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ABSTRACT 

An airplane’s ability to absorb delay while airborne is lim-
ited and costly. Because of this, the air traffic control sys-
tem anticipates and manages excessive demand for scarce 
shared resources, such as arrival runways or busy airspace, 
so that the delay necessary for buffering can be spread out 
over a larger distance, or taken on the ground before depar-
ture. It is difficult to model these important dynamics in a 
standard queue-resource simulation framework, which 
does not account for limited delay absorption capacity. The 
modeling methodology presented here captures these dy-
namics by employing a large number of independent 
threads of execution to monitor and enforce a large number 
of relatively simple mathematical relationships. These re-
lationships calculate feasible time windows for each por-
tion of each flight. The model was implemented in the 
SLX simulation language. The speed and scalability of 
SLX are essential to the approach, which would otherwise 
be impractical. 

INTRODUCTION 

From a capacity modeling perspective, airplane traffic is 
fundamentally different from automobile, rail or ship traf-
fic; while a car, train, or ship can stop and wait for an es-
sentially unlimited amount of time in the middle of its 
journey, an airplane cannot. In other words, once airborne, 
an airplane’s ability to absorb delay is limited and costly, 
complicating the problem of modeling delays and capaci-
ties. 

Because of this limited delay absorption capacity, the 
air traffic control system anticipates and manages exces-
sive demand for scarce shared resources (e.g., arrival run-
ways, busy terminal airspace) so that the delay necessary 
for buffering can be spread out over a larger distance, or 
taken on the ground before departure.  These actions, how-
ever, can ripple back and block resources upstream, such 

as departure runways and controller attention in busy sec-
tors. 

It is difficult to model these dynamics in a standard 
queue-resource simulation framework. In a standard 
queue-resource model, there is no concept of limited delay 
absorption capacity. For instance, in a factory setting, a 
part moving from one work station to another may wait for 
one minute or one week before receiving service. The 
number of parts waiting for service (queue size) may be 
explicitly limited, but the wait time per part is not. 

To model airplane traffic, one needs to be able to an-
ticipate excessive demand for a resource well before it oc-
curs, so that the flight to be delayed has adequate distance 
over which to absorb the required delay. 

This article describes a modeling methodology for 
simulating the limited delay absorption capacity of air-
borne flights. The remainder of this paper is organized as 
follows: section 2 describes how aircraft are delayed for 
buffering; section 3 explains why it is important to capture 
the dynamics caused by limited buffering capacity; section 
4 describes the network and object elements of the model; 
section 5 describes the central “monitor and enforce” 
mechanism; section 6 provides an example modeling two 
merging aircraft; section 7 looks at the problem from an 
information flow perspective; section 8 describes the ele-
ments of the SLX simulation language that are central to 
this approach; and section 9 summarizes and draws some 
conclusions. 

2 DELAY ABSORPTION BUFFERING 

In almost any capacity-constrained system, the ability to 
buffer demand during busy periods is key to increasing 
utilization of scarce server resources. For instance, during 
lunchtime at a fast food restaurant, customers wait in line 
while the cashier/server takes orders from other customers. 
When one customer is done, the next in line receives ser-
vice, and the server remains busy. As wait time increases, a 
customer can choose to remain in line or can opt out, and 
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leave the restaurant. In the air traffic control system, some 
similar situations exist: departing airplanes wait on taxi-
ways for their turn on a runway. Once aircraft are in the 
air, however, the situation changes. An aircraft cannot opt 
out of landing and, because of fuel constraints, it cannot 
wait for an arrival runway indefinitely. Within these con-
straints, buffering airborne flights -- making them wait in 
the air – even for relatively short periods of time is costly 
in a number of ways. 

•	 Buffering requires controller work. Overloading a 
controller is undesirable because it can compro-
mise safety. 

•	 Buffering usually increases mileage, which burns 
fuel and increases aircraft wear and tear. 

• Buffering requires airspace. 
Air traffic controllers have four basic methods in 

which they can delay aircraft to keep them from over-
whelming a resource such as a runway or a controller 
downstream. These methods, and their relative costs and 
benefits, are described below: 
•	 Ground Delay 

Delaying a flight on the ground before it departs is 
relatively cheap in terms of fuel and controller work-
load, even though it is not free to the airlines, their 
passengers or cargo. Ground delay can absorb practi-
cally unlimited amounts of time. Ground delay is of-
ten used to prevent congestion in the air, which, if left 
unchecked, could overburden controllers and com-
promise safety. Because of departure runway conges-
tion and flight-time variability, however, it is not prac-
tical to use ground delay to fine-tune a flight’s arrival 
time at a distant airport. 

•	 Airborne Holding 
Placing a flight into airborne holding is expensive in 
terms of fuel and controller workload. Furthermore, 
holding requires reserved airspace; the locations at 
which airborne holding can take place are limited. 
Holding is most commonly used to delay arriving 
flights close to (within 50 miles of) their destination 
airport. Despite the costs, holding allows controllers 
to delay airborne flights for relatively large amounts of 
time (tens of minutes). At large airports with rela-
tively unconstrained airspace, such as Atlanta Harts-
field, controllers use the buffering capacity provided 
by airborne holding to make more efficient use of arri-
val runways (Voss and Hoffman, 2001). 

•	 Vectoring 
Vectoring means extending a flight’s path (thereby de-
laying it) by turning it. Vectoring allows controllers to 
delay aircraft more precisely and with less expense (in 
terms of workload and fuel cost) than they could with 
airborne holding. The amount of delay that can be 
achieved with vectoring is closely related to the 
amount of airspace a controller can use. Vectoring is a 

very common technique, especially for sequencing 
flights onto an arrival runway. 

• Speed Control 
Slowing a flight down to delay it requires little air-
space, but the amount of delay that can be absorbed 
with speed control is not great. 

3	 WHY MODEL LIMITED DELAY 
ABSORPTION? 

Because airborne flights can absorb only a limited amount 
of delay, buffering caused by contention for a downstream 
resource, such as an arrival runway, can quickly ripple 
back upstream and cause congestion in an upstream re-
source, such as an en route sector. The subsequent conges-
tion upstream can delay departures from and arrivals to 
other airports. 

If a model fails to capture the limits on delay absorp-
tion, it will miss these blocking effects upstream. This 
makes it important to model aircraft taking delay not only 
in the correct amount, but also at the correct place and 
time. 

Figure 1 illustrates this problem. Suppose airport D 
sends flights to airport A, and airport C send flights to air-
port B, all via en-route sector Y. If runway congestion at 
airport A delays arrivals, they may spend more time in sec-
tor Y, especially if the delay absorption capacity between 
Y and A is small. If this causes sector Y to become too 
busy, departures from C may be held on the ground. A 
model that accounts for limited delay absorption would 
capture this dynamic. 

On the other hand, in a model that overstates the delay 
absorption capacity of flights between sector Y and airport 
A, the arrivals to A will quickly pass through sector Y, 
which will not become too busy, thus allowing departures 
from C to D to proceed undelayed. This model will under-
state delay. 

Airport B 

Airport A En Route 
Sector Y 

Airport C 

Airport D 

Figure 1:  En Route Sector as a Constraint 



Boesel 

4 ELEMENTS OF THE MODEL 

In the model presented here, aircraft move along a link-
node structure.  Each flight requires a minimum time to 
traverse each link, and each flight can absorb only a lim-
ited amount of additional delay on each link. To represent 
an airspace that has plenty of room for vectoring, this 
maximum delay parameter can be set high, while a nar-
rower, more constrained airspace would have a lower 
maximum delay parameter. 

As flights merge on to common links or cross each 
other’s paths, minimum separation between aircraft is 
maintained. Each link and node in the model is assigned a 
minimum required separation (in minutes) that defines its 
capacity. The model presented here deals only with inter-
aircraft separation, and does not explicitly model controller 
workload as a constraint. 

The model is essentially a network model with nodes, 
links, and flights moving and absorbing delay on links. 
Unlike most network models, however, this model antici-
pates contention for resources long before it occurs and 
spreads the required delay absorption out across the links, 
rather than in a buffer immediately in front of the con-
strained resource. Four object types define the model: 
•	 Flight Object 

Each Flight object represents a single flight. It has the 
flight’s aircraft ID, aircraft type, desired departure 
time, and a flight plan, defined as a list of Links. 

•	 Link Object 
Flights use Links to get from one place to another. A 
Link object can be used to represent an airway at a 
particular attitude. Links are defined to be one-way 
only, and while a Link can be shared by several 
Flights, passing is not permitted on a Link. Each Link 
has pointers to its starting and ending Nodes, pointers 
to all of the Flights that will pass over it, and mini-
mum required separations (in minutes) that define its 
capacity. 

•	 Node Object 
A Node Object is used to connect Links. A Node ob-
ject, which can be thought of as a point in 3-D space, 
can be used to represent a waypoint or a fix at a par-
ticular altitude. Nodes represent crossings, merges, 
and split relationships between Link Objects. Each 
Node has a list of the Links coming into and out of it. 
Like a Link, a Node has several minimum required 
separations that define its capacity. 

•	 Flight-By-Link Object 
As each Flight crosses each Link on its flight path, the 
model generates a great deal of timing information. 
Flight-by-Link objects keep track of all of this infor-
mation. A Flight-by-Link object represents a particu-
lar Flight on a particular Link. For example, if a 
Flight has n Links on its path, then n Flight-By-Link 
objects will be created for that Flight. 

The Flight-By-Link object is the workhorse of the 
simulation. It has pointers to three other Flight-by-Link 
objects, which define the object’s relationship with the rest 
of the model. One pointer refers to the Flight immediately 
ahead of it on the same Link, and the other two pointers 
refer to the same Flight on the next and previous Links. 
Figures 2 and 3 illustrate these relationships. 

Link k 

Link j 

Link h 

Flight A 

Flight B 

Figure 2. Flights A and B on Links h,j, and k 

Suppose Flight B follows Flight A across Links h, j, 
and k, as shown in Figure 2, above. To represent this in 
the model, one would need Flight objects for A and B, and 
Link objects for h, j, and k. To represent the flights’ 
movement over these Links, one would need to create six 
Flight-By-Link objects, A_h, A_j, A_k, B_h, B_j, and 
B_k. Figure 3 illustrates the pointer relationships of 
Flight-By-Link B_j to its “adjacent” Flight-By-Link ob-
jects B_k (same Flight, next Link), A_j (leading Flight, 
same Link), and B_h (same Flight, previous Link). 

B_j 
(Flight B on Link j) 

Next Link 

Leading Flight 

Previous Link B_h 
(Flight B on Link h) 

B_k 
(Flight B on Link k) 

A_j 
(Flight A on Link j) 

Figure 3. Flight-By-Link Object B_j’s pointers to adjacent 
Flight-By-Link Objects 
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Each Flight-by-Link object has two quantities --
minimum traversal time and maximum delay -- that deter-
mine the minimum and maximum amounts of time the 
Flight can spend on the Link.  The minimum traversal time 
represents the amount of time a Flight needs to cross a 
Link, and the maximum delay represents the amount of 
additional time a Flight could absorb on a particular Link. 

5 MONITOR AND ENFORCE 

In the model presented here, each object monitors and en-
forces a number of mathematical relationships. The follow-
ing example illustrates such a relationship, and describes 
its enforcement. 

Suppose the two Flights depicted in Figure 2, above, 
need to increase separation before entering Link k.  Let TA 
and TB be the clock times at which Flights A and B (re-
spectively) enter Link k, and let Sk be the minimum re-
quired separation (in minutes) between Flights entering 
Link k. To respect this separation, one must ensure that: 

TB >  TA + Sk (1) 

Flight-By-Link object B_k can read all three quantities 
in (1): TB is local to B_k, and the others can be read via 
pointers. B_k gets its own independent thread of execution 
to enforce the separation requirement expressed in (1), il-
lustrated by the following pseudo-code : 

fork {// fork command creates new thread 

forever //Enters Loop
{
wait until (TB < TA + Sk);
//relationship is violated 

TB = TA + Sk;
//Enforce relationship 

}//end forever loop
}//end fork 

The new thread immediately enters a “forever” loop, 
the only purpose of which is to wait until inequality (1) is 
violated, and then to correct it. This basic mechanism 
monitors and enforces a mathematical relationship. 

At its heart, the model is essentially a system of hun-
dreds of thousands of such relationships, each one moni-
tored and enforced by its own independent thread and a 
“wait until” statement. 

6	 MODELING MOVEMENT AND LIMITED 
DELAY ABSORPTION: AN EXAMPLE 

The following example illustrates how the objects and the 
monitor-and-enforce mechanism work together to model 
delay pass back due to limited delay absorption. 

Consider Figure 4.  Suppose Flight C traverses the air-
space represented by Links v, w, and z, and Flight D, 
which starts just a little bit later, traverses the airspace rep-
resented by Links x, y, and z. Suppose that the Flights 
will need to be separated by one minute when crossing 
their merge point, S. 

S 
v 

x

y w 

Flight C 
Flight D 

z 

Figure 4:  Merging Flights at Point S 

Suppose further that each Flight can traverse each 
Link in a minimum of 2 minutes, but can only absorb 45 
seconds (0.75 minutes) of delay on each Link. To respect 
the separation requirement at point S, one of the Flights 
will need to be delayed. 

To model this, one creates Flight objects representing 
C and D, Link objects representing v, w, x, y, and z, a 
Node object representing point S, Flight-By-Link objects 
C_v, C_w, and C_z, representing Flight C on Links v, w, 
and z, and Flight-By-Link objects D_x, D_y, and D_z rep-
resenting Flight D on Links x, y, and z. 

Each Flight-By-Link object has three pointers to other 
Flight-By-Link objects that are “adjacent” (in space or se-
quence): 
•	 The Next Link pointer points to the same flight on the 

next Link in the flight plan.  For instance, C_v has a 
pointer to Next Link C_w, 

•	 The Previous Link pointer points to the same flight on 
the previous Link in the flight plan. For instance, C_w 
has a pointer to Previous Link C_v. 

•	 The Leading Flight pointer points to the previous 
flight on the same Link. In this example, there is only 
one such meaningful instance of this; D_z has a 
pointer to Leading Flight C_z. 

Each Flight-By-Link object has several attributes, spe-
cifically: 
•	 Minimum Traversal Time -- 2 minutes for all Flight-

By-Link objects in this example 
•	 Maximum Delay -- 45 seconds for all Flight-By-Link 

objects in this example 
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•	 Best Guess Time of Entry -- the current best estimate 
of when (in simulation clock time) the Flight will enter 
the Link; 

•	 Best Guess Time of Exit -- the current best estimate of 
when (in simulation clock time) the Flight will exit the 
Link 

To model simple movement across a single Link, there 
is a thread that monitors and enforces the relationship 
(M1): 

My Best Guess Time of Exit > 
My Best Guess Time of Entry + 
My Minimum Traversal Time 

To model movement from Link to Link, there is a 
thread that monitors and enforces the relationship (M2): 

My Best Guess Time of Entry > 
Previous Link’s Best Guess Time of Exit 

Each Link object has a constant Minimum Separation 
Required at Entry, which is used to separate merging and 
in-trail Flights. This is set to one minute on Link z. Each 
Flight-By-Link object compares its Best Guess Time of En-
try to that of the Flight in front of it. The mechanism for 
doing this is a thread that monitors and enforces the rela-
tionship (M3): 

My Best Guess Time of Entry > 
Leading Flight’s Best Guess Time of Entry + 

Shared_Link’s 
Minimum Separation Required at Entry 

To pass back constraint information from Link to 
Link, there is a thread that monitors and enforces the rela-
tionship (M4): 

My Best Guess Time of Exit > 
Next Link’s Best Guess Time of Entry 

To model the limited delay absorption capacity on 
each Link, there is a thread that monitors and enforces the 
relationship (M5): 

My Best Guess Time of Entry > 
My Best Guess Time of Exit – 

(Minimum Traversal Time  + 
Maximum Delay ) 

Suppose Flight C starts at time 100.0 and Flight D 
starts at time 100.1. The threads enforcing relationships 
M1 and M2 will cascade forward through the system, set-
ting Best Guess Time of Entry at 104 for Flight-By-Link 
object C_z (see Fig.5) 

A similar chain of events takes place on objects D_x, 
D_y, and D_z, so that D_z’s Best Guess Time of Entry will 
equal 104.1. But because the entry times are less than one 

minute apart, this causes a separation violation on entry to 
Link z. This violation is caught by M3, which will force 
D_z’s Best Guess Time of Entry to 105, causing M4 to 
force D_y’s Best Guess Time of Exit to 105. (See Fig.6) 

C_v (Flight C on Link v, before w) 

Best Guess Time of Entry =100 

Best Guess Time of Exit  =102 

C_w (Flight C on Link w) 

Best Guess Time of Entry =102 

Best Guess Time of Exit  =104 

C_z (Flight C on Link z, after w) 

Best Guess Time of Entry =104 

M1 

M1 

M2 

M2 

Figure 5: Sending Flight C’s Timing Information Forward 
via Flight-By-Link Objects C_v, C_w, and C_z 

Flight D needs to absorb a total delay of 0.9 minutes 
overall, but only 0.75 minutes can be absorbed on any sin-
gle Link. M5 forces D_y’s Best Guess Time of Entry down 
to 102.25. This means that 0.75 minutes of delay, the 
maximum, is absorbed on Link y.  The remaining 0.15 
minutes is pushed back to Link x by M4 which forces 
D_x’s Best Guess Time of Exit to 102.25. 

At this point, the monitoring and enforcing stops, be-
cause D_x’s Best Guess Time of Exit of 102.25 is well 
within bounds: M5 is unviolated because D_x’s Best Guess 
Time of Entry is 100.1, its Minimum Traversal Time is 2, 
and its Maximum Delay is 45 seconds (0.75 minutes). 

Note that these changes, which essentially put the sys-
tem of equations back into balance, take place in zero 
simulated time. In this case, the changes should occur be-
fore the simulation clock reaches 100, the time at which 
the Flights start on their first Links. The simulation clock 
advances to the next scheduled “Link movement”, that is, 
the next scheduled Best Guess Time of Entry among all of 
the Flight-By-Link objects defined in the model.  Subse-
quent balancing actions occur between every advance of 
the simulation clock. 

Because each Flight-By-Link object only has to di-
rectly account for the three “adjacent” Flight-By-Link ob-
jects, the model scales up well. Once one has set up the 
rules governing these relationships, changes that take place 
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far away are allowed to ripple through the system auto-
matically. 

M3 

C_z (Flight C on Link z, ahead of D) 

Best Guess Time of Entry =104 

D_y (Flight D on Link y) 

Best Guess Time of Entry =102.25 

Best Guess Time of Exit =105 

D_x (Flight D on Link x , before y) 

Best Guess Time of Entry 

Best Guess Time of Exit =102.25 

D_z (Flight D on Link z ,after y) 

Best Guess Time of Entry =105 

M4 

M5 

M4 

Figure 6. Flight C Delays Flight D, and Delay is passed 
back via Flight-By-Link objects D_z, D_y, and D_x. 

6.1.1 Crossing Flights 

The example above illustrates the fundamental monitor-
and-enforce mechanisms and the system of relationships 
required to simulate a merge. Flights whose paths cross, 
rather than merge, however, share only a common Node 
object, not a common Link object. As a result, an addi-
tional set of relationships among Flight-By-Link objects is 
required. Specifically, whereas a merging Flight requires a 
pointer to the leading Flight on the shared Link, a crossing 
Flight requires a pointer to the leading Flight through the 
shared Node. Apart from that, the mechanisms for main-
taining separation and absorbing delay due to crossing are 
practically identical to those for merging. 

7  INFORMATION FLOW 

Looking at the problem from a slightly different per-
spective, the model is doing two things: pushing demand 
information forward through the network (spatially and 
through simulated time) and pushing capacity and delay 
information backward. Two questions emerge: 

•	 How are the Flight-By-Link pointer relationships 
established in the first place? 

•	 How far ahead can, and should, this information 
be transmitted? 

A Flight-By-Link object’s Leading Flight pointer re-
mains unassigned until the expected arrival time at the 
Link is within a time window. The pointers are ordered 
according to each Flight’s initial claim time on the Link. A 
Flight-By-Link object’s inter-link pointers (Next Link and 
Previous Link) are determined by the flight plan, but the 
threads that monitor and enforce the mathematical relation-
ships are not “activated” (turned on) until the expected ar-
rival time at the Link is inside of a (different) time win-
dow. This window should be larger than the window that 
assigns the inter-flight pointers because position informa-
tion must be pushed forward before constraint and delay 
information can be pushed backward. In the near future, 
we plan to implement a model with a more dynamic flight 
plan, in which the inter-link pointers remain unassigned 
until the model has chosen a particular route among several 
options. 

Obviously, there are tradeoffs in the selection of time 
window sizes. Make the time windows too small, and 
Flights will be unable to absorb the required buffering de-
lay, defeating the purpose of the model. Make the time 
window too large, and computational performance suffers. 
Moreover, from a modeling perspective, making time win-
dows very large equates to simulating an air traffic control 
system with perfect inter-facility coordination and perfect 
long-range information flow. This is a poor representation 
of reality: controllers in California do not know the precise 
arrival time of a trans-continental flight just leaving New 
York because there is too much uncertainty in travel times. 

8	 FUNDAMENTALS OF THE SLX SIMULATION 
LANGUAGE 

A model employing the concepts described above was im-
plemented in the SLX simulation language. SLX (Wolver-
ine Software) is a PC-based simulation language and de-
velopment environment that has some unique capabilities 
that enable the user to build and run very large, complex 
models (Henriksen, 1998). While a detailed description of 
the language is beyond the scope of this paper, three fun-
damental aspects of the language, necessary for imple-
menting the delay absorption model, are described below. 

• Pucks 
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An SLX puck is like an independent thread, or stream 
of execution, within the simulation model. Pucks al-
low the modeler to simulate many things happening in 
parallel. The SLX pucks run extremely quickly, and 
each one consumes relatively little memory. Each of 
the mathematical relationships in the model presented 
above was monitored and enforced by its own puck. 
A model employing the concepts presented in this arti-
cle used over 500,000 pucks, up to 250,000 running 
simultaneously, and ran in about 9 seconds on a PC 
with a 2-gigahertz processor. 

•	 Wait Until 
SLX has a “wait until” statement that allows the user 
to model time- and state-based delays. While a state-
based delay capability is not unique to SLX, the speed 
with which it executes is noteworthy. Almost all of 
the 500,000 pucks in the model mentioned above were 
controlled with “wait until” statements. 

•	 Active Objects 
SLX is an “object-based” language that allows each 
object to have an unlimited number of independent 
pucks (threads of execution), thereby making the ob-
ject “active”. This means that the user can model sev-
eral things happening in parallel within a single object. 
Each Flight-By-Link object in the model described 
above had multiple pucks, one puck for each of the 
mathematical relationships monitored and enforced. 

These modeling constructs, combined with the speed 
and scalability of SLX, open up many modeling possibili-
ties -- like the approach described above-- that would oth-
erwise be impractical. 

CONCLUSIONS 

This article described a methodology for modeling limited 
delay absorption capacity, which is a fundamental problem 
in air traffic control. At its heart, the methodology is based 
on a large number of independent streams of execution 
monitoring and enforcing a large number of relatively sim-
ple mathematical relationships. This approach relies heav-
ily on the speed and scalability of the SLX simulation lan-
guage.  The examples presented in this article dealt only 
with delays imposed to maintain separation between air-
craft, but the approach could be extended to handle delays 
imposed for other reasons, such as maintaining a manage-
able flow through busy sectors. 
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