
1

AN INTEGRATION FRAMEWORK FOR AIRPORT AUTOMATION
SYSTEMS

Ningjiang “Jay” Cheng, The MITRE Corporation, McLean, Virginia

1. Introduction
A large airport typically has dozens of

automation systems that require automatic
information interchange among them to ensure safe
and efficient airport operations. However, those
systems were often developed by different vendors
and were not designed to be interoperable, which
makes systems integration a very complicated
matter. Ad hoc point-to-point integration often
proves to be problematic. An integration framework
is needed to avoid “spaghetti integration”. This
paper presents an integration framework for
defining the integration information requirements
and designing the systems integration architecture.

1.1 Background
The management and operations of a

successful modern airport has always been a
complex exercise. Today, pressure from new airline
alliances and low cost operators, together with
airport privatization and acquisition, is resulting in a
far more competitive environment between airports.
Operational efficiency needs to be taken to a more
advantageous cost base without compromising
growth and quality. This requires increased
automation and integration of the airport systems,
and a clearer, more consistent and timely view of
the total airport business.

Most airports have established point to point
system interfaces. When the number of systems to
be integrated increases, the number of interfaces
becomes unmanageable. This tactical approach to
airport systems integration proves difficult to

maintain, enhance, and extend. Information storage
and access are fragmented across these isolated
links, leading to slower decision making and less
efficient teamwork in an increasingly complex
airport environment. It also brings the risk that the
common data that exist in various different
applications may not be consistent. As competition
and the need to maximize profits and efficiencies
grow, airports have to find a better way to integrate
these “fragmented” systems. This paper describes a
framework that provides a better way to integrate
airport systems. This integration framework guides
the system integration not only for existing
applications, but also for the design and
procurement of a new airport’s automation systems.

1.2 The Integration Framework
There are two basic aspects of the systems

integration in a complex airport environment. One
aspect is the approach for collecting and managing
integration requirements. The other aspect is the
conceptual integration system architecture used to
guide the physical system architecture design and
evolution. These two aspects are described in two
models: an integration information model and an
integration system architecture model.

The integration information model describes
the airport business integration requirements by
capturing integration information elements in terms
of standard notations such as Unified Modeling
Language (UML). Due to the complexity of a large
airport, an organization and a process need to be
established to manage systems integration
requirements systematically.

Disclaimer: The contents of this material reflect the views of the author and The MITRE Corporation. Neither the Federal Aviation
Administration nor the Department of Transportation makes any warranty or guarantee, or promise, expressed or implied, concerning
the content or accuracy of the views expressed herein.

 2001 The MITRE Corporation. ALL RIGHTS RESERVED

2

The integration system architecture model
provides a guideline for airport Information
Technology (IT) architecture planning and
integration system design and development. This
model identifies important system components for
the integration, among which are integration
middleware and an Airport Operational Database
(AODB). An AODB provides a centralized
management of common airport operational data
with high data quality and reliability. The
integration middleware provides systems
integration services and adds to the system with
much greater extensibility, scalability and
evolveability.

Together, these two models provide a high
level “what” and “how” for the airport authority to
smoothly plan, procure and manage its airport
automation systems integration. They also provide a
base for integrators to define their approach to
requirement analysis and architecture design.
During the maintenance phase of an integration
project, this framework governs the smooth
evolution of integrated airport automation systems.

2. Systems Integration Information
Model

The operations of a large airport are driven by
business information. Airport business units create
information, transform information, distribute
information, and take actions on received
information. An integration information model is
essential to describe information interchange
requirements. This model consists of information
elements that describe the inter-operations. An
integration control board (ICB) is needed to manage
the definition and maintenance of these information
elements with a defined process. This model
provides a framework for the systems integration
requirements management.

2.1 General Description
The integration information model consists of

the following information elements that are
essential to fully describe the information
interchange requirements of an airport:

• Airport business functions/units
• Airport business events

• Event data objects
• Airport business processes

These information elements are captured in
both text and diagrams such as business function
hierarchy diagram and business process flow
diagram and could be viewed at different levels of
detail by different users.

The model is developed and maintained by the
integration requirements team. This team initially
collects requirements and refines the list. It then
follows the model throughout the development
lifecycle, producing more details as time goes on. In
the end, the model could be mapped into an
implementation design that follows the architecture
model, and becomes the basis to define the
specifications for the message types and the
integration Application Programming Interface
(API).

The model is typically stored in a repository
that provides easy and secured access to interested
parties, provides views of different levels of detail,
and also facilitates the maintenance of the
integration information. A Computer Aided System
Engineering (CASE) tool can be used to help
maintain this repository. This information model
will also become the major source for the metadata
of the AODB.

This integration information model provides a
clear path for the integration requirements
specification that helps prevent “spaghetti
integration” and ensures that the integration is
maintainable and extensible.

2.2 Airport Business Functions/Business
Units

This element describes the business area
functions of the airport that need to cooperate with
each other in some way to accomplish the overall
airport operations mission. It also describes the
business units that execute the business functions.
For example, Baggage Handling is an airport
business function, which is executed by the
business unit that provides baggage-handling
services, using an automated baggage handling
system.

In modern airports, the majority of business
area functions are computerized. There are usually

3

computer automation systems in each business area
function. These application systems produce and/or
consume information about airport operations and
resource allocations.

An airport operation can be divided into the
following three high-level business areas: Airside
Operations, Landside Operations and Terminal
Operations. These can be further decomposed into
more specific business area functions, such as
Flight Information Display, Baggage Handling,
Cargo Handling, Ramp Control, and Building
Management. Those business area functions need to
be analyzed to define their integration requirements
in terms of what they need from other business area
functions and what they should provide to other
business area functions. The analysis results would
be documented into the integration information
model.

2.3 Airport Business Events
A business event is an occurrence or situation

that is considered important to the overall
operations of the airport. Typically, the event is
generated in one business area function, and its
result will impact other business area function(s).
When information systems are not integrated, the
end-user has to gather the event result and pass it to
the operators of other interested business units.
When integrated, participating systems are notified
automatically of an event of interest, and the result
of the event is available immediately to those
systems. Triggering information sharing on
occurrence of business events can deliver
significant benefits to the airport: throughput and
efficiency can be improved, manual operations and
errors can be reduced, and overall responsiveness
can be increased.

For example, an arrival delay is a business
event that has impact on many other business area
functions. This event would likely originate from
Air Traffic Control (ATC), and has impact on
business area functions such as Flight Information
Display, Ramp Handling, Baggage Handling, and
Cargo Operations.

Business events can be grouped based on their
originating business area functions. The model
describes the event, where and how the event is

initiated, and what results should come out of this
event.

2.3 Airport Event Data Objects
The event data object element describes the

information transferred between business area
functions when business events occur. A data
object is a real or conceptual entity that holds
relevant information for a business operation. The
data object is described in plain language and
further defined by its attributes. For example, data
object FLIGHT SCHEDULE is further defined by
its attributes FLIGHT NUMBER, SCHEDULED
ARRIVAL TIME, SCHEDULED DEPARTURE
TIME and AIRPORT ID. When an event occurs,
the data object that needs to be passed is described
by its identification attributes and the attributes that
get new values. The related events should be
identified also.

The data objects are typically transferred in
messages and may be collected in the airport central
database. The Extensible Markup Language (XML)
provides a standard for formatting the data object in
a message.

2.4 Airport Business Processes
An event activates a business process, which

transforms the event and related data objects into
new events or data objects. The model thus
identifies the stimulating events and data objects
involved. The processes described in the model are
typically airport-wide and are for integration only.
They are usually triggered by flight events or
passenger events, such as flight arrival, flight delay,
flight cancel and passenger check-in. An airport
business function is often a process step in an
airport business process. For example, the process
triggered by flight delay event would involve a lot
of business functions such as flight information
display, baggage handling and ramp control. The
process diagram gives a clear picture of how the
affected airport business area functions inter-
operate to handle the occurrence of an airport
business event. Many processes involve more than
one application, and many applications also have
their own internal business processes, which
typically perform lower-level functions within a
business area.

4

When a process is triggered by a business
event, the involved business systems get
notification and data of the event delivered by the
integration software components that reside on the
database server or the integration application
servers.

2.5 Integration Control Board (ICB)
An airport business unit usually represents a

business area that is supported by one or more
automation system(s). It is very important for all
participating airport business units to reach
consensus on their inter-operation requirements. A
mechanism needs to be established to keep
communications between participating
organizations flowing and coordinated. The
integration information model serves this purpose,
by calling for a central organization to facilitate the
requirements collection and analysis and to
maintain the integration information elements
defined in this model. This central organization also
needs a formal process to approve the requirements
specifications and changes. Without such an
organization and process, it is hard to define
integration requirements and even harder to
maintain these requirements. We call this
organization the Integration Control Board (ICB).
The ICB usually consists of airport operations
domain experts, the airport IT chief and operations
manager and sometimes the project technical
manager (or chief engineer) of the primary
integration contractor.

The functions of the ICB include the
following:

• Set up and supervise working groups
• Review and approve integration

information requirements.
• Review and approve integration

information requirement changes.
• Provide a mechanism for each authorized

party (including airport business units,
contractors and airport authority) to
easily access the integration information
model elements at the desired level of
detail.

• Provide a mechanism (such as a
integration forum) for all interested
stakeholders to raise their questions,

concerns, and requirements, and to
exchange opinions.

The working groups are responsible for
integration requirements analysis and specification,
repository maintenance, and other daily tasks. Each
working group can be formed with subcontractors
and other stakeholders to work on subsets of the
integration information model and issues in other
project phases such as interface specification,
interface testing plan and procedures, integration
testing, and acceptance testing. Various
collaboration capabilities such as e-mail, web
pages, newsgroups, and teleconferencing facilitate
operations of these working groups.

The ICB and its working groups provide an
organizational assurance to prevent the “spaghetti
integration” that may otherwise occur.

3. Systems Integration Architecture
Model

The airport automation consists of its IT
infrastructure and a large number of individual
information subsystems that share flight
information and other airport operations and
resources data among them. It is a system of
systems. To avoid chaos in the evolution of such a
system, an architecture model becomes important. It
provides technical guidance for airport IT
architecture planning, and systems integration
design and development.

3.1 Requirements of the Systems Integration
Architecture

The systems integration architecture model
presented is designed to achieve a number of goals:
reliability, maintainability, evolveability,
extensibility, scalability, and interoperability. These
goals help reduce cost in system life cycle while
increasing business operations efficiency.

3.1.1 Reliability
Reliability is a concern in all operational

systems, but especially so in an airport
environment. If a major subsystem (such as
Baggage Handling System or Passenger Check-in
System) fails, it has major impact on the operations
of the airport. This becomes more of an issue in an

5

integrated airport since so many different
subsystems are interconnected, there are many more
things that could go wrong. Thus, the architecture
not only needs to provide reliable central systems
(e.g., the central database and application servers),
but also ensures that a failure in one subsystem does
not interrupt others. For example, if a Flight
Information Display fails, it should not stop the
Passenger Check-in System.

A reliable system guarantees the success of
airport business event publication and delivery
since the airport operation is basically a sequence of
events triggered one by another. If the sequence
stops, this airport operation would stop. To prevent
this, it not only requires a highly reliable integrated
system, but also requires a contingency plan for
manual operations be in place, tested, and practiced.

3.1.2 Maintainability
Maintainability refers to how easily an overall

system can be kept operational. For example, if
there is a bug in the software of one subsystem, it
should be fixed quickly with minimum cost and
impact to the business operations and other
integrated subsystems. A requirement change
should only impact a minimum number of modules.
Ideally, only one module should be updated, or
even better, only update the data objects needed.
The use of Open Systems design principles, such as
well-defined interfaces and well-structured design,
improve the maintainability of systems.

3.1.3 Evolveability
Evolveability is defined as the ability of an

integrated system to adapt to continuous changes in
the business requirements and technologies. A
hierarchical component-based Open System
Architecture that provides well-defined interfaces
between each system object in the system hierarchy
accomplishes this goal.

The system components in each architecture
layer provide independent functional service to the
upper layer following international standards.
When there is a change in the business needs or
technology used in one layer, only related
components of the layer need to be changed; all
other integrated subsystems and components need
not change. If one vendor goes out of business or no
longer provides maintenance service, only those
obsolete components need to be replaced with
components from other vendors; as long as the

defined interfaces are maintained, no other system
components are affected. A rule-driven or data-
driven software design will make the system easier
to adapt to business changes.

If there is technology advancement in the IT
infrastructure, the old system components may be
wrapped or bridged to implement the interfaces
defined by the new IT infrastructure or simply be
replaced.

Documentation is as important as having a
good design. Time and budget should not be the
excuse for not updating documents. Keeping
documents updated and accessible will make the
system evolution much smoother.

3.1.4 Extensibility
Extensibility is defined as the ease of adding

new functions to the system, either to support new
business functions or just to improve the efficiency
of existing business operations. As with
evolveability, this concern applies both to
individual integrated subsystems, and to the overall
system IT infrastructure used for integration itself.
For example, in a new airport, only eight
subsystems might be integrated in the first phase of
the project. Then, another 35 subsystems might be
added in the follow-on two phases of the project.
The initial architecture of the system integration
becomes very important to facilitate easy
integration in the follow-on phases. A hierarchical
structure and component-based Open Systems
approach provides for better extensibility.

3.1.5 Scalability
Scalability refers to the ability to add more

systems or components to improve the system
performance. For example, an event server
facilitates event-based messaging between different
application systems. When many more application
systems are added to the group originally
integrated, the existing event server might not be
able to provide satisfactory event services. The
bottleneck could be easily resolved by adding more
event servers or a larger more powerful event server
to the IT infrastructure if it has a multi-tiered
distributed system architecture. Use of application
servers and a component-based distributed
architecture will help.

6

3.1.6 Interoperability
To achieve a high level of automation, hence

high efficiency of business operations, it becomes
increasingly important for components in a system
to freely exchange data. This is achieved by
promoting and following international standards.
The IT infrastructure in an airport promotes this
interoperability by providing necessary integration
services to individual systems. With collaboration
among leading vendors and airports, it is possible to
standardize those integration services, so that
vendors can have those integration interfaces built
in their products. With a built-in standard interface,
a commercial-off-the-shelf (COTS) product
communicates with other systems with little or no
customization.

The architecture should utilize as much as
possible the centrally managed metadata that are
originated from the integration information model.
Data standardization becomes possible with
integration information model and is vital to
achieve interoperability.

3.2 Integration System Architecture Hierarchy
Model

A layered architecture is called for to satisfy
the six “-bility” requirements. This model consists
of hierarchical layers, which in turn consist of
independent yet interoperable modules or software
components. Each layer provides services to its
upper layers. The diagram shown in Figure 1
describes this hierarchical view.

Although the general rule is that the software
on each layer should be built on top of its next
layer, there are cases in which some software needs
to access the services of the layers lower than the
adjacent layer. The diagram shows that the
Subsystems Layer accesses directly each of the
lower layers down to the Network Communications
layer; the AODB accesses directly each of the lower
layers to Database Network Interface layer. The
Network Communications layer is hidden by
vendor's Database Network Interface layer, such as
Oracle's Net8 (formerly called SQL Net). Each
layer is described in the following sections from
bottom to top.

Figure 1. Systems Integration Architecture: A
Hierarchical View

3.2.1 Network Communications Layer
This layer provides end-to-end network

connectivity. One important characteristic of this
layer is that it provides universal connectivity
between any two devices on the network. Before
the Internet Protocol (IP) allowed universal
connectivity (routing), many subsystems were
isolated from the rest of the network. Custom
gateways were used to connect them, but at reduced
flexibility and increased cost. Today, IP can easily
provide universal connectivity at a low cost. Above
the universal connectivity IP layer, the network
provides other communication protocols. Among
these are transport protocols such as TCP, UDP, IP
Multicast, and session/application protocols such as
FTP. The transport protocols allow for such added
capabilities as reliable end-to-end data transfer,
flow control, and efficient sending of data to
multiple recipients. TCP/IP is the most frequently
used standard protocol provided by this layer.
Application systems access the network
communications layer directly if they do not need
specific middleware-layer services. Such
communication is often used by pre-existing, stand-
alone subsystems that do not have automatic data
exchange with other systems. Additionally, most
subsystems will use this type of direct connectivity

Middleware Framework

Subsystems AODB

Business Integration
Services

Data Access
Components

Database Network Interface

Network Communications

7

internally to communicate with other components
of the subsystem. When integration is needed, the
application system uses functions of the middleware
layer, which in turn uses the Network
Communications Layer for its communications.

The Network Communications Layer shields
the details of physical connectivity and other lower
level protocols for all computing devices in the
airport. Obviously, the communication and
computer networks (including backbone network)
in the airport are hiding behind this layer.

3.2.2. Database Network Interface Layer
This layer supports the client/server database

architecture. In networked environments, client
applications submit database requests to the server
using SQL statements through the database network
interface layer. Once received, the server processes
the SQL statements and the results are returned to
the client application via the database network
interface.

The database network interface shields the
details of different supporting network
communication protocols. The database server and
client application developers do not have to be
concerned with the supporting network
communications. If the underlying protocols
change, the database administrator makes some
changes on the network configuration file, while the
applications require no modification and will
continue to function. An example of the database
network interface is Oracle’s Net8. The services of
the Net8 are usually provided through the Oracle
Call Interface (OCI).

3.2.3 Middleware Framework Layer
This layer provides the common services

required to support component-based software and
facilitates information exchange between
application subsystems in a distributed network
environment. It shields the upper layer from any
network concerns and acts as the “glue” that
connects the different software components. The
database access components and integration
components are largely built on top of this
middleware layer. There are a variety of
middlewares available. This is largely due to the
varied set of functions that such a layer is called
upon to perform. Among the types of middleware
available are:

• Database access middleware: software
components, typically provided by
database vendors, that provide access to
the database from a variety of different
operating systems and programming
languages. The most popular ones are
ODBC and JDBC. Almost all vendors
also provide database access APIs in
C/C++. Some also provide transaction
management and load balancing like TP
Monitor.

• Message-Oriented Middleware (MOM):
a message-passing service that allows for
asynchronous communication between
sender and receiver. For example, if the
receiver program is not running when the
message is sent, the message will be
queued until the receiver starts running.
MOM capability can be used by publish-
and-subscribe services or for direct point-
to-point communication.

• Software component framework
middleware: software frameworks allow
components to run in an orderly manner
and to be ported to different platforms
and physical process structures. With a
component-based development tool,
components can be assembled into an
application that runs on top of the
component framework.

There are three primary standards for the
component framework middleware [1]. Distributed
Computing Environment (DCE) is the oldest of the
three technologies, and it is based on the idea of a
"distributed operating system" that allows
applications to treat the network as a single
computing resource. Distributed Component Object
Model (DCOM) is a more recent object-oriented
middleware technology that was originally derived
from DCE and still shares many features with it.
DCOM is provided by Microsoft and is specifically
oriented towards Microsoft operating systems such
as Windows NT. Common Object Request Broker
Architecture (CORBA) is an object-oriented
middleware technology that is strongly supported
by the vendor communities as an alternative to
DCOM. There are vendor proprietary middleware
standards also, but most middleware products are

8

now either starting to or already have interfaces or
“bridges” to CORBA and DCOM.

3.2.4 Data Access Component Layer
A component in the architecture is a software

module that performs a well-defined business
function(s) or system function(s), and is replaceable
without any impact to other components. That is, it
has well-defined interfaces and can thus be replaced
with another component implementation that
maintains the same interfaces. Often, these
components are designed so that they can be reused
at more than one physical location in the system.
The application builder would select and “glue” the
components together to form a final system that
could be used directly by the end users. These
components could be integrated through vendor-
provided API’s.

As the component-based application
development approach becomes mainstream, data
access functions have been extracted out of the
mixed application software modules. They became
components that are called by business components
needing data from a database or files, thereby
shielding data access details from the developers of
the business components. With the support of the
middleware framework, business components and
data access components can be deployed anywhere
within the framework, and can be replaced by
another vendor’s components with the same
external interfaces. These data access components
usually map directly to the data model of the
AODB. They sometimes also include aggregated
data objects or other derived data elements based on
business requirements. Sometimes, these
components also implement complex integrity rules
and security functions.

3.2.5 Business Integration Service Layer
The business integration service layer provides

software components with APIs specially required
by the integration. They are supported directly by
the data access components and/or the middleware
framework. They provide high level services such
as event services, security services, directory
services, logging services and transaction services
with the benefit of shielding the details of the
complex middleware APIs from each individual
applications. Components of this layer also contain
the overall business rules of the airport operations.
For example, when a passenger checks in, the

business rules of the airport dictate that a certain
number of operations be performed. By
implementing these business rules in these reusable
components, one not only successfully reuses code,
but also implements business rules in a consistent
way across airport systems. This is very important
to ensure that the integrated airport operates
correctly and efficiently.

Although the integration service components
could be deployed on the same physical machine
together with AODB, it is desirable that they be
deployed on application server(s) for greater
scalability, performance and reliability.

The major difference between this integration
architecture and other system architectures lies in
the business integration service layer that is
implemented as integration middleware components
and provides business integration services via
API's. Although there are industry standards for
most of the lower layers, there is no recognized
standard for these integration services yet. The
typical products on the market that fall into this
layer are the integration broker suites, which
provide a valuable, central organizing “backbone”
for enterprise application portfolios [2].

3.2.6 AODB Layer
This layer provides centralized data

management services for airport operational and
historical data. It provides a central data repository
and tools to access and maintain the database. A
centrally managed database either physically or
virtually provides the benefits of high data quality,
reduced resource consumption and more efficient
system and business operations. Architecturally,
the airport central operational database and the data
warehouse belong to this layer.

The AODB Layer provides two types of
services: the data service for airport operational and
historical data, and the metadata service that defines
and helps the use of the data service.

There are typically at least two physical
databases installed in an integrated airport: an
operational database and a data warehouse. The
operational databases are typically used for on-line
transaction processing and hold only the data that is
currently needed or will be needed in the near
future. The data warehouse typically holds all the
historical data for the operations and supports

9

decision making and analysis functions. Some
differences between the data warehouse and
operational database are:

• The quantity of data stored: only current
and near future data are stored in the
operational database while all historical
data are stored in the data warehouse

• The level of reliability: since the
operational database is used by all
integrated applications, it must have
higher reliability (e.g. by using a
redundant hot stand-by) than the data
warehouse

• The usage pattern: the operational
database has a lot of small transaction
processing occurring continuously and
concurrently, whereas the data
warehouse has fewer, more processing-
intensive queries

The metadata defines the format and
constraints on data stored in the central database.
For example, in a relational database management
system (RDBMS), the metadata includes, among
other information:

• The tables that will be stored in the
database

• The attributes (also called columns or
fields) in each table and the type of data
that may be stored in each attribute

• Physical constraints on the database such
as the maximum amount of data that can
be stored or the maximum number of
characters that can be stored in a given
attribute

• Security constraints, usually taking the
form of access control lists of which
users can have access to which table, and
what kind of access (create, read, update,
etc.) a given user has to a given table

• Integrity and referential constraints on
the database, such as a constraint that a
given attribute cannot be empty, or that
the only legal values of one attribute in
one table are found in another table

The metadata could also include what
information will be shared between the integrated

subsystems and how that information might be
shared. The metadata typically has information in a
number of different categories of airport data:

• Dynamic/operational data that is updated
constantly such as the status of actual
flights for the day and the status of
airport systems

• Schedule data, such as future scheduled
flights

• Resource data, such as stands/gates,
check-in counters and carousels

• Reference data, such IATA aircraft types,
IATA airline codes and IATA airport
codes

3.2.7 Subsystems Layer
The subsystems layer is at the top of the

architecture hierarchy. The subsystems are the
airport applications that support the day-to-day
functions of the airport operations. These systems
are independent systems, although they often use
the same flight information and airport resource
information. They can get that information from
different channels, which may result in inconsistent
data between different systems. With AODB
providing central airport information dissemination
and quality control, data inconsistency across the
airport is minimized. Each subsystem can even
resynchronize its local data with the AODB on
specified time intervals. Airport subsystems
frequently correspond to business functions and
may include Flight Information Display Systems,
Baggage Handling System, Gate Management
System, Building Management System, and
Security Management System.

In addition to specific subsystems that are
integrated in an airport, system management and
control functions are vital. It is a challenge for big
enterprises to successfully manage increasingly
complex distributed application systems that carry
"mission critical" information and support core
business processes. An integrated system
management function is essential for keeping these
distributed systems working properly. The more
complex and integrated the airport becomes, the
more important system management is to the
smooth operations of the airport.

The system management function sits “on top”
of all the other software and hardware, monitoring

10

their operations status and allowing for remote
control. In this layered architecture, the system
management system could be treated just as another
subsystem, but it needs to be able to access system
objects in every layer.

It is interesting to observe that the AODB sits
at the same level as other subsystems. This
symmetrical architecture increases system
flexibility. The decision on how to manage the
source information is made in the Business
Integration Services Layer. Ideally, the business
integration services are configurable with an
integration service management tool that could be
considered another subsystem in the architecture.

4. Summary
Large-scale airport systems integration is a

very complex and difficult task. Without a well-
planned approach and a framework for guidance, if
the project itself does not fail, its follow-on
maintenance could be unsupportable.

To understand and follow a good framework is
the first and the most important step in approaching
large-scale systems integration. This framework
includes two models that provide guidance on
managing the integration requirements and
designing the integration system architecture
respectively.

The integration information model provides
guidance on managing the integration requirements.
There are different ways to implement this model
depending on the schedule and budget. When
resources are limited, the interface requirements
document, sometimes called the airport business
integration guide, suffices to record the
requirements information. However, an ideal
implementation would establish a central automated
repository for the collection and distribution of the
integration requirements information. A formal
notation, such as UML, should be encouraged in the
development of the integration model.

The integration architecture model provides
guidance on designing the integration system
architecture. It is a multi-layer model with
subsystems and AODB on top, middleware
components below, and the database network
interface and network communications on the
bottom. The major difference of this architecture

model from other system architectures lies in the
integration middleware that could be implemented
as integration components and provide business
integration services via API's. The integration
service API's should be standardized and used by
all the vendors to improve productivity and
interoperability.

Together, these two models provide a high
level “what” and “how” for the airport authority to
smoothly plan, procure and manage its airport
information and communication systems. They also
provide a base for integration contractors to define
their approach to requirements analysis and
architecture design.

Acknowledgements
The author gratefully acknowledges Catherine

N. Bolczak and Ronald G. Rhoades of the MITRE
Corporation for their constructive comments, and
An-ping Hou and Gary Bisaga for their constructive
inputs.

References
[1] International Systems Group, Inc., 1997,
Middleware – The Essential Component for
Enterprise Client/Server Applications, Part
Number: CE-Z7970-93

[2] R. Schulte, R. Altman, 1 September 2000,
Application Integration Middleware Market,
Strategic Analysis Report, GartnerGroup, R-11-
5113, pp.23

