The MITRE Corporation

FIFTY YEARS OF SERVICE IN THE PUBLIC INTEREST
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executives Letter</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Our Work</td>
<td>8</td>
</tr>
<tr>
<td>From Continental Air Defense to Command and Control</td>
<td>10</td>
</tr>
<tr>
<td>Expanding Operations and Widening Horizons</td>
<td>16</td>
</tr>
<tr>
<td>Pushing the Technology Frontiers</td>
<td>22</td>
</tr>
<tr>
<td>The Information Technology Revolution</td>
<td>28</td>
</tr>
<tr>
<td>MITRE Enters the New Millennium</td>
<td>34</td>
</tr>
<tr>
<td>Our Environment</td>
<td>42</td>
</tr>
<tr>
<td>Our People</td>
<td>50</td>
</tr>
<tr>
<td>Looking Forward</td>
<td>58</td>
</tr>
</tbody>
</table>
This year MITRE is proud to celebrate its 50th anniversary.

Incorporated in July of 1958 as a not-for-profit company, MITRE was chartered to work solely in the public interest. As an independent advisor, free from the conflicts of interest that other companies face, MITRE has partnered closely with its government sponsors, providing them with advanced technical and systems engineering expertise and an objective perspective. These attributes, combined with gifted staff working in a highly collaborative culture, have made it possible for us to help advance our sponsors’ missions and solve some of their most challenging problems.

In celebration of this important milestone, we have prepared this short pictorial history of the company. We hope it provides the reader with a sense of some of the contributions we have made, the environment that has supported our ability to be successful, and our future vision. Of course, none of this would be possible without our people. It is their passion for public service, their ingenuity and innovation, and their commitment to excellence that have been our hallmark since the beginning and that will continue in the years ahead.

As you peruse the pages that follow, we hope that you glean a sense of the kind of company we were and still are—a company whose only interest is the public interest.

Alfred Grasso
President and Chief Executive Officer

James Schlesinger
Chairman of the Board of Trustees
Presidents and Chairmen

From top left:

Clair “Hap” Halligan 1958-1966
H. Rowan Gaither 1958-1960

Clair “Hap” Halligan 1958-1966
William Webster 1960-1961

Clair “Hap” Halligan 1958-1966
Charles Coolidge 1961-1967

John McLucas 1966-1969
Dr. James Killian, Jr. 1967-1969

Robert Everett 1969-1986
Robert Sprague 1969-1972

Robert Everett 1969-1986
Dr. Robert Charpie 1972-1982

Robert Everett 1969-1986
William McCune, Jr. 1982-1987

Charles Zraket 1986-1990
Dr. James Schlesinger 1987-Present

Barry Horowitz 1990-1996
Dr. James Schlesinger 1987-Present

Victor DeMarines 1996-2000
Dr. James Schlesinger 1987-Present

Martin Faga 2000-2006
Dr. James Schlesinger 1987-Present

Alfred Grasso 2006-Present
Dr. James Schlesinger 1987-Present
Introduction

The MITRE Corporation was chartered in 1958 as a not-for-profit company “to enhance the security of the United States of America, or otherwise to further the public interest, by engaging in, assisting, and contributing to the support of scientific activities and projects, and by performing, engaging in, and procuring research, development, engineering, and advisory services.”

Today, we manage three Federally Funded Research and Development Centers, sponsored by the Department of Defense, the Federal Aviation Administration, and the Internal Revenue Service and Department of Veterans Affairs. Additionally, we invest in an independent research and development program that complements direct-funded activities, and we manage a dedicated center to coordinate our efforts on behalf of the Department of Homeland Security.

Over the years, MITRE's work has evolved to meet the changing needs of our sponsors—from our very first project supporting the U.S. Air Force in the development of SAGE, the Semi-Automatic Ground Environment, to more recent challenges supporting the national security community in the post-9/11 era. Throughout it all, however, one thing has remained constant—our commitment to provide innovative solutions to the pressing issues facing our nation.
As an independent and objective advisor, MITRE works to advance our sponsors’ missions, combining extensive technical expertise with a long-term perspective of their priorities and processes.
For 50 years, The MITRE Corporation has committed itself to serving the public interest. This commitment drives and motivates us to leverage all that MITRE has to offer in solving some of the nation’s most critical issues.
Our Work

MITRE was established under the sponsorship of the U.S. Air Force to address a critical national problem—how to apply newly emerging technologies to defend the nation against the threat of a Soviet-launched missile attack. In the ensuing years, as the nation’s problems evolved and changed, our work program adapted to follow those trends. For all of our five decades of service, a commitment to national security has remained an enduring presence in the life of the company, as has our support in advancing safe and efficient air travel. Work in other areas has reflected the tenor of the times—for example, addressing energy and environmental issues during the 1970s, and more recently, supporting the Department of Homeland Security in the post-9/11 era.

Throughout our history, two things have always characterized our efforts: a spirit of innovation and a deep understanding of the principles of systems engineering. Our research program has continued to explore developing technologies and to anticipate new solutions to emerging problems. What began as a traditional approach to systems engineering soon evolved into a system-of-systems perspective. Today, we see a need to embrace an enterprise view that addresses the complex interrelationships of systems that span multiple agencies and affect numerous stakeholders, both within our borders and among our international partners.
In the early 1950s, the Department of Defense looked to the Whirlwind computer, a World War II research and development project, to serve as the backbone of a continental air defense system—the development of which was later transitioned to MITRE.
The Semi-Automatic Ground Environment (SAGE), MITRE’s first work program, used early digital computers to link sensor and weapon systems to monitor the nation’s airspace, detect potential threats, and coordinate tactical responses. SAGE heralded a major step forward in the application of information technology to military challenges and the design and engineering of system of systems. MITRE’s work on SAGE quickly led to assignments on other defense projects and for the Federal Aviation Agency (later known as the Federal Aviation Administration), charged in the 1960s with modernization of the nation’s civil airspace. Increasingly the emphasis was on “command and control” systems that monitored, processed, and analyzed information from networked sensors to facilitate timely decision making. Although the term was chiefly associated with military operations, the same principles applied to air traffic control.
A follow-on to SAGE, the Backup Interceptor Control (BUIC) program replaced the vacuum-tube computers of the original program with solid-state components to ensure survivability.

The NATO Air Defense Ground Environment (NADGE) was adapted from SAGE and BUIC to provide air defense capabilities to Europe.
Growing demand for MITRE’s expertise led to the company’s first contract with a non-defense customer, the Federal Aviation Agency. The program was called SAGE Air Traffic Integration, or SATIN, and was aimed at developing a single, unified system for managing all aircraft in the nation’s airspace.
During the late 1950s, the Air Force launched several electronic systems resembling SAGE. However, the conception and development of those systems, known as L-systems, was not part of a coordinated master plan. Recognizing the potential issues involved, Lt. Gen. Bernard Schriever (shown left with then-MITRE President Hap Halligan) proposed that a study team examine the issue. MITRE played a key role in the team—later dubbed the “Winter Study Group” —which concluded that coordinated research and development was required. The team called this approach “electronic command and control.”
As concerns in the United States shifted from air to missile defense, MITRE began providing support to the North American Air Defense Command (NORAD) Combat Operations Center near Colorado Springs. The facility, built beneath Cheyenne Mountain to make it less susceptible to nuclear attack, was designed to gather, process, and disseminate warning data on attacks from the Ballistic Missile Early Warning System (BMEWS) and other sensors.
1966 Originally conceived as an early warning system to complement SAGE, the Airborne Warning and Control System (AWACS) evolved into a mobile command and control platform that could be dispatched to distant airfields. From the mid-1960s onward, MITRE supported the development of AWACs from the design of the original performance specifications to final system acquisition. Today, AWACS is used successfully in dozens of operations and engagements around the world.
MITRE’s second president, John McLucas, encouraged by the Board of Trustees, embarked on a program of diversification, facilitated by restructuring the company into two main campuses: one located in Bedford, Mass., to support the Air Force and one located in the Washington, D.C., area, to support other work. At the same time, much of MITRE’s defense work shifted to focus on tactical air defense, a reflection of the intensity of operations in Southeast Asia. Support to the Federal Aviation Administration expanded and new customers were introduced. The National Aeronautics and Space Administration engaged MITRE on a number of projects, as did the Departments of Commerce and Transportation. By the early 1970s, the fastest growing work areas reflected the national focus on energy and the environment.
Long-range radar sites were set up in Da Nang in Vietnam and at Udorn in Thailand as part of the Air Force’s Combat Lightning program. MITRE recommended modified BUIC installations for the sites.

Technology and lessons from SAGE were applied in the development of the Airborne Long-Range Input (ALRI) system, which was used to monitor the bombing of targets in North Vietnam.
1966 The National Aeronautics and Space Administration (NASA) worked with MITRE to assess the design and operation of the Apollo Mission Control Center in Houston (now the Johnson Space Flight Center). From there, MITRE carried out a steady stream of projects for NASA, chiefly in the acquisition, support, and analysis of computer systems.
1967 MITRE’s role supporting the development of the National Airspace System (NAS) for the Federal Aviation Administration (FAA) began to increase. The company opened an official site office to support system testing and design verification of the NAS engineering model at the FAA’s National Aviation Facilities Center in Atlantic City, N.J.

MITRE introduced the Automated Radar Terminal System, or ARTS, a radar-beacon system to control air traffic in the terminal vicinity. During the early 1970s, an enhanced version was rolled out to airports across the country.
MITRE began working on the development of high-speed ground transportation, including investigations into new methods of propulsion—magnetic-levitation trains, for example.
The establishment of the Environmental Protection Agency created the need for new systems to monitor the environment. At the same time, MITRE embarked on a series of studies on energy-related issues in anticipation of the coming energy crisis. This work accelerated in the early 1970s when the company supported the Energy Research and Development Administration in preparing a national energy research and development plan.
By the mid-1970s, MITRE was supporting a host of command, control, and communications systems for the Air Force at strategic and tactical levels, including the successful European demonstration of the E-3A AWACS equipped with JTIDS (the Joint Tactical Information Distribution System). The major defense buildup of that time brought with it expanded roles supporting the other defense services, as well as the Intelligence Community. Meanwhile, work on the civil side remained equally robust. During this time, the company continued to push the frontiers of information technology, while also accumulating a broad knowledge base about its customers, their operations, and domains.
In the early 1970s, PLRACTA became part of a larger Air Force program called SEEK BUS, which was designed to specify prototype hardware and software for the installation, testing, and evaluation of the “selective access to information” concept.

An early version of JTIDS, known as Position Location, Reporting, and Control of Tactical Aircraft (PLRACTA), used mobile ground stations to broadcast and receive information on friendly forces.
1975 MITRE provided systems engineering support to the Worldwide Military Command and Control System (WWMCCS) Systems Engineering Organization within the Defense Communications Agency (now the Defense Information Systems Agency, or DISA). MITRE was also involved in the development of the Prototype WWMCCS Intercomputer Network, which was patterned on the Defense Advanced Research Projects Agency’s ARPANET.
MITRE proposed development of the Traffic Alert and Collision Avoidance System (TCAS), an onboard tool that alerts pilots to nearby aircraft and recommends evasive actions to avoid mid-air collisions. During the 1980s, TCAS became required equipment on all passenger aircraft with 30 or more seats.

MITRE analyzed the system design for the Social Security Administration (SSA), including making major recommendations for system capacity, system productivity, and organizing SSA's Office of Electronic Data Processing Operations.

MITRE supported the Department of Health, Education, and Welfare by applying its expertise in telecommunications to help in the delivery of healthcare to rural areas having few physicians, a concept known as telehealth.
The Defense Intelligence Agency (DIA) retained MITRE as systems engineer for the Department of Defense Intelligence Information System (DoDIIS). Today, information technology providers to the Intelligence Community must meet DoDIIS standards for applications interoperability.

MITRE's support to the Intelligence Community grew in the 1980s and 1990s. In January 1985, MITRE hosted a two-day conference on DoDIIS.
1980 MITRE opened a site office in San Diego to support the Naval Ocean Systems Center's development and testing of command, control, and communications systems.
The incredibly rapid pace of change in information technology that characterized the late 1980s and early 1990s greatly influenced the evolution of MITRE’s work. Already deeply familiar with its customers’ domains and operations, MITRE added a sophisticated understanding of information technologies, which when combined with traditional strengths in systems engineering and integration created a new set of valuable capabilities. MITRE grew adept at managing its customers’ processes of spiral development, supporting them with evaluations, experiments, and prototypes. At the same time, it was increasingly able to apply lessons learned from one customer to the problems of another, acquiring a rich body of knowledge made accessible throughout the company. In this vein, the company opened a new installation at Fort Monmouth in 1989 to support the Army’s growing volume of work in battlefield visualization.
MITRE's understanding of the Army's needs and requirements trace back to the Vietnam War and the company's involvement with the Defense Communications Planning Group (DCPG), under Lt. Gen. Alfred D. Starbird (center).

MITRE served as the systems architect and engineer of the Army's Force XXI initiative, integrating systems for communications, identification, position reporting, and navigation to create a common picture of the battlefield.
The Federal Aviation Administration (FAA) selected MITRE to operate its new FFRDC. During the late 1990s, MITRE worked to support a new approach called Collaborative Air Traffic Management (ATM) that emphasizes enhanced decision-support tools that give flight operators more of a voice in scheduling and routing. Additionally, MITRE supported the FAA, other international civil aviation authorities, and the aviation industry in the integration of the Global Positioning System into the National Airspace System.

MITRE’s Integration and Interaction Lab (I Lab) provided the first working environment in which to test and analyze new ATM techniques.

MITRE’s User Request Evaluation Tool (URET) uses flight plans, in-flight data, weather reports, and other information to enable controllers to detect potential conflicts in the sky.
Two prototype Joint STARS (Joint Surveillance Target Attack Radar System) aircraft were deployed in support of Operation Desert Storm to identify and track the movement of Iraqi ground vehicles. MITRE supported the Joint STARS program as systems engineer for design, analysis, and testing.
Intelink provides users with secure access to intelligence using a point-and-click interface. MITRE developed the prototype in less than six months. By 1996, it had more than 40,000 users.

A predecessor to Intelink, OASIS, or Operational Application of Special Intelligence Systems, was designed to obtain timely and relevant intelligence data from a variety of sources and make it accessible and useful to tactical air commanders.

During the early 1990s, MITRE developed the Joint Worldwide Intelligence Communications System (JWICS), a secure data network for the Department of Defense on which Intelink is based.
The Internal Revenue Service selected MITRE to operate its FFRDC to support the modernization of its aging information systems. The assignment involves strategic assistance and advice in the process of modernization.
Entering its fifth decade, MITRE continued its commitment to national security, supporting warfighters, analysts, and decision makers across the Department of Defense and Intelligence Community with integrated systems for command, control, communications, computers, intelligence, surveillance, and reconnaissance. At the same time, we helped the Federal Aviation Administration respond to the challenges of an increasingly crowded airspace and assisted the Internal Revenue Service and other civil agencies in the modernization of their information systems. In the wake of the terrorists attacks of 9/11, MITRE’s work program adjusted to address our sponsors’ emerging challenges. We supported the formation and evolution of the Department of Homeland Security, working with a variety of agencies to secure our borders, ensure the safety and security of air travel, and protect our critical infrastructures. Today, these priorities remain at the forefront of our work program.
From enhanced global positioning systems to machine-to-machine information exchange, MITRE is helping to build the Global Information Grid (GIG).

MITRE acted as the systems architect for the Air Force’s Joint Expeditionary Force Experiment (JEFX), designed to explore the value of a fully integrated command and control system for joint and coalition operations.
1999 MITRE, working with government and industry, evaluated its prototype Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, the National Aeronautic Association awarded the Collier Trophy to the ADS-B team, calling the technology a ground-breaking effort that will have broad impact on the safety, capacity, and efficiency of the National Airspace System.
2001 MITRE and its employees mobilized quickly to lend their knowledge and expertise following the tragic events of 9/11. On the day after the attacks, a team traveled to the World Trade Center site, contributing advanced technology to assist in the relief and recovery effort. At the Pentagon, MITRE worked to stabilize and rebuild the Department of Defense’s information infrastructure.

Employees were saddened to learn of the death of a colleague, Dr. Carl M. “Max” Hammond, who perished on United Airlines Flight 175.
Since 2002, MITRE employees have spent more than 2,900 staff-days with our sponsors in hazardous locations in support of current operations.
2003 Lessons learned during Operation Iraqi Freedom will help guide the development of the Army’s Future Combat Systems (FCS) program. MITRE has been supporting the FCS program for several years, working to provide our warfighters with the best technology for achieving unmatched situational awareness and communications in an asymmetric environment.

MITRE supported systems engineering efforts to standardize and modernize the Air and Space Operations Center (AOC) and assisted in deploying new capabilities to support Operations Enduring Freedom and Iraqi Freedom.
The Customer Account Data Engine or CADE—the Internal Revenue Service’s modernized account information computer system—successfully processed 15.1 million individual tax returns. MITRE has been providing key technical leadership and management support to the CADE system.

Since 2005, MITRE has assisted the Department of Veterans Affairs in transitioning to VETS-NET, a new data management system that will improve the processing of claims and benefits for America’s veterans.

MITRE supported the transformation of the National Geospatial-Intelligence Agency’s cornerstone National System for Geospatial Intelligence.
2008 MITRE received the Secretary of Defense Medal for Outstanding Public Service for contributions that, according to the Department of Defense, strengthened the nation’s defense posture and provided military personnel with a decisive strategic and tactical information advantage.
Our Environment

Since its inception, MITRE has been committed to providing an environment that stimulates creativity and enhances our ability to innovate on behalf of our sponsors. This means designing facilities that support collaboration and providing a robust computing infrastructure for a highly mobile workforce. It also means developing laboratories that support testing and innovation and creating a network of information repositories that ensure that knowledge is shared broadly and lessons learned in one area are applied in others.

From our earliest days, we have experimented with new techniques and embraced new ways of working and sharing information. Early evaluations of meeting support technologies have culminated in a set of video teleconferencing facilities that connect employees at locations around the world. In the mid-1990s, we developed an award-winning intranet that today provides access to a wealth of knowledge and expertise. In our advanced laboratories, we test new ideas and develop important prototypes. Our research program has produced innovations that have advanced the state of the art and found practical application in operational settings. All this reflects an abiding desire to be sure that our employees have what they need to fuel their ingenuity and find solutions to challenging problems.

In 1968, researchers from several departments investigated the effectiveness of lasers under varying conditions to determine how they could complement military communications of the era.
The origin of MITRE’s extensive laboratory facilities goes back to 1963 with the opening of the Systems Design Laboratory. MITRE helped to design the lab, which provided a test bed for sophisticated data management concepts, many of which advanced the science of “system studies”—the precursor to what is now called systems engineering.
An early MITRE experiment measured interference with communications signals from flame plasma that is generated by rocket booms or nuclear bursts.

MITRE’s Air Traffic Management Laboratory gives us the opportunity to understand and test new operational concepts and procedures before deploying them in the field.

“Will it work?” Several MITRE resources such as our micro-electromechanical systems, or MEMS, laboratory feature advanced prototyping capabilities that provide the answer.
Discussion, discoveries, and new developments are shared at the MITRE Innovation Exchange, an annual showcase of employee-directed research projects.

In 2003, a government-MITRE team at Camp Babylon in Iraq installed Translingual Instant Messaging (TrIM), which was based on two earlier MITRE research projects.

The Time-shared Interactive Computer-controlled Information Television (TICCIT) system, which originated as MITRE independent research, proved influential in the development of cable television, distance learning, and two-way telecommunications.
Each year, MITRE’s independent research and development program supports dozens of research projects that address our sponsors’ current challenges and anticipate their future needs. This research team braved the snows of a Bedford winter to test their theories of human-machine interaction.
MITRE helped pioneer the use of advanced technology for collaboration. Our patented, cable-based MITRIX local area network, developed in 1969, could carry images, data, and text and broke new ground in interoperability. Our MITRE Information Infrastructure, or MII, introduced in 1994, was one of the first company intranets to feature extensive Web-based capabilities and an impressive collection of digital assets.
Early video teleconferencing (VTC) put MITRE colleagues and customers in the same room, if only electronically. Today’s advanced VTCs make virtual collaboration a daily part of MITRE life.

Advanced technology in our unclassified Cross-Boundary Information Sharing Laboratory allows Intelligence Community members and MITRE staff to model real-world information-exchange scenarios.

MITRE’s InfoCenters provide the resources and tools our staff require to meet our sponsors’ needs—from areas for collaboration to customized research and extensive digital libraries.
“It’s the nature of good organizations that good people do good work, that good work makes for good organizations, and that good organizations attract good people. This has been true throughout MITRE’s career,” noted former MITRE president Bob Everett at the 2nd Program Recognition Awards ceremony, MITRE’s annual event to celebrate employees and their accomplishments. For 50 years, MITRE’s skilled and talented employees have brought a passion to the work they do every day. Their devotion to the mission has led to pioneering engineering and technology advances, helping our nation address some of its most pressing issues.

One measure of success is the professional accolades that our people receive from peers in their fields and from their colleagues within MITRE. Another measure, however, lies in their generosity of spirit: Collectively, they have donated countless hours to the communities in which they live and work. Because we believe our people are our most important asset, we invest in their development through a variety of educational opportunities and our award-winning work-life balance programs. Our people represent excellence, professionalism, and dedication. Over the last half-century, from our original staff of 485 to today’s more than 6,700 employees—MITRE’s people have made all the difference.
Our employees' technical excellence and innovation have been acknowledged by the government, our sponsors, and professional and scientific organizations. In 1989, former MITRE President Bob Everett stood before U.S. President George H. W. Bush to receive the National Medal of Technology.
One of MITRE’s first patents was for the “versatile image sensor,” a scanning device that allows large amounts of information to be stored and retrieved on photographic film.

Charles Brooks received the 2007 Black Engineer of the Year Award for Outstanding Technical Contributions.

MITRE’s yearly Program Recognition Awards honor work that results in the greatest benefit for our customers and our staff.
We invest in programs to promote work-life balance and to encourage our employees to adopt healthy lifestyles. These policies and programs have helped earn us a place on FORTUNE’s “100 Best Companies to Work For” list.

MITRE’s health services group has been caring for employees for decades.
In the 1970s we established the MITRE Institute, formalizing the in-house educational program that had existed for years. Today, the MITRE Institute offers nearly 450 on-site technical training and leadership development courses and a vast array of online resources.
Woven throughout the company’s culture is a commitment to our employees, their families, and the cities and towns in which we live and work. Annual employee appreciation events allow us to step out of our daily routine and celebrate with families and co-workers.
Whether building homes for the homeless, collecting food for the hungry, or participating in our annual workplace giving campaign, our employees support a number of worthy causes.

Encouraging young people's interest in the sciences is the theme of many volunteer activities, including annual events such as Take Our Children to Work Day.

The Corporate Arts Program lets employees share their artistic side.
Looking Forward

MITRE’s 50-year legacy of support to the Department of Defense and Intelligence Community carries with it a commitment to continuously strengthen our efforts to address today’s—and the future’s—most pressing problems. In a climate of asymmetric threats, our national security partners must ensure that systems being deployed not only deliver needed capabilities but also are consistent with a focus on net-centric, joint, and multinational operations. Within the Intelligence Community, sharing information swiftly across organizational lines must be balanced against maintaining high levels of security.

On the civil side, the need to secure America in areas such as critical infrastructure protection, national warning systems, and air travel security remains a priority. Concerns over healthcare in the United States call for new thinking and the application of advanced information technologies. Swift action is required to counter the potential threat of biological and chemical warfare along with an enduring commitment to ensure the modernization of our aging information systems. In the face of these and other challenges, we see an ongoing need and growing demand for the services that MITRE provides.

We are developing the underlying system design and architecture for a capability for improved theater situational awareness and providing technical support to systems being deployed to defeat improvised explosive devices in Iraq.
Looking Forward

MITRE’s recently established Homeland Security Center will continue to provide support to the Department of Homeland Security.

MITRE has expanded its expertise in bioinformatics, bioforensics, and bioengineering to address emerging biological threats.

MITRE works on a wide variety of cybersecurity, information assurance, and information sharing efforts to protect our nation’s critical infrastructures.
MITRE is helping the Federal Aviation Administration develop and execute plans for the next-generation (NextGen) air transportation system, and helping civil aviation authorities around the world redesign airspace, evaluate airport capacity, and modernize their systems and practices.
MITRE is working to integrate systems and clinical knowledge by helping the government create a seamless, secure healthcare informatics system.

Working in collaboration with the Certification Commission on Health Information Technology, MITRE has assisted in the development of interoperability certification criteria for electronic health records.

MITRE has been helping the Department of Health and Human Services strengthen security and ensure rapid response to incidents threatening the nation’s $1.5 trillion public health sector.
Understanding the intersection among business needs, information technology, and people is key to achieving successful enterprise transformation. MITRE will continue to apply its skills in strategic planning, enterprise engineering, investment management, program acquisition, and program management to help government agencies achieve their modernization goals.
We are investigating whether neurocomputational models of the brain’s attention and memory systems can guide the development of next-generation visualization tools for command and control systems.

MITRE is exploring how biotechnology, nanotechnology, neurotechnology, computational imaging, quantum computing, and other emerging technologies can be used to solve our sponsors’ current and future challenges.
MITRE’s first employees represented some of the finest minds in engineering of their day. They had a great passion for public service, and they understood the critical importance of leveraging the collective knowledge of creative people working together toward a common solution. Their spirit and values have lived on in the generations of employees that followed and will continue to guide our contributions into the next half-century.