
So, intuitively, they seem to be the same. However,
non-XML-aware tools would not be able to recognize
that they are the same.

| 213 |

© 2013 The MITRE Corporation. All rights reserved.

Comparing XML Documents Using a Non-
XML-Aware Tool

<Publisher>Harper & Row</Publisher> <Publisher>Harper & Row</Publisher>

diff
(a UNIX tool)

Different!

| 214 |

© 2013 The MITRE Corporation. All rights reserved.

Purpose of Canonical XML

� The purpose of canonical XML is to define a standard
(canonical) format of an XML document.

� Thus, to determine if two XML documents are the same , we
convert the two XML documents to their canonical format. If
their canonical formats are identical, byte for byte, then the two
XML documents are the same.

| 215 |

© 2013 The MITRE Corporation. All rights reserved.

Canonical Form

<Publisher>Harper & Row</Publisher> <Publisher>Harper & Row</Publisher>

<Publisher><![CDATA[Harper & Row]]></Publisher>

<Publisher>Harper & Row</Publisher>

Canonicalization algorithm:
- Replace all entity references with their replacement text.
- Replace all character entity references with their replacement text.
- Replace CDATA sections with their content.
- Then, replace all illegal characters (e.g., &) with an entity reference

Yes, all three forms are the same!

<Publisher>Harper & Row</Publisher>

Canonicalizing these
is a two-step process.

1

2

| 216 |

© 2013 The MITRE Corporation. All rights reserved.

Canonicalization Algorithm

Step 1. Encode the document in UTF-8
Step 2. Change each line break to a single linefeed.
Step 3. Normalize attribute values:

- replace character and entity references by their replacement text
- replace tabs, carriage returns, and linefeeds with a single space
- for all non-CDATA type attributes trim all leading/trailing spaces

Step 4. Replace character and entity references by their replacement text.
Step 5. Replace CDATA sections by their content.
Step 6. Delete the XML declaration.
Step 7. Convert empty tags to start-tag end-tag.
Step 8. Delete blank lines before and after the root element.
Step 9. Normalize white space inside tags:

- Example: <cost currency = "USD"> is normalized to: <cost currency="USD">
Step 10. Change all attribute value delimiters to double quote marks.
Step 11. Replace all illegal characters in attribute values and element content

with entity references
Step 12. Sort the attributes.

| 217 |

© 2013 The MITRE Corporation. All rights reserved.

Canonicalizer Tool

� Oxygen XML has a canonicalizer tool.
Tools >> Canonicalize …

� Apache provides a canonicalizer tool with their XML security
tool.

| 218 |

© 2013 The MITRE Corporation. All rights reserved.

� My tutorial on canonicalization: see the papers folder, in there is a
Powerpoint document, canonical-xml.ppt

� The specification for the Canonical XML Version 1.1 is available at
http://www.w3.org/TR/xml-c14n11/

Resources

http://www.w3.org/TR/xml-c14n11/

© 2013 The MITRE Corporation. All rights reserved.

XML Digital Signature
http://www.w3.org/TR/xmldsig-core/

| 220 |

© 2013 The MITRE Corporation. All rights reserved.

A digital signature has been
added to the canonicalized
BookCatalogue XML
document

220

| 221 |

© 2013 The MITRE Corporation. All rights reserved.

3 Methods of Signing

� In the example on the previous slide the digital sig nature was
stuffed inside the XML document, at the bottom of the root
element. That is called an enveloped digital signature.

� An enveloping digital signature has the digital signa ture as the
root element, and your XML document is stuffed inside one of
its elements.

� A detached digital signature is separate from the XML document
– in a totally separate document, or in a header section.

| 222 |

© 2013 The MITRE Corporation. All rights reserved.

Contents of XML Signature

� The root element of the XML Signature is the <Signat ure>
element

� The signed element is referenced through a <Referenc e>.

� The <Object> is used only in Enveloping XML

<BookCatalogue>
…
<Signature>

<Reference URI="__">
</Signature>

</BookCatalogue

Enveloped

<Signature>
<Reference URI="bk">
<Object Id="bk">

<BookCatalogue>
…

</BookCatalogue>
</Object>

</Signature>

Enveloping

| 223 |

© 2013 The MITRE Corporation. All rights reserved.

Sign only a Portion of the XML

� You do not have to sign the
entire XML document

� You may sign only a portion
of it

� In this document only the
credit card data is signed ����

<Purchase>
<Book>

<Title>Real World Haskell</Title>
<Author>Bryan O’Sullivan</Author>

</Book>

</Purchase>

<CreditCard>
<Number>****************</Number>
<CVC>***</CVC>
<Expiration>

<Month>**</Month>
<Year>****</Year>

</Expiration>
<Name>******** ********</Name>

</CreditCard>

<Signature>
<Reference URI="__">

</Signature>

| 224 |

© 2013 The MITRE Corporation. All rights reserved.

Sign Several Parts

� You can sign multiple parts of the XML document

� There is a <Reference> element for each part

<Signature>
<Reference URI="__">
<Reference URI="__">
<Reference URI="__">

</Signature>

| 225 |

© 2013 The MITRE Corporation. All rights reserved.

Sign Whole Document

� If the entire XML document is signed then there is o ne
<Reference> element and the value of the URI attribute is empty:

<Reference URI="" />

© 2013 The MITRE Corporation. All rights reserved.

XML Encryption
http://www.w3.org/TR/xmlenc-core/

| 227 |

© 2013 The MITRE Corporation. All rights reserved.

Great Tandem

� XML DigSig and XML Encryption are meant to be used t ogether.

� Use XML Encryption to encrypt the data (C onfidentiality)

� Use XML DigSig to verify that the data wasn’t altere d (Integrity)

� WS-Security = XML DigSig + XML Encryption

| 228 |

© 2013 The MITRE Corporation. All rights reserved.

Why use XML Encryption?

� Secure HTTP (i.e. https or SSL) can be used to encry pt data
exchanges, so why use XML Encryption?

� SSL encrypts the data during the exchange, but once the data
gets to the recipient it becomes exposed (“in the clear”).

� Suppose the data is processed by several intermediar ies before
arriving at its final destination. You may want to keep certain
data—such as credit card data, passwords, usernames—
encrypted until the final destination. By using XML Encryption
the intermediate nodes will not be able to see the sensitive data.

� Encrypting the data is called message-level encryption. Contrast
with SSL, which encrypts the connection and is called network-
level encryption.

| 229 |

© 2013 The MITRE Corporation. All rights reserved.

XML Encryption is useful for:

• Encrypting a part of a document
• Keeping a document (or parts of the document) encrypted across more than one point-to-point
exchange

Example: Consider this document:

<purchaseOrder>
<Order>

<Item>book</Item>
<Id>123-958-74598</Id>
<Quantity>12</Quantity>

</Order>
<Payment>

<CardId>123654-8988889-9996874</CardId>
<CardName>visa</CardName>
<ValidDate>12-10-2004</ValidDate>

</Payment>
</purchaseOrder>

With XML Encryption we can encrypt:

• The whole document
• An element and its content
• An element’s content

In the above document it is important to keep the credit card data confidential. It’s okay to expose
the item purchased.

| 230 |

© 2013 The MITRE Corporation. All rights reserved.

The <Payment> element and its content has been encrypted:

<?xml version='1.0' ?>
<PurchaseOrder>

<Order>
<Item>book</Item>
<Id>123-958-74598</Id>
<Quantity>12</Quantity>

</Order>
<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

xmlns='http://www.w3.org/2001/04/xmlenc#'>
<CipherData>

<CipherValue>A23B45C564587</CipherValue>
</CipherData>

</EncryptedData>
</PurchaseOrder>

Prior to all this occurring there will be exchanges between the sender and
receiver regarding what keys to use to perform the encryption and decryption.

| 231 |

© 2013 The MITRE Corporation. All rights reserved.

Good Article on XML Encryption

http://www.ibm.com/developerworks/xml/library/x-encrypt/

http://www.ibm.com/developerworks/xml/library/x-encrypt/

| 232 |

© 2013 The MITRE Corporation. All rights reserved.

� My tutorial on XML digital signatures and XML encryption: see
the papers folder, in there is a Powerpoint document,
How-to-transfer-XML-documents-securely-with-integrity.pptx

� The specification for the XML Encryption Syntax and
Processing is available at http://www.w3.org/TR/xmlenc-core/

� The specification for the XML Signature Syntax and Processing
is available at http://www.w3.org/TR/xmldsig-core/

Resources

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/

© 2013 The MITRE Corporation. All rights reserved.

Summary

| 234 |

© 2013 The MITRE Corporation. All rights reserved.

Summary

� XML is just text.

� It has no inherent security.

� Security is bolted onto XML.

� Just because an XML document validates against an XM L
Schema, doesn’t mean it is risk-free.

� There may be hidden markup lurking inside.

� Unused namespaces may be exploited to carry maliciou s code
or sensitive data.

| 235 |

© 2013 The MITRE Corporation. All rights reserved.

Summary (concluded)

� It is not necessary for an XML document to be large to result in a
DoS attack – entities may be expanded by the parser and result
in huge documents.

� Be careful constructing regular expressions.

� Poorly constructed regexes may be exploited by attac kers to
carry out a ReDoS attack.

� Copying and pasting into XML may introduce errors in to your
XML.

