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How does the passenger demand influence the choice of aircraft? Can we derive the choice of aircraft 
and fleet mix for origin and destination (O&D) pairs from knowledge of passengers’ demand for 
scheduled air services? How do these demands affect the overall demand for air traffic services (i.e., 
en route, and terminal radar approach control (TRACON) facilities), in the short- and medium-term?  
 
The National Airspace System (NAS) in the United States (US) had an inventory of 5156 big jets at the 
end of December 2002, of which 4085 were narrow bodies, and 1071 can be classified as wide 
bodies. There were 1180 regional jets. In addition, there were 660 turboprops in the system at that 
time. Empirical research reveals that there is a critical link between the flow of scheduled passenger 
services and the choice of aircraft by the airlines in any O&D market pair. This relationship can be 
empirically retrieved without the detailed knowledge of airlines' behavior and used for analyzing the 
traffic patterns in the NAS. This is a natural segué from the econometric modeling of passenger 
demand [Bhadra (2003)]. Although the demand for scheduled passenger services provides important 
information, it cannot be directly used to generate demand for air transportation management (ATM) 
services. Hence, the empirical linkages between demand for scheduled air services and the demand 
for aircraft fleets by O&D pairs will have to be established. This paper is an attempt to establish this 
empirical linkage.  
 
The fleet mix in O&D market (T100 market) and segment pairs (T100 segment) of Form 41 are the 
primary data used for this work. Using the T100 market and segment data from the latter part of the 
last decade (1995-2002), we build multinomial qualitative choice models, e.g., logit choice method. In 
this paper, we use two sample periods, 2002: month 3; and 2002: month 6 to demonstrate empirical 
relationships between aircraft choice and passengers, distance, and types of airports. This framework 
establishes empirical linkages between aircraft choice, six categories based on all observed 
equipment types in the system, and passenger flows in addition to distance, and types of airport hubs. 
Estimated models demonstrate that both passengers and distance play important roles in selecting 
types of aircraft. Using the estimated coefficients from the qualitative econometric choice model and 
varying assumptions (i.e., number of passengers in particular), we can easily generate forecasts of 
aircraft choices for O&D pairs and the fleet mix. This can, then, be used to derive demand for ATM 
services and distribution of the TRACON facilities and en route workload.  
 
NOTE: The contents of this document reflect the views of the author and The MITRE Corporation and do not necessarily reflect the views of the FAA 
or the DOT.  Neither the Federal Aviation Administration nor the Department of Transportation makes any warranty or guarantee, expressed or 
implied, concerning the content or accuracy of these views.   
©2003 The MITRE Corporation.  All rights reserved. 
 

                                                                 
1 Author is a Lead Economist. Paper will be presented at the 3rd Annual Technical Forum of the ATIO/AIAA, 
Denver, CO, during November 17-19, 2003.  
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Choice of Aircraft Fleets in the US NAS:  
Findings from a Multinomial Logit Analysis 

 
I. Introduction  
The US airline network is vast. Around 36,000 origin and destination markets are currently served by 
more than 50,000 flight segments (see Figure 1). Scheduled air carriers transport more than a million 
passengers undertaking around 15,000 departures a day [see Air Transport Association (ATA) (2003) 
for aggregate numbers]. This scale of operations is unprecedented in the history of aviation. 
Scheduling aircraft in a network of this magnitude is understandably a complex task. 
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Figure  1: Scheduled Air Services: Market vs. Segment Pairs  

 
To make matters even more challenging, the majority of the US airlines maintain a heterogeneous 
fleet structure (see Figure 2 for an example).  
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Figure 2: Distribution of Aircraft: Example of American Airlines (2002) 
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Broadly categorized, aggregate fleet structure in the country has a definite pattern: six in every ten 
aircraft in the national air space system (NAS) is a narrow body aircraft while one in seven is either a 
wide body or a regional jet (see Figure 3).  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3: Types of Aircraft in the US (2002): Broad Classification  
 
However, within those broad categories, fleet structure is diversified. Diversifying aircraft fleet may 
reduce potential risks (i.e., risks associated with locking into one brand). However, it has associated 
costs arising from scheduling complexities. Many low-cost airlines have simplified this heterogeneity 
by choosing only one type of aircraft. For example, Southwest Airlines maintains an all B-737 fleet 
structure while JetBlue maintains an all A320 fleet structure. Even within the broad homogeneous 
class, 737 in case of Southwest Airlines in particular, choosing a particular aircraft can be a 
complicated task.2 The degree of these complexities is compounded by the increased number of 
aircraft choices, markets and segments served. For example, each one of the top six airlines3 
maintains heterogeneous fleet structure. All these airlines also have hubbing operations of varying 
degrees. The choice of aircraft, under these circumstances, will certainly be far more complicated 
compared to an airline with point-to-point service and homogenous current fleet structure (e.g., 
JetBlue).4  

                                                                 
2 At the end of 2002, Southwest had 27 B-737/200, 194 B737/300, 25 B737/500 and 129 B-737/700. Even within this 
simplified fleet structure, three choices (i.e., B737/200 – 500) within the broad category of short-haul narrow body, makes the 
choice of aircraft within a market or in a segment complicated.    
3 Using both number of passengers and revenue passenger miles, six airlines that are usually considered “top” are American, 
United, Delta, Continental, US Airways, and Northwest. Their joint market share is around 70%, at present. However, only 
very recently (May-June, 2003), Southwest has become the largest airline carrying more than any of the top six carriers. For 
example, Southwest carried 6.5 million domestic passengers during the month of May, beating Delta Air Lines, which carried 
6.3 million passengers, and Fort Worth-based American Airlines carrying 6.2 million passengers  (see for details, 
http://www.dfw.com/mld/dfw/business/6518020.htm ; retrieved, August, 12, 2003). Furthermore, the low-cost carrier reported 
net income of $246 million for the three months ending June 30, its 108th consecutive quarter. After adjusting for special 
items, Southwest’s second-quarter 2003 net income increased 22.6% to $103 million from $84 million in the 2002 quarter 
(see http://www.atwonline.com/indexfull.cfm?newsid=3257; retrieved July 22, 2003).  
4 JetBlue’s recent decision to expand its fleet into acquiring 100 ERJ 190 (100 more on option) will not begin until 2006. 
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Nevertheless, it is important to notice that the choice of aircraft in the country has been remarkably 
stable in the past. For example, 737 narrow bodies (i.e., 737-300) have been the top choice 
throughout the later part of the last decade with a share of almost 18-20% of total enplanement. On 
the contrary, B-727, B-737-1/2, and MD-80 have been going out of the system at a faster rate and thus 
used less often over time [see Figure 4 for more details]. Together, the top 20 equipments reported in 
Figure 4 account for a little over 90% of all the enplanements.  
 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

B
-737-3/7  B

oeing B
-

737-300

M
D

-80    M
D

-80 &
 D

C
-9-

80 A
l

B
-757-2  B

oeing B
-757-

2
0

0

B
-727-2  B

oeing B
-727-

200/2

B
-737-1/2 B

oeing B
-

737-100/

A
320-1/2 E

uro A
irbus

A
320-1

D
C

-9-30  D
ouglas D

C
-

9-30

B
-737-5  B

oeing B
-737-

5
0

0

A
319     A

irbus Industrie
A

B
737-7/LR

 B
oeing B

-
737-700/

B
-767-3/E

R
 B

oeing B
-

767-300

B
-737-8/9 B

oeing B
-

737-800/

B
-737-4  B

oeing B
-737-

4
0

0

E
M

B
-145  E

m
braer

E
M

B
-145

D
C

-9-50  D
ouglas D

C
-

9-50

R
J-145   C

anadair
R

J145-200

S
F

-340   S
A

A
B

-F
airchild

3
4

0

B
-767-2/E

R
 B

oeing B
-

767-200

B
-777    B

oeing 777

B
-767-4  B

oeing B
-767-

4
0

0

Top 20 Equipments' Cumulative Total > 90%

P
er

ce
n

ta
g

e 
S

h
ar

e 
in

 E
n

p
la

n
em

en
t 1997

1998

1999

2000

2001

 
Figure 4: Share of Aircraft Equipment in Scheduled Air Transportation (Enplanement)   

 
Generally speaking, aircrafts are chosen in a particular segment, ceteris paribus, to serve passenger 
needs given other market conditions such as fare and competition. It is obvious that a wide body may 
not be chosen in a segment where a narrow body or even a regional jet can adequately meet the 
existing demand at prevailing fares. Moreover, the techno-economic requirements of an aircraft, e.g., 
cruise speed, average distance of haul and associated economics, will also have bearings on the type 
of aircraft that will be chosen in a particular segment. For example, wide bodies tend to have relatively 
lower cost per available seat miles, a standardized measure for costs, than their counterparts in 
narrow bodies. Broadly speaking, this is accomplished by three factors: average length of the flight, 
average speed, and average number of seats.  
 
Wide bodies, on average, fly longer hauls (2350 miles compared to 660 miles), at a speed 
comparatively higher (450 nmi compared to 330 nmi) and with higher number of seats (230 seats 
compared to 130 seats) compared to their counterparts in narrow bodies. [see Airline Monitor (2003) 
for a standardized comparison on these aspects ].     
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Figure 5: Block Hour Operating Cost by Aircraft Type 

 
These factors together result in cost differentials (see Figure 5) and determine the type of aircraft that 
will be chosen for a particular segment. In addition, given a vast inventory of aircraft for most of the 
airlines [Figure 6] and those presently parked [Figure 7] in the Mojave desert in California, it is obvious 
that scheduling of maintenance also plays a crucial role while scheduling for routes.  
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 Figure 6: Inventory of Large Jet Holdings: Selected US Air Carriers 
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No. of Aircraft in Storage 
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Figure 7:  Number of Aircraft in the Storage (July 2003) 

 
Given this in the background, determining aircraft choice for flight segments is a challenging 
operational task. In this paper, we introduce a simple empirical framework demonstrating this choice. 
In particular, we attempt to answer the following questions: How does the passenger demand by 
segment of flights influence the choice of aircraft? How does the length of the haul, i.e., distance 
between two points, affect the choice of aircraft? Can we derive the choice of aircraft and fleet mix 
from the knowledge of demand for scheduled air services? By examining these relationships 
empirically, we hope to uncover the complexities of aircraft scheduling by flight segments. These may 
add to our knowledge on how aircraft can actually be scheduled by the airlines. Using the forecasts of 
passengers and the estimated parameters, this model can also be used to generate aircraft operations 
in the future.  
 
The paper is organized as follows: Section II introduces the conceptual and empirical framework in 
order to understand the choice of aircraft between flight segments; Section III describes the data and 
sources. Section IV reports results. In addition, the Section IV provides a comparison between the 
observed choices (i.e., choices that have been actually made) and choices that have been made by 
the empirical model (i.e., probabilistic choices). Section V concludes the paper.  
 
 
II. Determining Choice of Aircraft: An Econometric Framework  

a. Binary Logit  
In situations where airlines have only two choices of aircraft to assign on the flight segments, we 
essentially have a binary qualitative choice.5 Since the linear probability model does not guarantee the 
predicted values of that choice to lie between (0, 1), it requires a process of translating the values of 

                                                                 
5 We developed this section for demonstration purposes. As we have noticed earlier that two aircraft choices are rather 
simplistic since majority of the airlines have more than one type of aircraft. Nonetheless, binary logit choice provides us the 
conceptual framework that is relatively easy to understand.    
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the attribute X (i.e., vector containing explanatory variables explaining the choice) to a probability 
which ranges in value from 0 to 1. We would also like to maintain the property that such a 
transformation would allow increases in X to be associated with an increase (or decrease) in the 
dependent choice variable for all values of X. Together, these requirements suggest the use of the 
cumulative probability function (F). F is defined as having its value equal to the probability that an 
observed value of a variable (for every X) will be less than or equal to a particular X. The range of F is 
then (0, 1) since all probabilities lie between 0 and 1. The resulting probability distribution may be 
expressed as follows:  
 

Pi = F (α + βX i) = F (Z i) (1)  
 
Common models in this category include Probit (standard normal), Logit (logistic), and Gompit 
(extreme value) specifications for the F function. The two cumulative probability functions, the normal 
(Probit) and the logistic, have been used widely in the literature and among practitioners [see 
McFadden (1973); Hosner and Lemeshow (1989)]. 
 
To understand the logit specification, let us assume that there exists a theoretical continuous index Z i 
which is determined by an explanatory variable X. Thus, we can write,  
 

 Z i = α + βX I   (2)  
 
Observations on Z i are not available unless we have data that distinguish whether individual 
observations are in one category (e.g, Aircraft Category 1) or a second category (e.g., Aircraft 
Category 2). Logit methodology allows us to solve the problem of how to obtain estimates for the 
parameters and while at the same time obtaining information about the underlying index Z.  
 
Let Y represent a dummy variable that equals 1 when the Aircraft Category 1 is chosen and 0 when 
the other category is chosen.6 Then assume that for each individual choice Z i* represents the critical 
cutoff value which translates the underlying index into a choice decision, such as,  
 
      Category 1  = 1 if Z i > Z i* 

Individual choice for        (3) 
      Non-category 1 = 0  if Z i < Z i* 
 
In this case, the threshold is set to zero, but the choice of a threshold value is irrelevant as long as a 
constant term is included in X i. The logit model assumes that Z i * is a cumulative distribution function 
for the logistic distribution, so that the probability that Zi* is less than (or equal to) Z i can be computed 
from the probability distribution function. The standardized cumulative distribution function for the 
logistic distribution is written as:  
 

Pi (yi = 1| xi, β)    = 1 - e - xi' β/ (1 + e -xi' β )      
=  e xi' β/ (1 + e - xi' β )      (4)  

 
By construction, the variable Pi will lie between (0,1). Pi is the probability that an event occurs, i.e., 
probability of the choice of Category 1 (or, narrow bodies) aircraft.7  

                                                                 
6 Instead of strictly defining one category of aircraft, we can also lump all others in one category. For example, choice of one 
category (narrow bodies) and all others (i.e., all non-narrow bodies) can be defined under this binary choice.  
7 Binary choices have been widely discussed in the literature, primarily to explain the voting behavior [see Pindyck and 
Rubinfeld (1991) for a theoretical framework; and, http://www2.chass.ncsu.edu/garson/pa765/logit.htm  for applications in 
voting behavior context].  
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b. Standard Multinomial Logit Model (MNLM)  
Oftentimes, choices are not restricted to a binary set. As in the case with airlines, choices of aircraft for 
assignment in flight segment/s are often numerous. The majority of US airlines have numerous 
choices of aircraft. Under such circumstances, the choice set will have to be expanded into 
multinomial choices. Thus, when there are more than one aircraft choices, i.e., Category of 
A/C=1,…,J, then, probability will be associated with all those choices are P

1
, P

2
, …, P

J. At the end, 

however, these probabilities will sum to 1: P1
+ P

2
+ …+ P

J
=1.  

 
For unordered qualitative variables (also known as polytomous variables) such as aircraft choice by 
the airlines, categories must be truly nominal and mutually exclusive.8 Furthermore, the ordering of the 
numerical values of the variables is also of no importance.9 Therefore, any category can be used as 
the baseline category. However, such choice is usually based on some apriori theoretical or 
operational motivation.  
 
From equation (4), for j > 1, the probability distribution function can be generalized as follows:  
 
 
  
 
and,              (5)  
 
 
 
 
For a variable with j categories and baseline = 1, odds and odd-ratios under MNLM can be calculated 
as follows:  
 

 
             (6) 
 
 
 
 
             (7) 
 
 
and,  
              (8) 
 
 
 
The estimated vector, βjk, is a vector consisting of slope parameters that will determine the effect of X 
vector on the logarithm of the ratios of the probabilities.  
                                                                 
8 For example, a category called “lowest aircraft” cannot be used because it is not truly nominal. Instead, a category 
representing “lowest,” however defined, should be used. Similarly, aircraft categories i (short-haul narrow body), j (long-haul 
narrow body), and k (overall narrow body) together can not be used because i, j, and k are mutually exclusive.   
9 In other words, assignment of numerical values to a particular category and ordering do not have any importance. Aircraft 
category i = cessnas and pipers and aircraft category j = turbo props is the same as aircraft category j = turbo props while 
aircraft category i = turbo props.   
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Our empirical framework consists of six qualitative choices: Category 1 – Category 6. Reducing all the 
observed choices (e.g., 311 in the second quarter of 2002) into six categories was necessary in order 
to keep the computational cost minimum and to derive results that are both manageable and 
meaningful. Although relatively smaller aircraft are less important in terms of total enplanement, 
Cessnas & Pipers and turboprops in particular, we include them in our categories for completeness. 
The detailed categorization has been provided in the following Table 1.  
 

Table 1:  
Categorization of Scheduled Aircraft in the US NAS 

Representative Types of Av. Distance Avg. Size Range

Types of Aircraft Equipment in this Category and Ranges Pax (min) Pax (max)

Category 1 CESSNAS AND PIPERS CES-150 - 185; AERO-200; PA 12-32 150 3 20
Overall numbers with upper and lower bounds 150 3 20

Category 2 TURBO PROPS ATR-42 Aerospatial; ATR-72 Aerospatial; Dornier 328 Turbo;  SAAB-Fairchild 340; Embraer EMB-120; < 250 30 37
TurboProp 1-2 engine; JETST-31 BAE; JETST-41 BAE;          De Havilland DHC 8;  < 250 60 72
Overall numbers with upper and lower bounds 250 45 55

Category 3 REGIONAL JETS (RJs) Canadair RJ-100/R;Canadair RJ145-200; 250-500 45 70
Embraer EMB-135; Embraer EMB-145; EMB-140                    Embraer EMB-140; Avroliner RJ85; BAE-146-3;        Do328JET;250-500 45 70
Overall numbers with upper and lower bounds 500 45 70

Cateogry 4 SHORT-HAUL NARROW- Boeing B-737-500;  Boeing B-737-400; 500-750 127 155
BODIES Boeing B-737-300; Boeing B-737-100; 500-750 105 129

Boeing B-737-200C; Douglas DC-9-10; 500-750 62 76
Douglas DC-9-30; Douglas DC-9-40; 500-750 87 107
MD-80 & DC-9-80; MD-90-30/50; 500-750 135 163
Douglas DC-9-50; Boeing B-727-100; 500-750 113 139
Overall numbers with upper and lower bounds 750 105 128

Category 5 LONG-HAUL NARROW- Boeing B-737-800; Boeing B-757-200; 750-1500 155 189
BODIES Euro Airbus A320; Airbus Industrie A319; 750-1500 131 161

Boeing B-737/LR Boeing B-737-700/; Boeing B-727-200; 750-1500 132 162
Overall numbers with upper and lower bounds 1500 139 171

Category 6 WIDE BODIES Douglas DC-10-10;  Douglas DC-10-30; 1500-3000 278 340
Douglas DC-10-40; Boeing B-747-100; 1500-3000 256 312
Boeing B-747-200; Boeing B-747-400; 1500-3000 321 393
Boeing B-767-200; Boeing B-767-300; 1500-3000 158 194
Boeing 777;  Lockheed L-1011-1; 1500-3000 239 293
Lockheed L-1011-50;  Douglas MD-11; 1500-3000 299 379
Euro Airbus A-300; Euro Airbus A310; 1500-3000 205 251
Overall numbers with upper and lower bounds 3000 251 309

 
For information relating to distance, and size in terms of passengers (pax), see Aviation Week: Jan. 2003; Aircraft Operations 
Statistics (2001).  
 
The X vector, i.e., vector containing exogenous variables, consists of the following variables: 
passengers in flight segments, distance between the segments, and hub status of origin and 
destination airports. We consider the levels of passengers as an exogenous variable although we 
acknowledge that it too is determined via a set of other exogenous variables, i.e., fares, income, 
population [see Bhadra (2003) for more details] that presently falls outside the scope of this model. 
Furthermore, in absence of cost data by equipment types for each flight segment, distance is used as 
a proxy in our empirical framework. An examination of Figure 5 indicates that distance affects cost 
positively; however, at a diminishing rate. Finally, the US air transportation is heavily dependent on a 
hub-and-spoke type of network [see Bhadra and Texter (2003)]. Available estimates indicate that more 
than 90% of scheduled passengers pass through some form of hubs while more than 70% of aircraft 
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operations take place in a hub. Consequently, it is likely that types of hubs may have some impact on 
types of aircraft that will be chosen to fly a particular segment.   
 
Given these, our empirical framework can be specified as follows:  
 

Pi (yi = j| x i, β)  =  αij + β1 (passengers) + β2 (distance)  
  (j = 1, 2, …, 6) + β3 (OriginHubDummy) + β4 (DestinationHubDummy)  
 + ε i         (E.1) 

 
where passengers are the segment-pair passengers; distance is the distance between two segment 
points; and OriginHubDummy and DestinationHubDummy are dummy variables representing the 
airports if they were large airports from where the segment flight originated or landed.  
 
We use maximum likelihood (ML) estimation procedure for estimating (E.1). There are two reasons for 
which ML is often chosen as a general approach for estimating logistic regressions, especially for 
large sample: first, ML estimators are consistent, asymptotically efficient and asymptotically normal; 
second, it is fairly straightforward to derive ML estimators. These are desirable properties given that 
we use large samples [see SAS/ETS version 8 (1993); and Allison (2001)] in our empirical analysis. 
 
 
III. Data and Sources  
Data for this exercise comes from the Bureau of Transportation Statistics/Department of 
Transportation’s (BTS/DOT) T100 schedule. T100 is the transportation schedule of the Form 41 data 
that every major airlines is required to submit to the DOT every quarter. T100 is broken into two parts: 
T100 market segment which covers all the O&D markets, as opposed to segments; and the T100 
segment which provides data for market segments. T100 segment is the Data Bank 28DS of Form 41 
which provides traffic, capacity, and aircraft equipment used by airlines in the segments they served. 
The data are reported by major air carriers operating non-stop between airports located within the 
boundaries of the US and its territories [see DataBase Products (1999) for more details].  
  
T100 segment data can be best explained using the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Segment and Market Travel: An Example  
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50 enplane.

110 deplane

OnOn--Flight MarketsFlight Markets: Represented by curved lines above, i.e., where passengers are enplaned and deplaned 
on a flight (flight number).  

LAX to SLC: 40 passengers;
LAX to DEN: 60 passengers;  
SLC to DEN: 50 passengers; 

For a one-stop flight, the number of passengers would 
be the same number under segment and market.
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For demonstrative empirical analysis reported in this paper10, we use data for two time periods: Month 
3 (as a representative of first quarter): 2002 and month 6 (as a representative of second quarter):2002. 
During this period, there were around 37,000-38,000 O&D market pairs (see Figure 1), in which 
around 10,000 were relatively thick (i.e., more than 10 passengers a day). Serving these city-pairs 
were more than 74,000 segments during these two time periods.11 We also observe an inherent 
stability between number of O&D market pairs and number of segment pairs (see Figure 1).  
 
For our empirical analysis, there were 28,682 observations for March 2002 (a representative of Q1 or 
first sample) and 31,489 observations in June 2002 (a representative for Q2 or second sample). We 
compare our observations with those reported by the Air Transportation Association [see 
http://www.airlines.org/econ/d.aspx?nid=1026 for more details] for the same period. ATA reports both 
enplanement and revenue departures, as do T100 data, as reported by its member airlines. The table 
below summarizes the findings:  
 

Table 2:  
Our Sample Data in Comparison with Data  
Reported by the Air Transport Association 

2002: Month 3 2002:Month 6
Revenue Passengers Reported by ATA 42,330,000 42,741,000
Revenue Passengers Reported by T100 data 50,019,729 50,683,978
Revenue Departures Reported by ATA 442,393 443,224
Revenue Departures Reported by T100 data 638,664 641,749  

 
Table 2 indicates that observations from our sample months parallel closely to aggregate numbers 
reported by the Air Transport Association for domestic services. T100 accounts 18% higher than ATA 
numbers. This may be due to the fact that T100 is reported by all scheduled carriers, and not limited to 
member airlines as it is in case of ATA.    
 
 
IV. Results  
For our estimation, we used multinomial logit procedure.  Multinomial logit models use maximum-
likelihood estimation for polytomous dependents, and hence it is also known as polytomous logistic 
regression. Notice here that the groups formed by the categories of a polytomous dependent are not 
truly independent (i.e., choice of one aircraft in a segment may also depend on other AC choices as 
well, particularly true for an airline), thus preventing us from simply doing as many separate logistic 
regressions as there are categories. Multinomial logit handles non-independence by estimating the 
models for all outcomes simultaneously except, as in the use of dummy variables in linear regression, 
one category is used as a baseline. Since effects must sum to zero, the model for the reference group 
can be reproduced from other parameters in the output. For our estimation, we use Cessnas and 
Pipers (Category 1) as the baseline. This category is chosen as the baseline because it serves as the 

                                                                 
10 Larger empirical analysis consists of 30 quarters of data: Q1: 1995 – Q2: 2002 with almost 1.5 million records; 1.36 million 
records after eliminating cargo carriers, and data anomalies. In order to limit our analysis to a manageable magnitude and 
also to put more emphasis on current quarters, we report results from two representative months (March and June) of most 
recent two quarters in this paper, Q1:2002 and Q2:2002. However, the aggregate relationships reported here do not change 
that much when we estimate them for larger datasets.   
11 A quick calculation from Figure 1 indicates that average segment pair per O&D pair, a loose measure for connectivity in the 
US NAS, to be around 1.13. Interestingly, however, this ratio jumped up to around 2 during 2002:Q1 – 2002:Q2. If there is no 
reporting errors, this may mean that (i) number of segments are going up drastically; and/or (ii) number of carriers serving 
each O&D market pairs are going up. Notice here, that T100 segment pairs data are unique, in the sense that they report 
each segment flown by carriers separately.  
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lowest in cardinal ranking, evaluated both in terms of size and average haul of distance. Therefore, all 
other categories can be thought of as cardinal upgrading over Category 1 aircraft choice.  
 
Before we turn our attention to the statistical results, notice (see Table 3 for summary and Appendices 
A and B for details) that there are quite a few Cessnas and Pipers reported to serve scheduled 
services between flight segments (45% and 49% of the total for first sample (i.e., Month 3:Q1) and 
second sample (i.e., Month 6:Q2), respectively. However, their shares in passenger enplanements 
were a meager .08% of total in Q2 2002 (0.09% in Q1). In comparison, turbo-props (Category 2) had 
much lower departures (around 7%) with around 4% of shares in passenger enplanements. Regional 
jets, Category 3, had shares of 9% in departures with around 11% shares in total enplanements. On 
contrary, narrow bodies - Categories 4 and 5 combined - had slightly over one-third share of 
departures with over 82% share of enplanements. Clearly, this is the most availed aircraft category in 
the NAS. Long-haul narrow bodies (Category 5) had fewer departures [see Table 2] but carried more 
passengers (47%) than short-haul narrow bodies (36%). Wide bodies had the smallest share in aircraft 
departures and carried around 2% of total enplanements.12   
 
Results from the estimation have been summarized in Table 3. It is important to note here that 
interpretation of the coefficient values is not the same under qualitative choice models as they are 
under linear and many non-linear models. It is complicated by the fact that estimated coefficients, i.e., 
effect coefficients, from an MNLM model cannot be interpreted as the marginal effect on the 
dependent variable. Nonetheless, their signs and magnitudes provide important information. Estimated 
effect coefficients, for example, represent the change in the log odds of the dependent variable, i.e., a 
particular type of aircraft due to changes in the explanatory variables, passengers, distance, and 
airports as origin or destination hubs. Despite the difficulties in explaining estimated coefficients 
directly, positive values of βi would imply that increasing βi will increase the probability of the response, 
and vice versa. Estimated parameters in the model (see Table 3) indicate that passengers, distance, 
and large hub airports, all have positive impact on the odd ratios of multiple aircraft choices. Finally, 
we have estimated the model for predicting the lowest value of the dependent variable. In other words, 
the estimated model predicts the probability that the aircraft category (ACChoice) is equal to 0. 
However, the SAS procedure [SAS (1993)] allows it to reverse, i.e., predicting the highest value (or, 
equal to 1), by specifying the ‘descending’ option in model statement.    
 
Overall model results are indicative of the fact that specification of the model is indeed robust. Results 
testing null hypothesis that all explanatory variables have coefficients equal to zero (0) prove to have 
been conclusively rejected.13 Wald-Chi square estimates accompanied with probability values less 
than .01 indicate that at least one of the coefficients, if not all, is not 0. In other words, the model has 
an overall good fit [see Appendix for this and other associated results] for the specified explanatory 
variables. 
 
                                                                 
12 As we will see in our discussion of the performance of the model, much of these statistics depend on our classification of 
categories. In Q2 2002, latest period for which data were available, there were 311 distinct aircraft categories in the US NAS. 
Based on our criteria, described in Table 1, our categorization reduces  all those 311 categories into six categories. Possibility 
for errors, in both defining which aircraft belongs into what category as well as accounting mistakes, in an aggregating 
process like this is fairly high. Therefore, caution should be used in interpreting the results of this paper.   
13 This hypothesis is tested by an overall F-test in a linear regression.  
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Table 3: 

Logistic Regression Results for Aircraft Choice:  
Month 3 (1st Sample) and Month 6 (2nd Sample) of 2002   

 
 

Aircraft 
Category 

 
Number of 

Observations 

 
Intercept 

 
Passengers 

 
Distance 

 
Large Origin 

Airport as 
Dummy* 

 
Large 

Destination 
Airport as 
Dummy* 

 1st 
Sample 

2nd 
Sample 

1st 
Sample 

2nd 
Sample 

1st 
Sample 

2nd 
Sample 

1st 
Sample 

2nd 
Sample 

1st 
Sample 

2nd 
Sample 

1st 
Sample 

2nd 
Sample 

             
Cessna s & 
Pipers: 
Category 1 

 
12,985 

 
15,507 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

Turbo 
Props:  
Category 2 

 
1,486 

 
1,357 

 
-4.3199 

 
-4.4936 

 
0.0329 

 
0.03333 

 
0.0051 

 
0.0053 

 
16.4325 

 
16.1592 

 
16.5301 

 
16.2199 

Regional 
Jets: 
Category 3 

 
2,199 

 
2,206 

 
-5.4433 

 
-5.8727 

 
0.0330 

 
0.03334 

 
0.0070 

 
0.0089 

 
17.1210 

 
16.7448 

 
17.3141 

 
16.9324 

Short-Haul 
NBs: 
Category 4 

 
6,024 

 
6,056 

 
-5.1151 

 
-5.5509 

 
0.0331 

 
0.03348 

 
0.0084 

 
0.0103 

 
16.8474 

 
16.4775 

 
17.0364 

 
16.6707 

Long-Haul 
NBs: 
Category 5 

 
5,084 

 
5,521 

 
-6.5883 

 
-6.8227 

 
0.0331 

 
0.03345 

 
0.0093 

 
0.0223 

 
17.3210 

 
16.9057 

 
17.5595 

 
17.1647 

Wide 
Bodies: 
Category 6 

 
904 

 
842 

 
-10.5138 

 
-10.8876 

 
0.0331 

 
0.03348 

 
0.0103 

 
0.0121 

 
17.9520 

 
17.5300 

 
18.1895 

 
17.8259 

N =  28,682 31,489  

Max-Scaled 
R2 

0.7937 0.8032 

Likelihood 
Ratio 

39786 44076 

Score 22932 25657 
Wald 
Statistic 

4799 4935 

 
Note: ACCategory = 1 (i.e., Cessnas and Pipers) has been used as reference category. All estimated 
parameters, other than dummy variables, are statistically significant at 99% levels of significance. We decided 
to keep the hub dummy variables in our models because they improve the overall model results and given their 
importance in aircraft operations. For detail results, see Appendices A (1st sample) and B (2nd sample). NBs: 
Narrow Bodies.  
 
 



Having observed these aggregate statistics, we also notice that the estimated parameters are all 
statistically significant, except the hub status of both origin and destination airports. In order to save 
space, we report only estimated parameters, and not the Wald Chi-Squares.14 Wald chi-squares are 
calculated by dividing each coefficient by its standard error and squaring the result.15  
 

Table 4: 
Performance of the Model: Actual vs. Predicted 

AC 
Category 

Actual 
Choice 

“Exact” 
Predicted 
Response 

“One-Off” 
Predicted 
Response 

 3rd 
Month:Q1 

6th 
Month:Q2 

Q1 Q2 Q1 Q2 

Cessna s and 
Pipers:  

Category 1 

 
12,985 

 
15,507 

 
12,933  
(99.60) 

 
15,442 
(99.58) 

 
12,950 
(99.73) 

 
15,463 
(99.72) 

Turbo Props:  
Category 2 

 
1,486 

 
1,357 

 
76 

(5.11) 

 
113 

(8.33) 

 
467 

(31.43) 

 
483 

(35.59) 
Regional Jets:  

Category 3 
 

2,199 
 

2,206 
 
4 

(0.18)  

 
7 

(0.32) 

 
1,977 

(89.90) 

 
1,895 

(85.90) 
Short-Haul NBs: 

Category 4 
 

6,024 
 

6,056 
 

4,235 
(70.30) 

 
3,975 

(65.64) 

 
5,756 

(95.55) 

 
5,787 

(95.56) 
Long-Haul NBs: 

Category 5 
 

5,084 
 

5,521 
 

2,529 
(49.74) 

 

 
2,908 

(52.67) 

 
4,814  

(94.69) 

 
5,187  

(93.95) 

Wide Bodies:  
Category 6 

 
904 

 
842 

 
51 

(5.64) 

 
33 

(3.92) 

 
703 

(77.77) 

 
637 

(75.65) 
N / Average 
% of Correct 
Response  

 
28,682 

 
31,489 

 
38.42 

 
38.41 

 
81.52 

 
81.06 

 
While estimated parameters provide us with the overall validity of the specified model, however, 
there are two more criteria by which we can judge the performance of the model. First is the 
estimated log odd ratios corresponding to the explanatory variables [see Appendix for these 
results]. The last three columns of the results report how the odd ratios affect the choice of aircraft. 
For example, passengers variable (i.e., passengers) for the first sample for AC Category choice = 2, 
the estimated odd ratio is 1.033. This implies that the predicted odds of choosing an aircraft choice 
(=2) increases by about 3.3% with a one-unit increase in passengers. As expected, a unit increase 
in passengers increases the predicted odds of higher category aircraft as we move higher on the 
cardinal scale. This is most clear with the distance as the independent variable; with a unit increase 
in distance (i.e., a mile), predicted odds that a higher category aircraft will be chosen increases 
monotonically.    
 
We recognize that there are scopes for further model improvement. Instead of working on those 
developments, we decided to use the estimated parameters to predict the responses in order to 
                                                                 
14 These, along with other results, can be found in attached Appendices A and B.    
15 Without squares, these estimates are the same as t or z statistics. The p-values calculated from a normal 
table would be exactly the same as the Chi-Square p-values reported.  
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evaluate the model’s performance as it stand now. We compare these predicted responses against 
that of actual choices. Actual choices have been reported in Column 1. When predicted responses 
matched “exactly” to that of actual, we call them “exact” predicted responses, as reported in Column 
2.16 When the exactness is made somewhat flexible, and we allow one choice + in the category, we 
arrive at predicted responses that are “one-off” (reported in Column 3). For example, when the 
choice of an aircraft (say, for example, Aircraft Category = 4) can have a value of both 3 and 5, in 
addition to its exact value of 3, we call this as “one-off” predicted response.17 We created this 
category in order to account for the fact that often choice of aircraft is not clearly distinct as implied 
by the categorical cardinal choice of 1, 2, …, 6. Furthermore, this flexibility allows the model to be 
more useful for operations. Table 4 summarizes these results.  
 
As expected, flexibility allows for a better fit. For both the samples, one-off predicted responses 
coming out of our models match with actual choice approximately 81% [see the last row of the last 
two columns of Table 4]. In other words, the estimated model with one-off allowance is capable of 
explaining 81% of the actual aircraft choice sample. However, this fit drops to almost half when we 
look at the “exact” match. For both the samples, we are not able to explain more than 38% of the 
actual aircraft choices. Generally speaking, estimated models appear to be good fit for aircraft 
choices 1, 4, and 5 when evaluated against the actual choices, and have poorer fit for other 
choices. In fact, our model is a rather poor fit for the choice of regional jets (ACChoice = 3) and 
somewhat weak for choices of turbo-props (ACChoice = 2) and wide bodies (ACChoice = 6). 
Finally, the predictability of the model improves significantly when we allow one-off responses in 
lieu of exact. Interestingly, however, the gain is somewhat small for the aircraft choice = 2 (i.e., 
Turbo Props) when we move from the exact to one-off possibilities.           
 
 
V. Conclusion  
In this paper, we have used a multinomial logistic regression model to determine the choice of 
aircraft in the US NAS. By categorizing all aircrafts into 6 categories, we have found that 
passengers, distance, and types of airport hubs are capable of estimating these choices fairly well. 
Our preliminary findings indicate that estimated model is capable of explaining these choices 
exactly for 3 particular aircraft types. Almost all aircraft choices can be explained if we allow one-off 
predicted responses in place of exact predicted response. These findings have important 
implications. First, we are now capable of mapping passengers onto aircraft choices, given distance 
and the status of hubs through these estimated models. This provides us with another tool, similar 
to terminal area estimates and forecasts. Second and most importantly, this correspondence allows 
us to generate schedules or timetable specific to airports allowing us to simulate the US NAS far 
more efficiently than we were capable of before.     
 
There are quite a few areas of future research that we plan to pursue in the near future. First, we 
plan to segment the data by distance categories, i.e., short haul (< 750 miles), medium haul (750-
1500 miles) and long haul (> 1500 miles) and reestimate our model. This may improve the results 
because choices will be weighted by the haul of distances they fly. This added information may 
benefit the estimation substantially. Second, the above model does not consider airline behaviors in 
aircraft choice. By incorporating airline-specific behaviors explicitly, we hope to improve the above 
model. Third, passenger demand can be modeled “nested” in our model. Passenger demand that is 
determined by economic factors can be modeled nested inside as determinants of aircraft choice.      

                                                                 
16 Numbers in parentheses represent percentage of predicted responses that are “right” in comparison to 
actuals.  
17 Notice, however, that the tail is cut in half for the first and last choices, for there is no choice less than 
aircraft choice = 1; and no choice greater than aircraft choice = 6 in our specification.  
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Appendix A:  
Multinomial Logit Model for Aircraft Choice: Sample 1 (2002: Month 3) 

The LOGISTIC Procedure 

Model Information 

Data Set DIPASIS.NEWACMODEL_2002_MONTH3 

Response Variable  ACCategory  

Number of Response Levels 6 

Number of Observations 28682 

Model generalized logit 

Optimization Technique  Fisher's scoring 

   

Response Profile 

Ordered 
Value  ACCategory 

Total 
Frequency 

1 1 12985 

2 2 1486 

3 3 2199 

4 4 6024 

5 5 5084 

6 6 904 

Logits modeled use ACCategory=1 as the reference category.  

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied.  

  

Model Fit Statistics 

Criterion 
Intercept 

Only  

Intercept 
and  

Covariates 

AIC 83327.588 43581.480 

SC 83368.909 43788.081 
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Model Fit Statistics 

Criterion 
Intercept 

Only  

Intercept 
and  

Covariates 

-2 Log L 83317.588 43531.480 

   

R-Square  0.7502 Max-rescaled R-Square  0.7937 

   

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square  DF Pr > ChiSq 

Likelihood Ratio 39786.1083 20 <.0001 

Score 22932.2618 20 <.0001 

Wald 4798.9823 20 <.0001 

   

Type III Analysis of Effects 

Effect DF 
Wald 

Chi-Square  Pr > ChiSq 

PASSENGERS  5 704.2160 <.0001 

DISTANCE 5 3232.3372 <.0001 

LARGEHUBORIGINairpor 5 293.6393 <.0001 

LARGEHUBDESTairport 5 362.9332 <.0001 

 

Analysis of Maximum Likelihood Estimates 

Parameter ACCategory DF Estimate  
Standard 

Error 
Wald 

Chi-Square  Pr > ChiSq 

Intercept 2 1 -4.3199 0.0617 4906.4266 <.0001 

Intercept 3 1 -5.4433 0.0722 5684.2009 <.0001 

Intercept 4 1 -5.1151 0.0655 6096.7059 <.0001 

Intercept 5 1 -6.5883 0.0750 7715.9951 <.0001 

Intercept 6 1 -10.5138 0.1462 5172.8407 <.0001 
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Analysis of Maximum Likelihood Estimates 

Parameter ACCategory DF Estimate  
Standard 

Error 
Wald 

Chi-Square  Pr > ChiSq 

PASSENGERS  2 1 0.0329 0.00162 411.2706 <.0001 

PASSENGERS  3 1 0.0330 0.00162 414.1798 <.0001 

PASSENGERS  4 1 0.0331 0.00162 416.5140 <.0001 

PASSENGERS  5 1 0.0331 0.00162 416.1257 <.0001 

PASSENGERS  6 1 0.0331 0.00162 416.6935 <.0001 

DISTANCE 2 1 0.00514 0.000253 412.1347 <.0001 

DISTANCE 3 1 0.00703 0.000247 810.3030 <.0001 

DISTANCE 4 1 0.00842 0.000242 1213.5626 <.0001 

DISTANCE 5 1 0.00936 0.000243 1482.8778 <.0001 

DISTANCE 6 1 0.0103 0.000247 1741.6617 <.0001 

LARGEHUBORIGINairpor 2 1 16.4325 136.0 0.0146 0.9039 

LARGEHUBORIGINairpor 3 1 17.1210 136.0 0.0158 0.8998 

LARGEHUBORIGINairpor 4 1 16.8474 136.0 0.0153 0.9014 

LARGEHUBORIGINairpor 5 1 17.3210 136.0 0.0162 0.8987 

LARGEHUBORIGINairpor 6 1 17.9520 136.0 0.0174 0.8950 

LARGEHUBDESTairport 2 1 16.5301 139.9 0.0140 0.9060 

LARGEHUBDESTairport 3 1 17.3141 139.9 0.0153 0.9015 

LARGEHUBDESTairport 4 1 17.0364 139.9 0.0148 0.9031 

LARGEHUBDESTairport 5 1 17.5595 139.9 0.0157 0.9001 

LARGEHUBDESTairport 6 1 18.1895 139.9 0.0169 0.8966 

   

Odds Ratio Estimates 

Effect ACCategory Point Estimate  
95% Wald 

Confidence Limits 

PASSENGERS  2 1.033 1.030 1.037 
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Odds Ratio Estimates 

Effect ACCategory Point Estimate  
95% Wald 

Confidence Limits 

PASSENGERS  3 1.034 1.030 1.037 

PASSENGERS  4 1.034 1.030 1.037 

PASSENGERS  5 1.034 1.030 1.037 

PASSENGERS  6 1.034 1.030 1.037 

DISTANCE 2 1.005 1.005 1.006 

DISTANCE 3 1.007 1.007 1.008 

DISTANCE 4 1.008 1.008 1.009 

DISTANCE 5 1.009 1.009 1.010 

DISTANCE 6 1.010 1.010 1.011 

LARGEHUBORIGINairpor 2 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 3 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 4 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 5 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 6 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 2 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 3 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 4 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 5 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 6 >999.999 <0.001 >999.999 
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Appendix B:  
Multinomial Logit Model for Aircraft Choice: Sample 2 (2002: Month 6) 

The LOGISTIC Procedure 

Model Information 

Data Set DIPASIS.NEWACMODEL_2002_MONTH6 

Response Variable  ACCategory  

Number of Response Levels 6 

Number of Observations 31489 

Model generalized logit 

Optimization Technique  Fisher's scoring 

   

Response Profile 

Ordered 
Value  ACCategory 

Total 
Frequency 

1 1 15507 

2 2 1357 

3 3 2206 

4 4 6056 

5 5 5521 

6 6 842 

Logits modeled use ACCategory=1 as the reference category.  

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied.  

   

Model Fit Statistics 

Criterion 
Intercept 

Only  

Intercept 
and  

Covariates 

AIC 87533.080 43496.571 

SC 87574.867 43705.506 



Bhadra: Aircraft Choice Model 22 

Model Fit Statistics 

Criterion 
Intercept 

Only  

Intercept 
and  

Covariates 

-2 Log L 87523.080 43446.571 

   

R-Square  0.7533 Max-rescaled R-Square  0.8032 

   

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square  DF Pr > ChiSq 

Likelihood Ratio 44076.5083 20 <.0001 

Score 25657.7565 20 <.0001 

Wald 4935.9942 20 <.0001 

   

Type III Analysis of Effects 

Effect DF 
Wald 

Chi-Square  Pr > ChiSq 

PASSENGERS  5 767.0498 <.0001 

DISTANCE 5 3404.7992 <.0001 

LARGEHUBDESTairport 5 314.5435 <.0001 

LARGEHUBORIGINairpor 5 227.8825 <.0001 

   

Analysis of Maximum Likelihood Estimates 

Parameter ACCategory DF Estimate  
Standard 

Error 
Wald 

Chi-Square  Pr > ChiSq 

Intercept 2 1 -4.4937 0.0636 4992.5108 <.0001 

Intercept 3 1 -5.8728 0.0757 6017.3574 <.0001 

Intercept 4 1 -5.5509 0.0694 6392.2763 <.0001 

Intercept 5 1 -6.8228 0.0769 7880.0376 <.0001 

Intercept 6 1 -10.8876 0.1513 5179.7185 <.0001 
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Analysis of Maximum Likelihood Estimates 

Parameter ACCategory DF Estimate  
Standard 

Error 
Wald 

Chi-Square  Pr > ChiSq 

PASSENGERS  2 1 0.0333 0.00148 503.9285 <.0001 

PASSENGERS  3 1 0.0334 0.00148 506.7413 <.0001 

PASSENGERS  4 1 0.0335 0.00148 509.3486 <.0001 

PASSENGERS  5 1 0.0335 0.00148 508.3604 <.0001 

PASSENGERS  6 1 0.0335 0.00148 509.3531 <.0001 

DISTANCE 2 1 0.00535 0.000296 326.4060 <.0001 

DISTANCE 3 1 0.00891 0.000279 1018.3612 <.0001 

DISTANCE 4 1 0.0103 0.000275 1409.0377 <.0001 

DISTANCE 5 1 0.0112 0.000276 1655.9940 <.0001 

DISTANCE 6 1 0.0121 0.000280 1874.9133 <.0001 

LARGEHUBDESTairport 2 1 16.2200 132.7 0.0149 0.9027 

LARGEHUBDESTairport 3 1 16.9325 132.7 0.0163 0.8985 

LARGEHUBDESTairport 4 1 16.6708 132.7 0.0158 0.9000 

LARGEHUBDESTairport 5 1 17.1647 132.7 0.0167 0.8971 

LARGEHUBDESTairport 6 1 17.8259 132.7 0.0180 0.8931 

LARGEHUBORIGINairpor 2 1 16.1592 127.9 0.0160 0.8994 

LARGEHUBORIGINairpor 3 1 16.7448 127.9 0.0171 0.8958 

LARGEHUBORIGINairpor 4 1 16.4775 127.9 0.0166 0.8975 

LARGEHUBORIGINairpor 5 1 16.9058 127.9 0.0175 0.8948 

LARGEHUBORIGINairpor 6 1 17.5301 127.9 0.0188 0.8910 

   

Odds Ratio Estimates 

Effect ACCategory Point Estimate  
95% Wald 

Confidence Limits 

PASSENGERS  2 1.034 1.031 1.037 



Bhadra: Aircraft Choice Model 24 

Odds Ratio Estimates 

Effect ACCategory Point Estimate  
95% Wald 

Confidence Limits 

PASSENGERS  3 1.034 1.031 1.037 

PASSENGERS  4 1.034 1.031 1.037 

PASSENGERS  5 1.034 1.031 1.037 

PASSENGERS  6 1.034 1.031 1.037 

DISTANCE 2 1.005 1.005 1.006 

DISTANCE 3 1.009 1.008 1.010 

DISTANCE 4 1.010 1.010 1.011 

DISTANCE 5 1.011 1.011 1.012 

DISTANCE 6 1.012 1.012 1.013 

LARGEHUBDESTairport 2 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 3 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 4 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 5 >999.999 <0.001 >999.999 

LARGEHUBDESTairport 6 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 2 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 3 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 4 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 5 >999.999 <0.001 >999.999 

LARGEHUBORIGINairpor 6 >999.999 <0.001 >999.999 

 
 


