
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SIMULATING AIRCRAFT DELAY ABSORPTION

Justin Boesel

The MITRE Corporation

Center for Advanced Aviation Systems Development

7515 Colshire Dr.

Mail Stop N370

McLean, VA, 22102, USA

ABSTRACT

An airplane’s ability to absorb delay while airborne is lim-
ited and costly. Because of this, the air traffic control sys-
tem anticipates and manages excessive demand for scarce
shared resources, such as arrival runways or busy airspace,
so that the delay necessary for buffering can be spread out
over a larger distance, or taken on the ground before depar-
ture. It is difficult to model these important dynamics in a
standard queue-resource simulation framework, which
does not account for limited delay absorption capacity. The
modeling methodology presented here captures these dy-
namics by employing a large number of independent
threads of execution to monitor and enforce a large number
of relatively simple mathematical relationships. These re-
lationships calculate feasible time windows for each por-
tion of each flight. The model was implemented in the
SLX simulation language. The speed and scalability of
SLX are essential to the approach, which would otherwise
be impractical.

INTRODUCTION

From a capacity modeling perspective, airplane traffic is
fundamentally different from automobile, rail or ship traf-
fic; while a car, train, or ship can stop and wait for an es-
sentially unlimited amount of time in the middle of its
journey, an airplane cannot. In other words, once airborne,
an airplane’s ability to absorb delay is limited and costly,
complicating the problem of modeling delays and capaci-
ties.

Because of this limited delay absorption capacity, the
air traffic control system anticipates and manages exces-
sive demand for scarce shared resources (e.g., arrival run-
ways, busy terminal airspace) so that the delay necessary
for buffering can be spread out over a larger distance, or
taken on the ground before departure. These actions, how-
ever, can ripple back and block resources upstream, such

as departure runways and controller attention in busy sec-
tors.

It is difficult to model these dynamics in a standard
queue-resource simulation framework. In a standard
queue-resource model, there is no concept of limited delay
absorption capacity. For instance, in a factory setting, a
part moving from one work station to another may wait for
one minute or one week before receiving service. The
number of parts waiting for service (queue size) may be
explicitly limited, but the wait time per part is not.

To model airplane traffic, one needs to be able to an-
ticipate excessive demand for a resource well before it oc-
curs, so that the flight to be delayed has adequate distance
over which to absorb the required delay.

This article describes a modeling methodology for
simulating the limited delay absorption capacity of air-
borne flights. The remainder of this paper is organized as
follows: section 2 describes how aircraft are delayed for
buffering; section 3 explains why it is important to capture
the dynamics caused by limited buffering capacity; section
4 describes the network and object elements of the model;
section 5 describes the central “monitor and enforce”
mechanism; section 6 provides an example modeling two
merging aircraft; section 7 looks at the problem from an
information flow perspective; section 8 describes the ele-
ments of the SLX simulation language that are central to
this approach; and section 9 summarizes and draws some
conclusions.

2 DELAY ABSORPTION BUFFERING

In almost any capacity-constrained system, the ability to
buffer demand during busy periods is key to increasing
utilization of scarce server resources. For instance, during
lunchtime at a fast food restaurant, customers wait in line
while the cashier/server takes orders from other customers.
When one customer is done, the next in line receives ser-
vice, and the server remains busy. As wait time increases, a
customer can choose to remain in line or can opt out, and

1

Boesel

leave the restaurant. In the air traffic control system, some
similar situations exist: departing airplanes wait on taxi-
ways for their turn on a runway. Once aircraft are in the
air, however, the situation changes. An aircraft cannot opt
out of landing and, because of fuel constraints, it cannot
wait for an arrival runway indefinitely. Within these con-
straints, buffering airborne flights -- making them wait in
the air – even for relatively short periods of time is costly
in a number of ways.

•	 Buffering requires controller work. Overloading a
controller is undesirable because it can compro-
mise safety.

•	 Buffering usually increases mileage, which burns
fuel and increases aircraft wear and tear.

• Buffering requires airspace.
Air traffic controllers have four basic methods in

which they can delay aircraft to keep them from over-
whelming a resource such as a runway or a controller
downstream. These methods, and their relative costs and
benefits, are described below:
•	 Ground Delay

Delaying a flight on the ground before it departs is
relatively cheap in terms of fuel and controller work-
load, even though it is not free to the airlines, their
passengers or cargo. Ground delay can absorb practi-
cally unlimited amounts of time. Ground delay is of-
ten used to prevent congestion in the air, which, if left
unchecked, could overburden controllers and com-
promise safety. Because of departure runway conges-
tion and flight-time variability, however, it is not prac-
tical to use ground delay to fine-tune a flight’s arrival
time at a distant airport.

•	 Airborne Holding
Placing a flight into airborne holding is expensive in
terms of fuel and controller workload. Furthermore,
holding requires reserved airspace; the locations at
which airborne holding can take place are limited.
Holding is most commonly used to delay arriving
flights close to (within 50 miles of) their destination
airport. Despite the costs, holding allows controllers
to delay airborne flights for relatively large amounts of
time (tens of minutes). At large airports with rela-
tively unconstrained airspace, such as Atlanta Harts-
field, controllers use the buffering capacity provided
by airborne holding to make more efficient use of arri-
val runways (Voss and Hoffman, 2001).

•	 Vectoring
Vectoring means extending a flight’s path (thereby de-
laying it) by turning it. Vectoring allows controllers to
delay aircraft more precisely and with less expense (in
terms of workload and fuel cost) than they could with
airborne holding. The amount of delay that can be
achieved with vectoring is closely related to the
amount of airspace a controller can use. Vectoring is a

very common technique, especially for sequencing
flights onto an arrival runway.

• Speed Control
Slowing a flight down to delay it requires little air-
space, but the amount of delay that can be absorbed
with speed control is not great.

3	 WHY MODEL LIMITED DELAY
ABSORPTION?

Because airborne flights can absorb only a limited amount
of delay, buffering caused by contention for a downstream
resource, such as an arrival runway, can quickly ripple
back upstream and cause congestion in an upstream re-
source, such as an en route sector. The subsequent conges-
tion upstream can delay departures from and arrivals to
other airports.

If a model fails to capture the limits on delay absorp-
tion, it will miss these blocking effects upstream. This
makes it important to model aircraft taking delay not only
in the correct amount, but also at the correct place and
time.

Figure 1 illustrates this problem. Suppose airport D
sends flights to airport A, and airport C send flights to air-
port B, all via en-route sector Y. If runway congestion at
airport A delays arrivals, they may spend more time in sec-
tor Y, especially if the delay absorption capacity between
Y and A is small. If this causes sector Y to become too
busy, departures from C may be held on the ground. A
model that accounts for limited delay absorption would
capture this dynamic.

On the other hand, in a model that overstates the delay
absorption capacity of flights between sector Y and airport
A, the arrivals to A will quickly pass through sector Y,
which will not become too busy, thus allowing departures
from C to D to proceed undelayed. This model will under-
state delay.

Airport B

Airport A En Route
Sector Y

Airport C

Airport D

Figure 1: En Route Sector as a Constraint

Boesel

4 ELEMENTS OF THE MODEL

In the model presented here, aircraft move along a link-
node structure. Each flight requires a minimum time to
traverse each link, and each flight can absorb only a lim-
ited amount of additional delay on each link. To represent
an airspace that has plenty of room for vectoring, this
maximum delay parameter can be set high, while a nar-
rower, more constrained airspace would have a lower
maximum delay parameter.

As flights merge on to common links or cross each
other’s paths, minimum separation between aircraft is
maintained. Each link and node in the model is assigned a
minimum required separation (in minutes) that defines its
capacity. The model presented here deals only with inter-
aircraft separation, and does not explicitly model controller
workload as a constraint.

The model is essentially a network model with nodes,
links, and flights moving and absorbing delay on links.
Unlike most network models, however, this model antici-
pates contention for resources long before it occurs and
spreads the required delay absorption out across the links,
rather than in a buffer immediately in front of the con-
strained resource. Four object types define the model:
•	 Flight Object

Each Flight object represents a single flight. It has the
flight’s aircraft ID, aircraft type, desired departure
time, and a flight plan, defined as a list of Links.

•	 Link Object
Flights use Links to get from one place to another. A
Link object can be used to represent an airway at a
particular attitude. Links are defined to be one-way
only, and while a Link can be shared by several
Flights, passing is not permitted on a Link. Each Link
has pointers to its starting and ending Nodes, pointers
to all of the Flights that will pass over it, and mini-
mum required separations (in minutes) that define its
capacity.

•	 Node Object
A Node Object is used to connect Links. A Node ob-
ject, which can be thought of as a point in 3-D space,
can be used to represent a waypoint or a fix at a par-
ticular altitude. Nodes represent crossings, merges,
and split relationships between Link Objects. Each
Node has a list of the Links coming into and out of it.
Like a Link, a Node has several minimum required
separations that define its capacity.

•	 Flight-By-Link Object
As each Flight crosses each Link on its flight path, the
model generates a great deal of timing information.
Flight-by-Link objects keep track of all of this infor-
mation. A Flight-by-Link object represents a particu-
lar Flight on a particular Link. For example, if a
Flight has n Links on its path, then n Flight-By-Link
objects will be created for that Flight.

The Flight-By-Link object is the workhorse of the
simulation. It has pointers to three other Flight-by-Link
objects, which define the object’s relationship with the rest
of the model. One pointer refers to the Flight immediately
ahead of it on the same Link, and the other two pointers
refer to the same Flight on the next and previous Links.
Figures 2 and 3 illustrate these relationships.

Link k

Link j

Link h

Flight A

Flight B

Figure 2. Flights A and B on Links h,j, and k

Suppose Flight B follows Flight A across Links h, j,
and k, as shown in Figure 2, above. To represent this in
the model, one would need Flight objects for A and B, and
Link objects for h, j, and k. To represent the flights’
movement over these Links, one would need to create six
Flight-By-Link objects, A_h, A_j, A_k, B_h, B_j, and
B_k. Figure 3 illustrates the pointer relationships of
Flight-By-Link B_j to its “adjacent” Flight-By-Link ob-
jects B_k (same Flight, next Link), A_j (leading Flight,
same Link), and B_h (same Flight, previous Link).

B_j
(Flight B on Link j)

Next Link

Leading Flight

Previous Link B_h
(Flight B on Link h)

B_k
(Flight B on Link k)

A_j
(Flight A on Link j)

Figure 3. Flight-By-Link Object B_j’s pointers to adjacent
Flight-By-Link Objects

Boesel

Each Flight-by-Link object has two quantities --
minimum traversal time and maximum delay -- that deter-
mine the minimum and maximum amounts of time the
Flight can spend on the Link. The minimum traversal time
represents the amount of time a Flight needs to cross a
Link, and the maximum delay represents the amount of
additional time a Flight could absorb on a particular Link.

5 MONITOR AND ENFORCE

In the model presented here, each object monitors and en-
forces a number of mathematical relationships. The follow-
ing example illustrates such a relationship, and describes
its enforcement.

Suppose the two Flights depicted in Figure 2, above,
need to increase separation before entering Link k. Let TA
and TB be the clock times at which Flights A and B (re-
spectively) enter Link k, and let Sk be the minimum re-
quired separation (in minutes) between Flights entering
Link k. To respect this separation, one must ensure that:

TB > TA + Sk (1)

Flight-By-Link object B_k can read all three quantities
in (1): TB is local to B_k, and the others can be read via
pointers. B_k gets its own independent thread of execution
to enforce the separation requirement expressed in (1), il-
lustrated by the following pseudo-code :

fork {// fork command creates new thread

forever //Enters Loop
{
wait until (TB < TA + Sk);
//relationship is violated

TB = TA + Sk;
//Enforce relationship

}//end forever loop
}//end fork

The new thread immediately enters a “forever” loop,
the only purpose of which is to wait until inequality (1) is
violated, and then to correct it. This basic mechanism
monitors and enforces a mathematical relationship.

At its heart, the model is essentially a system of hun-
dreds of thousands of such relationships, each one moni-
tored and enforced by its own independent thread and a
“wait until” statement.

6	 MODELING MOVEMENT AND LIMITED
DELAY ABSORPTION: AN EXAMPLE

The following example illustrates how the objects and the
monitor-and-enforce mechanism work together to model
delay pass back due to limited delay absorption.

Consider Figure 4. Suppose Flight C traverses the air-
space represented by Links v, w, and z, and Flight D,
which starts just a little bit later, traverses the airspace rep-
resented by Links x, y, and z. Suppose that the Flights
will need to be separated by one minute when crossing
their merge point, S.

S
v

x

y w

Flight C
Flight D

z

Figure 4: Merging Flights at Point S

Suppose further that each Flight can traverse each
Link in a minimum of 2 minutes, but can only absorb 45
seconds (0.75 minutes) of delay on each Link. To respect
the separation requirement at point S, one of the Flights
will need to be delayed.

To model this, one creates Flight objects representing
C and D, Link objects representing v, w, x, y, and z, a
Node object representing point S, Flight-By-Link objects
C_v, C_w, and C_z, representing Flight C on Links v, w,
and z, and Flight-By-Link objects D_x, D_y, and D_z rep-
resenting Flight D on Links x, y, and z.

Each Flight-By-Link object has three pointers to other
Flight-By-Link objects that are “adjacent” (in space or se-
quence):
•	 The Next Link pointer points to the same flight on the

next Link in the flight plan. For instance, C_v has a
pointer to Next Link C_w,

•	 The Previous Link pointer points to the same flight on
the previous Link in the flight plan. For instance, C_w
has a pointer to Previous Link C_v.

•	 The Leading Flight pointer points to the previous
flight on the same Link. In this example, there is only
one such meaningful instance of this; D_z has a
pointer to Leading Flight C_z.

Each Flight-By-Link object has several attributes, spe-
cifically:
•	 Minimum Traversal Time -- 2 minutes for all Flight-

By-Link objects in this example
•	 Maximum Delay -- 45 seconds for all Flight-By-Link

objects in this example

Boesel

•	 Best Guess Time of Entry -- the current best estimate
of when (in simulation clock time) the Flight will enter
the Link;

•	 Best Guess Time of Exit -- the current best estimate of
when (in simulation clock time) the Flight will exit the
Link

To model simple movement across a single Link, there
is a thread that monitors and enforces the relationship
(M1):

My Best Guess Time of Exit >
My Best Guess Time of Entry +
My Minimum Traversal Time

To model movement from Link to Link, there is a
thread that monitors and enforces the relationship (M2):

My Best Guess Time of Entry >
Previous Link’s Best Guess Time of Exit

Each Link object has a constant Minimum Separation
Required at Entry, which is used to separate merging and
in-trail Flights. This is set to one minute on Link z. Each
Flight-By-Link object compares its Best Guess Time of En-
try to that of the Flight in front of it. The mechanism for
doing this is a thread that monitors and enforces the rela-
tionship (M3):

My Best Guess Time of Entry >
Leading Flight’s Best Guess Time of Entry +

Shared_Link’s
Minimum Separation Required at Entry

To pass back constraint information from Link to
Link, there is a thread that monitors and enforces the rela-
tionship (M4):

My Best Guess Time of Exit >
Next Link’s Best Guess Time of Entry

To model the limited delay absorption capacity on
each Link, there is a thread that monitors and enforces the
relationship (M5):

My Best Guess Time of Entry >
My Best Guess Time of Exit –

(Minimum Traversal Time +
Maximum Delay)

Suppose Flight C starts at time 100.0 and Flight D
starts at time 100.1. The threads enforcing relationships
M1 and M2 will cascade forward through the system, set-
ting Best Guess Time of Entry at 104 for Flight-By-Link
object C_z (see Fig.5)

A similar chain of events takes place on objects D_x,
D_y, and D_z, so that D_z’s Best Guess Time of Entry will
equal 104.1. But because the entry times are less than one

minute apart, this causes a separation violation on entry to
Link z. This violation is caught by M3, which will force
D_z’s Best Guess Time of Entry to 105, causing M4 to
force D_y’s Best Guess Time of Exit to 105. (See Fig.6)

C_v (Flight C on Link v, before w)

Best Guess Time of Entry =100

Best Guess Time of Exit =102

C_w (Flight C on Link w)

Best Guess Time of Entry =102

Best Guess Time of Exit =104

C_z (Flight C on Link z, after w)

Best Guess Time of Entry =104

M1

M1

M2

M2

Figure 5: Sending Flight C’s Timing Information Forward
via Flight-By-Link Objects C_v, C_w, and C_z

Flight D needs to absorb a total delay of 0.9 minutes
overall, but only 0.75 minutes can be absorbed on any sin-
gle Link. M5 forces D_y’s Best Guess Time of Entry down
to 102.25. This means that 0.75 minutes of delay, the
maximum, is absorbed on Link y. The remaining 0.15
minutes is pushed back to Link x by M4 which forces
D_x’s Best Guess Time of Exit to 102.25.

At this point, the monitoring and enforcing stops, be-
cause D_x’s Best Guess Time of Exit of 102.25 is well
within bounds: M5 is unviolated because D_x’s Best Guess
Time of Entry is 100.1, its Minimum Traversal Time is 2,
and its Maximum Delay is 45 seconds (0.75 minutes).

Note that these changes, which essentially put the sys-
tem of equations back into balance, take place in zero
simulated time. In this case, the changes should occur be-
fore the simulation clock reaches 100, the time at which
the Flights start on their first Links. The simulation clock
advances to the next scheduled “Link movement”, that is,
the next scheduled Best Guess Time of Entry among all of
the Flight-By-Link objects defined in the model. Subse-
quent balancing actions occur between every advance of
the simulation clock.

Because each Flight-By-Link object only has to di-
rectly account for the three “adjacent” Flight-By-Link ob-
jects, the model scales up well. Once one has set up the
rules governing these relationships, changes that take place

Boesel

far away are allowed to ripple through the system auto-
matically.

M3

C_z (Flight C on Link z, ahead of D)

Best Guess Time of Entry =104

D_y (Flight D on Link y)

Best Guess Time of Entry =102.25

Best Guess Time of Exit =105

D_x (Flight D on Link x , before y)

Best Guess Time of Entry

Best Guess Time of Exit =102.25

D_z (Flight D on Link z ,after y)

Best Guess Time of Entry =105

M4

M5

M4

Figure 6. Flight C Delays Flight D, and Delay is passed
back via Flight-By-Link objects D_z, D_y, and D_x.

6.1.1 Crossing Flights

The example above illustrates the fundamental monitor-
and-enforce mechanisms and the system of relationships
required to simulate a merge. Flights whose paths cross,
rather than merge, however, share only a common Node
object, not a common Link object. As a result, an addi-
tional set of relationships among Flight-By-Link objects is
required. Specifically, whereas a merging Flight requires a
pointer to the leading Flight on the shared Link, a crossing
Flight requires a pointer to the leading Flight through the
shared Node. Apart from that, the mechanisms for main-
taining separation and absorbing delay due to crossing are
practically identical to those for merging.

7 INFORMATION FLOW

Looking at the problem from a slightly different per-
spective, the model is doing two things: pushing demand
information forward through the network (spatially and
through simulated time) and pushing capacity and delay
information backward. Two questions emerge:

•	 How are the Flight-By-Link pointer relationships
established in the first place?

•	 How far ahead can, and should, this information
be transmitted?

A Flight-By-Link object’s Leading Flight pointer re-
mains unassigned until the expected arrival time at the
Link is within a time window. The pointers are ordered
according to each Flight’s initial claim time on the Link. A
Flight-By-Link object’s inter-link pointers (Next Link and
Previous Link) are determined by the flight plan, but the
threads that monitor and enforce the mathematical relation-
ships are not “activated” (turned on) until the expected ar-
rival time at the Link is inside of a (different) time win-
dow. This window should be larger than the window that
assigns the inter-flight pointers because position informa-
tion must be pushed forward before constraint and delay
information can be pushed backward. In the near future,
we plan to implement a model with a more dynamic flight
plan, in which the inter-link pointers remain unassigned
until the model has chosen a particular route among several
options.

Obviously, there are tradeoffs in the selection of time
window sizes. Make the time windows too small, and
Flights will be unable to absorb the required buffering de-
lay, defeating the purpose of the model. Make the time
window too large, and computational performance suffers.
Moreover, from a modeling perspective, making time win-
dows very large equates to simulating an air traffic control
system with perfect inter-facility coordination and perfect
long-range information flow. This is a poor representation
of reality: controllers in California do not know the precise
arrival time of a trans-continental flight just leaving New
York because there is too much uncertainty in travel times.

8	 FUNDAMENTALS OF THE SLX SIMULATION
LANGUAGE

A model employing the concepts described above was im-
plemented in the SLX simulation language. SLX (Wolver-
ine Software) is a PC-based simulation language and de-
velopment environment that has some unique capabilities
that enable the user to build and run very large, complex
models (Henriksen, 1998). While a detailed description of
the language is beyond the scope of this paper, three fun-
damental aspects of the language, necessary for imple-
menting the delay absorption model, are described below.

• Pucks

Boesel

An SLX puck is like an independent thread, or stream
of execution, within the simulation model. Pucks al-
low the modeler to simulate many things happening in
parallel. The SLX pucks run extremely quickly, and
each one consumes relatively little memory. Each of
the mathematical relationships in the model presented
above was monitored and enforced by its own puck.
A model employing the concepts presented in this arti-
cle used over 500,000 pucks, up to 250,000 running
simultaneously, and ran in about 9 seconds on a PC
with a 2-gigahertz processor.

•	 Wait Until
SLX has a “wait until” statement that allows the user
to model time- and state-based delays. While a state-
based delay capability is not unique to SLX, the speed
with which it executes is noteworthy. Almost all of
the 500,000 pucks in the model mentioned above were
controlled with “wait until” statements.

•	 Active Objects
SLX is an “object-based” language that allows each
object to have an unlimited number of independent
pucks (threads of execution), thereby making the ob-
ject “active”. This means that the user can model sev-
eral things happening in parallel within a single object.
Each Flight-By-Link object in the model described
above had multiple pucks, one puck for each of the
mathematical relationships monitored and enforced.

These modeling constructs, combined with the speed
and scalability of SLX, open up many modeling possibili-
ties -- like the approach described above-- that would oth-
erwise be impractical.

CONCLUSIONS

This article described a methodology for modeling limited
delay absorption capacity, which is a fundamental problem
in air traffic control. At its heart, the methodology is based
on a large number of independent streams of execution
monitoring and enforcing a large number of relatively sim-
ple mathematical relationships. This approach relies heav-
ily on the speed and scalability of the SLX simulation lan-
guage. The examples presented in this article dealt only
with delays imposed to maintain separation between air-
craft, but the approach could be extended to handle delays
imposed for other reasons, such as maintaining a manage-
able flow through busy sectors.

ACKNOWLEDGMENTS

The author would like to acknowledge Carla Gladstone and
Mike White of the MITRE corporation for their help.

This work was produced for the U.S. Government under
Contract DTFA01-01-C-00001 and is subject to Federal
Aviation Administration Acquisition Management System
Clause 3.5-13, Rights in Data-General, Alt. III and Alt. IV
(Oct., 1996).

The contents of this document reflect the views of the au-
thor and The MITRE Corporation and do not necessarily
reflect the views of the FAA or the DOT. Neither the Fed-
eral Aviation Administration nor the Department of Trans-
portation makes any warranty or guarantee, expressed or
implied, concerning the content or accuracy of the views.

REFERENCES

Henriksen, James O. 1998. Stretching the boundaries of
simulation software. In Proceedings of the 1998 Win
ter Simulation Conference, ed. Medeiros, D.J., E.
Watson, M.S. Manivannan, and J. Carson, 227-234.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Voss, William R, and J. Hoffman. 2001. Analytical Identi-
fication of Airport and Airspace Capacity Constraints.
In Air Transportation Systems Engineering, ed. G.L.
Donohue, A.G. Zellwegger, H. Rediess,and C. Pusch,
409-419. Reston, Virginia: American Institute of
Aeronautics and Astronautics.

AUTHOR BIOGRAPHY

JUSTIN BOESEL is a Senior Simulation Modeling Engi-
neer at The MITRE Corporation’s Center for Advanced
Aviation System Design (CAASD). He received his Ph.D.
from Northwestern University and won the INFORMS
George B. Dantzig Dissertation Award in 1999. He has
been working on air traffic control problems since 2000.
He can be contacted by e-mail at <boe-
sel@mitre.org>

9

