
Database as a Service:
A Marketplace
Assessment
Lawrence Pizette

Toby Cabot

CLOUD COMPUTING SERIES
Systems Engineering at MITRE

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 11-4727

The MITRE Corporation manages federally funded research and development centers (FFRDCs), partnering with government
sponsors to support their crucial operational missions. FFRDCs work in the public interest and operate as strategic partners

with their sponsoring government agencies to ensure the highest levels of objectivity and technical excellence.

For their collaboration and help with this paper, we would like to
thank Sri Vasireddy and the team from Amazon, Scott Frohman,

Shannon Sullivan, Jim Young and the team from Google, and
Marc Langlois and the team from Microsoft.

January 2012

Table of Contents

1.0 Introduction to Database as a Service 1

2.0 Amazon SimpleDB™ 6

3.0 Amazon MySQL Relational Database Service™ 7

4.0 Google Apps Datastore™ 9

5.0 Microsoft SQL Azure™ 11

Acronyms 14

References 15

 Database as a Service: A Marketplace Assessment 1

Database as a Service:
A Marketplace Assessment

Lawrence Pizette
Toby Cabot

THE BIG PICTURE: Public DBaaS offerings may provide a ripe opportunity for reducing costs, but there
are many considerations for Government IT decision makers.

1.0 Introduction

Database as a Service (DBaaS), a form of Platform
as a Service (PaaS), is currently found in the public
marketplace in three broad capabilities—online
general relational databases, non-relational data-
bases, and the ability to operate virtual machine
images loaded with common open source databases
such as MySQL or similar commercial databases.
These three approaches provide Government IT
leadership with a wide range of capabilities and
potential complexities.

The analysis is intended for the chief information
officer (CIO) and project-level decision makers in
Government that are considering employing DBaaS
products, but would like greater visibility into prod-
uct benefits, risks, appropriate usage, and trade-
offs. In this paper we evaluate four public DBaaS
offerings, contrasting their features and capa-
bilities. Two of the services, Amazon Relational
Database Service (RDS) and Microsoft SQL Azure,
offer structured query language (SQL)-compliant
database products. The remaining two services,
Google Datastore and Amazon SimpleDB, provide
NoSQL interfaces, and offer proprietary interfaces
for storing data in less complex structures. The

products we compared are presented in Figure 1-1,
and are summarized as follows:

Amazon RDS—Amazon’s MySQL RDS offering
provides an implementation of MySQL on a virtual
operating system.

Microsoft SQL Azure—Microsoft SQL Azure is a
relational database management system (RDBMS)
product offering a SQL Server-like experience in
a cloud. Microsoft controls many of the database
configuration details, allowing the user to focus on
the schema, data, and application layer.

Google AppEngine Datastore—Google’s NoSQL
Datastore is integrated with their App Engine PaaS
offering. Google states that Datastore is intended
to provide robust, scalable storage for App Engine
Web applications rather than a general purpose
database service.1

Amazon SimpleDB—Amazon’s SimpleDB is a
NoSQL database offering that provides users with
an application programming interface (API) for
writing and reading data. SimpleDB is automati-
cally configured in their base service offering to
copy data across Amazon Web Service’s (AWS’s)
availability zones for redundancy.

2 Cloud Computing

This can be facilitated by standards, such as the use
of a standard database query language (e.g., SQL).

Transaction Capabilities—Transaction capabilities
are an essential feature for databases that need to
provide guaranteed reads and writes. For example,
financial systems that move money need to provide
their users with an absolute certainty that the entire
transaction either succeeded or failed. This level of
guaranteed transaction is frequently referred to as
an “ACID” 5 transaction. Because ACID transactions
require processing and storage to ensure that all
the data is either written or deleted as a unit, there
is an intrinsic overhead. If this level of guarantee
is not needed, there could be an opportunity for
lower cost, better scalability, or faster performance
through non-ACID transactions.

Configurability—DBaaS offerings may provide
capabilities that reduce the amount of configuration
options available to database administrators. For
some applications, if more configurability options
are managed by the platform owner rather than the

1.1 Common Considerations for Comparing
DBaaS Offerings

While DBaaS provides a ripe opportunity for reduc-
ing costs and achieving the Federal CIO’s vision,
there are many considerations for Government IT
decision makers in placing data into a cloud-based
environment.

Data Sizing—Many DBaaS offerings have limits
on the size of the data set that can be stored on their
systems. For example, SQL Azure allows up to 50
gigabytes (GB) per database instance while Amazon
RDS allows up to 1 terabyte (TB).

Portability—Portability and adherence to stan-
dards is a critical issue for ensuring Continuity of
Operations (COOP) and to mitigate business risk
(e.g., a provider going out of business or raising
rates). The ability to instantiate a replicated version
of the data “off-cloud” or in another cloud offering
can provide Federal IT leadership with an extra level
of assurance that they will not suffer a loss of data.

Amazon
RDS (MySQL)

Microsoft
SQL Azure

Google
Datastore

Amazon
SimpleDB

Type RDBMS RDBMS NoSQL NoSQL

Maximum amount
of data that can be
stored

1 terabyte per
database2

50 gigabytes per
database3

Not published for entire
database, but 1 MB
limit on a subset of

data (called an entity).
Limit to the number of

indexes.

10 gigabytes per
database domain

(roughly equivalent to
an RDBMS table)4

Ease of software
portability with
similar, locally hosted
capability

High. MySQL
instantiation in cloud
is very similar to the

local instantiated
version.

High. Most SQL Server
features are available

in SQL Azure.

Medium/Low. Requires
Java Data Objects or
Datastore-specific

interface and use of
App Engine.

Medium. Requires
SimpleDB-specific

interface.

Transaction
capabilities

Yes Yes Yes Yes

Configurability
and ability to tune
database

High. MySQL
instantiation in cloud.

Medium. Can create
indexes and stored
procedures, but no

control over memory
allocation or similar

resources.

Low Low

Database acces-
sible as “stand-alone”
offering

Yes Yes No. Requires Google
App Engine application

layer.

Yes

FISMA Certified No No No No

Can designate where
data is stored (e.g.,
region or data center)

Yes Yes No Yes

Replication Yes Yes Yes Yes

Figure 1-1. Common Consideration

 Database as a Service: A Marketplace Assessment 3

customer’s database administrator, it can reduce the
amount of effort expended to maintain the data-
base. For others, the inability to tune and control
all aspects of the database, such as memory man-
agement, can be a limiting constraint in obtaining
performance.

Database Accessibility—Most DBaaSs offer a pre-
defined set of connectivity mechanisms that will
directly impact adoption and use. There are three
general approaches. First, RDBMS offerings are typi-
cally accessible through industry standard database
drivers such as Java Database Connectivity (JDBC)
or Open Database Connectivity (ODBC). These
drivers allow for applications external to the service
to access the database through a standard connec-
tion, facilitating interoperability. Second, NoSQL
services typically provide interfaces that use stan-
dards-based, Service-Oriented Architecture (SOA)
protocols, such as SOAP or REST, with Hypertext
Transfer Protocol (HTTP) and a vendor-specific
API definition. These services may provide software
development kits in common source-code languages
to facilitate the adoption. Third, some NoSQL data-
bases may be restricted to accessing data through
software running in the vendor’s ecosystem. This
approach may increase security, but it also signifi-
cantly limits portability and interoperability.

Certification and Accreditation (e.g., FISMA)—
Prior certification and accreditation can facilitate
the adoption of a cloud platform. In order to miti-
gate the potential expense and risk of performing a
new C&A evaluation on a DBaaS offering, Federal
leaders can consider acquiring an Infrastructure as a
Service (IaaS) offering through the General Services
Administration’s (GSA) apps.gov blanket purchase
order hosting their own database software. This
option would require the consuming organization
to acquire their own database licenses, implement
redundancy features such as replication, and patch
their software as necessary.

As of May 2011, we know of no DBaaS offering that
has gone through a government C&A evaluation.
Nevertheless, given the government’s drive to employ
clouds, we believe it is only a matter of time before
a Federal Information Security Management Act
(FISMA) certified DBaaS offering becomes available.

Data Integrity, Security, and Storage Location—
Ensuring appropriate security and data integrity
controls are in place and codified in contractual

terms is essential to ensure that data will be handled
appropriately. As part of these efforts, a project
or agency-specific cloud service can be acquired
with terms and conditions covering its usage (e.g.,
background checks on personnel, data kept in the
continental United States, vendor reporting, audit
records), and appropriate certification and accredita-
tion (C&A) activities (e.g., FISMA Moderate certi-
fication). For example, the recent GSA IaaS blanket
purchase order award specified requirements for
FISMA Moderate. For additional security, fed-
eral IT leaders can employ encryption of sensitive
information while it is in transit and stored in the
cloud. This extra protection of sensitive information
derived through encryption can extend the level
of control that Government leaders have over their
data stored outside their premises. However, there
are trade-offs. For example, encrypted information
cannot be directly used within database queries
and will need to be retrieved for unencryption and
processing.

Availability and Replication—The ability to
ensure that data is available and not lost will be a
key consideration. Ensuring access to data can come
through enforcement of service-level agreements
(SLA) metrics such as up time, replication across a
cloud provider’s regions, and replication or move-
ment of the data across cloud providers or to the
consuming organization’s data center.

•	 Replication across a cloud provider’s hardware
within a region may ameliorate the effects of a
localized hardware or software failure.

•	 Replication across a cloud provider’s geographic
regions may ameliorate the effects of a network
outage, natural disaster, or other regional event.

•	 Replication across multiple cloud providers or
back to the consuming organization’s Federal
IT infrastructure may provide the most COOP
benefit through full geographic and IT stack
independence.

Many providers such as Microsoft and Amazon
offer replication of the data across hardware within a
specific region as part of a packaged service. Within
a given vendor, replication across geographies is
usually more expensive and may result in significant
data transfer fees.

Identity and Access Management—Enterprise
scale key management and access controls are
essential for Government organizations considering

4 Cloud Computing

adopting a cloud platform. Controls for database
offerings can include key pairs for networked access
to the cloud, user names and passwords for access to
management portals and billing information, and
user names and passwords for access to databases.
Government IT leaders will need to ensure that these
controls are fine-grained so that individual users
can only have access to the level of control and data
needed for their specific role. For example, a data-
base administrator (DBA) may need full control over
several database instances and a user may only need
access to one database at a user level without the abil-
ity to grant privileges or change tuning parameters.

Cost—Federal leadership will want to compare
the costs of cloud-based approaches from different

vendors and locally hosted options. Cloud-based
vendors typically charge for the amount of data
stored and the volume of data moved in and out of
the database or cloud platform. Therefore, remotely
hosted input/output (I/O) intensive applications can
drive significant costs. As shown in Figure 1-2, there
is not a consistent pricing model across vendors.
Therefore, a financial analysis with a set of usage
assumptions should be conducted in order to under-
stand the cost trade-offs. The financial analysis
should include additional costs that may arise from
acquiring a cloud-based service, including porting
applications, migrating data, and performing req-
uisite C&A activities. Ongoing operations costs will
include monitoring the vendor’s performance.

Amazon
RDS (MySQL)

Microsoft
SQL Azure

Google
Datastore

Amazon
SimpleDB

Example Pricing for
Processing (Refer to
Sections 2-5 for details)*

Ranges from $0.11 per
RDS hour for smallest

instance to $2.60
per hour for largest

instance

Ranges from $9.99
per database with up
to 1 GB of storage to
$499.95 per database

with up to 50 GB
of storage per month

$0.10 per App Engine
CPU hour (required for
accessing Datastore)

$0.14 per SimpleDB
unit hour

Example “On-demand”
Pricing for Data
Transfers (Refer to
Sections 2-5 for details)*

Inbound $0.10 per
GB and outbound

ranges from $0.15 per
GB to $0.08 per GB,
depending on volume

Inbound
$0.10 per GB

Outbound
$0.15 per GB

Inbound
$0.10 per GB

Outbound
$0.12 per GB

Inbound $0.10 per GB
and outbound from

$0.15 to $0.08 per GB,
depending on volume.

Example Monthly
Pricing for data storage
(Refer to Sections 2-5
for details)*

$0.10 per GB plus
$0.10 per 1 million I/O

requests

Included
in processing

pricing

$0.15 per GB $0.25 per GB

Figure 1-2. Pricing

* Pricing can be a function of specific customer offerings, introductory specials, low volume free tiers, and level of availability/data replication. In addition, it can vary for
different regions and data centers.

Management Portal—The ability to manage
a cloud-based offering over a WAN through a
browser interface can simplify use and control for
Government operations organizations. Additional
APIs may be provided for enhanced capabilities and
customization that many Government organiza-
tions require. The combined portal and API options
will likely be a benefit for Federal organizations
looking to adopt cloud services; nevertheless, secu-
rity architects will need to be aware of all potential
attack surfaces to ensure that they are controlled
appropriately.

Performance—Ensuring that performance meets
the user needs is essential for providing cloud-based

Average writes
per second

Average reads
per second

Amazon
MySQL RDS* 2,567 2,551

Microsoft
SQL Azure 406 410

Google Datastore** 288 200

Amazon SimpleDB 208 63

Figure 1-3. Single Test Client Write/Read Performance

* Large database, no replication (default)
** Master/Slave configuration (default)

 Database as a Service: A Marketplace Assessment 5

database services. As shown in Figure 1-3, we
assessed four DBaaS offerings with a single test
client simulating the load from a single user or
application running on the provider’s network.
We wrote and read records of approximately 100
characters to and from each database. For perspec-
tive, 100 characters is approximately equal to the
amount of data in a name and address record, a
simple ordering transaction, entry in an accounting
system, or a positional record that includes latitude,
longitude, altitude and some additional descriptive
information. Also we simulated concurrent access
to a database from five multiple applications or
users. As shown in Figure 1-4, additional through-
put can be achieved with concurrency. For the data
shown in Figures 1-3 and 1-4, we benchmarked each
DBaaS using the default configuration rather than
exhaustively “tuning” each system. We felt this was
the best approach to providing meaningful data for
Government IT leaders.

While production system results would likely be
different for Government organizations due to fac-
tors such as WAN latency and the complexity of
the data, the test results demonstrate that different
database services can have dramatically different
performance characteristics. Before embarking on
a full scale migration to a database service, Federal
IT leaders should consider piloting services to
understand the performance results that they will
achieve using anticipated loads and production
configurations.

RDBMS vs. NoSQL—The relational database
model has been the foundation of databases for the
past several decades. RDBMSs, offered by compa-
nies such as Oracle, IBM, and Sybase, and open

source software (OSS) products such as MySQL
and PostgreSQL provide a structured, relationship-
based format for storage and an industry standard
language (i.e., SQL) for queries. They offer many
advanced features such as transactions and log-
ging to ensure data integrity. These features have
become indispensable for many systems across
the Government, including financial transactions,
ordering, and defense capabilities. RDBMSs man-
age the majority of data in Government systems. In
return for these features, the RDBMS implementa-
tions have become expensive both in terms of the
licensing costs and the capacity of the hardware
needed to implement their features.

While RDBMS databases are widely deployed and
successful, they have shortcomings for some appli-
cations that have been filled by the growing use of
“NoSQL” databases. Rather than conforming to SQL
standards and providing relational data modeling,
NoSQL databases typically offer fewer transac-
tional guarantees than RDBMSs in exchange for
greater flexibility and scalability. NoSQL databases
tend to be less complex than mature RDBMSs and
scale horizontally across lower-cost hardware. Noel
Yuhanna of Forrester Research writes, “NoSQL is
also a movement, a community of developers driv-
ing innovation in these new technologies to sup-
port dynamic, flexible schemas, storage optimized
for Web scale, and easy access to unstructured and
semistructured data.” 6 Unlike RDBMSs, which
share a common relational data model, several dif-
ferent types of databases, such as column-oriented,
key-value, and document-oriented, are considered
“NoSQL” databases.

NoSQL databases tend to be used in applications
that do not require the same level of data consis-
tency guarantees that RDBMS systems provide
but that require throughput levels that would be
prohibitively expensive for RDBMSs to support.
ShutterFly, a Web-based photo site, uses MongoDB,
a document-oriented NoSQL database, to store 6
billion images with up to 10,000 transactions per
second.7 Yuhanna adds, “Key-value store databases
have been around since databases began, but today’s
key-value stores handle Web scale—thousands of
servers and millions of users—with extremely fast,
optimized storage and retrieval. Key-value stores
accomplish this by leaving out many features of
relational databases, implementing only features
that extreme Web apps need.” 8

Average writes
per second

Average reads
per second

Amazon
MySQL RDS* 7576 7905

Microsoft
SQL Azure 1737 1893

Google Datastore** N/A N/A

Amazon SimpleDB 689 281

Figure 1-4. Five Test Client Concurrent Write/Read
Performance

* Large database, no replication (default)
** Master/Slave configuration (default)

6 Cloud Computing

Use of White Paper—The information in this paper
can be used by Federal leadership to understand the
options and considerations for migrating a database
to a community or public cloud environment. There
are many considerations, such as performance, cost,
COOP, and security, and providers are addressing
these issues in different ways. Sections 2 through
5 provide the reader with insight into these factors
by describing four offerings by three major cloud
providers. Lastly, cloud-based products are being
launched frequently in today’s marketplace, and
we anticipate that this white paper can be used as a
framework for evaluating future offerings.

2.0 Amazon SimpleDB™ 9

AWS’s SimpleDB is a cloud-based NoSQL offer-
ing that stores data in “domains” with attribute-
value pairs. SimpleDB has minimal configuration
options, which simplifies the usage of SimpleDB,
but also limits the levers that users have for tuning
the database for their needs. For example, there are
no configurations for indexing or memory cache
size. As SimpleDB does not provide many tuning
options, Government organizations using SimpleDB
will likely implement a data access layer for applica-
tions to provide transaction support and improve
performance and scalability.

Cost—AWS measures processor utilization by
SimpleDB units defined to be approximately the
same as a “circa 2007 1.7 GHz Xeon processor” hour.
The first 25 hours per month are free, and subse-
quent hours are $0.14 per unit hour.10 Data transfers
inbound cost $0.10 per GB, and data transfers out-
bound range in cost from $0.15 per GB to $0.08 per
GB, depending on usage; the first 1 GB per month is
free.11 Monthly data storage costs are $0.25 per GB.

Maximum Database Size—Federal organiza-
tions that can readily segment their data across
many SimpleDB domains will be more likely to use
SimpleDB.12 Individual SimpleDB data domains
cannot grow beyond 10 GB. However, organizations
can create up to 250 domains with the default limit.
More domains can be created with AWS’ authori-
zation.13 In addition, while other databases handle
multiple types of data, SimpleDB provides storage
for UTF-8 standard data only.14

Security Considerations—AWS Identity and
Access Management (IAM) provides a Web service
that can be used to establish customized policies and
access control for groups and individuals across a
variety of AWS products, including SimpleDB.15 For
enterprise-scale Government organizations, fine-
grained access credentials, such as keys, user names,
and passwords, are important for maintaining an

CASE STUDY FROM INDUSTRY

Alexa Web Search crawled the Internet every night and generated a Web-scale datastore with
terabytes of data. They wanted to allow users to run custom queries against this data and generate
up to 10 million results.16 To provide this service, Alexa’s architecture team leveraged a combination
of AWS services that included EC2, S3, SQS, and SimpleDB. SimpleDB was used for status
information because it was “schema-less.” AWS’ Jinesh Varia wrote, “There is no need to provide
the structure of the record beforehand. Every controller can define its own structure and append
data to a ‘job’ item.”17 SimpleDB allowed components of the architecture to independently and
asynchronously read and write state information (e.g., status of jobs in-process). While a good fit for
state information, SimpleDB, which had a 10 GB limit per domain, was not used for the nightly multi-
terabyte Internet crawl.

In the Federal domain, the performance needs of this type of system would be similar to control
information for large scale processing, such as payroll and inventory. Given that this information is
used for state, reliability is essential for recovering from outages in the rest of the system. While this
state information needs to be highly reliable, the size of the control data is significantly less than the
production database.

 Database as a Service: A Marketplace Assessment 7

appropriate security posture and helping with gath-
ering audit information and facilitating employee
role changes and turnover.

Performance—Using Amazon’s Elastic Computing
Cloud (EC2) to host a client application, we assessed
the write and read performance capability of
SimpleDB. Robust performance capabilities for
database writes and reads are essential to the scal-
ability and adequacy of many classes of government
systems that use batches of data or that render data
to users via a Web-based, thin client.

AmazonEC2
(large Linux server, 7.5 GB
memory, East Region 1A)

Amazon
Web

Services
Network

Amazon Web Services Infrastructure

Java Virtual Machine
(version 6)

Java Client
(point of

measurement)

AWS SDK
(version 1.1.7.1)

SimpleDB
(Virginia North)

Domains
(roughly equivalent

to relational database)

Figure 2-1. Evaluation of SimpleDB

As shown in Figure 2-1, the test client was hosted
in a large EC2 instance running a Java Virtual
Machine (JVM). Within the JVM, the test client
software leveraged the API from the AWS SimpleDB
software development kit (SDK). The SDK sent and
received SOA, RESTful style messages to and from
SimpleDB. The test measured the amount of time it
took for the messages to be sent on the AWS net-
work, for SimpleDB to do its work, and for a mes-
sage to be returned on the AWS network.

We simulated the effect of multiple users request-
ing services from the database concurrently by
employing multiple test clients. Handling multiple
concurrent users is important for scaling databases
to support enterprise class systems. Web-based sys-
tems, financial systems, and inventory systems are
all examples that could anticipate this type of usage.

With the multiple test clients, we executed five
request pipelines to the database. As shown in Figure
2-2, multiple test applications performed better than
single tests with writes being faster than reads.18

On several occasions, the test clients received mes-
sages from SimpleDB, indicating that SimpleDB
could not handle more requests and to try again.
This “throttling” error message was returned to the
requesting application. SimpleDB does not automat-
ically retry the action; retries need to be requested
by the application layer.

3.0 Amazon MySQL Relational Database
Service™

Amazon RDS is a cloud-based RDBMS offered by
AWS. At the time of the evaluation, RDS was based
solely on MySQL. Since that time, AWS has intro-
duced an Oracle-based RDS service.

RDS MySQL is based upon the ubiquitous open
source MySQL database software. As a result, it is
fully compliant with SQL standards and can host
many capabilities developed for the locally instanti-
ated version. AWS states, “Amazon RDS gives you
access to the full capabilities of a familiar MySQL
database. This means the code, applications, and
tools you already use today with your existing
MySQL databases work seamlessly with Amazon
RDS.” 19 In addition, Amazon RDS allows the con-
suming organization to select the database server
capabilities that they need, including the memory
size of the server, number of virtual CPU cores, and
the I/O performance. This can be helpful for IT lead-
ership looking to scale and ensure they meet their
customer needs. It is also a differentiating factor
from other DBaaS offerings that provide a uniform
platform with limited performance options.

As with all multi-tenant, cloud DBaaS offerings, the
decision process for adopting a cloud-based offering
needs to balance the potential cost savings, scalability,
performance, and other factors against the risks. For
organizations looking to migrate their locally instan-
tiated MySQL database to the cloud, RDS provides a
service with the same underlying software product

Average writes
per second

Average reads
per second

1 client JVM 208 63

5 client JVMs 689 281

Figure 2-2. AWS SimpleDB Performance

8 Cloud Computing

instantiated in the cloud. Therefore, database schema
and associated database code (e.g., stored procedures)
can be easily ported from the locally instantiated ver-
sion to the cloud-based version.

RDS easily integrates with DBA tools and com-
mon MySQL development tools such as the MySQL
Development WorkBench. The ability for operations
and development staff to use familiar tools and have
a high level of control over the database software
can be an important factor in selecting a cloud-
based DBaaS offering. As RDS is an instantiation of
MySQL in the cloud, RDS affords the technical staff
the levers for tuning the database, monitoring and
managing their environment (e.g., memory), and
tuning performance. For organizations that would
like to maintain a high level of administration and
tuning control in the cloud, this capability is an
important feature.

Cost—Amazon lists the following on-demand
instance per hour prices for a single availability zone:23

•	 Standard-Memory DB Instance Class
 – Small DB Instance: $0.11
 – Large DB Instance: $0.44
 – Extra Large DB Instance: $0.88

•	 High-Memory DB Instance Class
 – Extra Large DB Instance $0.65
 – Double Extra Large DB Instance $1.30
 – Quadruple Extra Large DB Instance $2.60

Amazon also charges for data transfers. All inbound
data transfers are billed at $0.10 per GB. Outbound
data transfers are volume based as follows:

•	 First 1 GB/month free
•	 Up to 10 TB/month $0.15 per GB
•	 Next 40 TB/month $0.11 per GB
•	 Next 100 TB/month $0.09 per GB
•	 Greater than 150 TB/month $0.08 per GB

Provisioned database storage is billed at $0.10 per
GB. In addition, there is a charge of $0.10 per 1 mil-
lion I/O requests.

As AWS has multiple offerings and updates prices
regularly, these costs should be used as an example.

Maximum Database Size—As of May 2011,
Amazon RDS provides the ability for each database
instance to be configured with a minimum of 5 GB
to a maximum of 1 TB of associated storage capacity.
This amount of storage is sufficient for many database
needs, but could be quickly oversubscribed for large
volume transaction systems, sensor data, or binary
images (such as photos or scanned documents).

Security Considerations—As with SimpleDB, AWS
IAM provides a Web service that can be used with
RDS to establish customized policies and access con-
trol for groups and individuals. For enterprise-scale
Government organizations, fine-grained access cre-
dentials, such as keys, user names, and passwords, are
important for maintaining an appropriate security
posture and helping with gathering audit information
and facilitating employee role changes and turnover.

CASE STUDY FROM INDUSTRY

Airbnb, a vacation rental firm, kept its main database in Amazon RDS. The consistency between
locally hosted MySQL and Amazon RDS MySQL facilitated the migration to AWS.20 A significant
architecture consideration for Airbnb was that Amazon provided the underlying replication
infrastructure. “Amazon RDS supports asynchronous master-slave replication,” wrote Tobi Knaup.21
Knaup added that the hot standby, which ran in a different AWS Availability Zone, was updated
synchronously with no replication lag. Therefore, if the master database failed, the standby was
promoted to the new master with no loss of data.22

In the Federal domain, this level of integrity would be an important consideration for a system
processing large volumes of data that cannot experience loss of information. The performance needs
of this type of system would be similar to on-line inventory or logistics systems.

 Database as a Service: A Marketplace Assessment 9

Performance—Using Amazon’s EC2 to host a client
application, we assessed the write and read perfor-
mance capability of RDS. Robust performance capa-
bilities for database writes and reads are essential
to the scalability and adequacy of many classes of
government systems that use batches of data or that
render data to users via a Web-based, thin client.

Amazon EC2
(large Linux server, 7.5 GB
memory, East Region 1A)

Amazon
Web

Services
Network

Amazon Web Services Infrastructure

Java Virtual Machine
(version 6)

Java Client
(point of

measurement)

JDBC
Driver

RDS
(East Region 1A,
small database)

RDS
(East Region 1A,
large database)

Test Table

Test Table

Figure 3-1. RDS Test Environment

As shown in Figure 3-1, the test client was hosted
in a large EC2 instance running a JVM. Within the
JVM, the test client software leveraged an industry
standard JDBC driver to connect with the database.
The test measured the amount of time it took for the
messages to be sent on the AWS network, for RDS to
do its work, and for a message to be returned on the
AWS network.

We simulated the effect of multiple users requesting
services from the database concurrently by employ-
ing a “multi-threaded” test client. Handling multiple
concurrent users is important for scaling databases
to support enterprise class systems. Web-based sys-
tems, financial systems, and inventory systems are
all examples that could anticipate this type of usage.

With the multiple threads, we executed five sepa-
rate pipelines of requests to the database. As shown
in Figure 3-2, multi-threaded applications per-
formed better than single threaded tests, but the
effect was more pronounced with the large database
than the small database. This result is as antici-
pated. As the small database reaches the maximum
of its capabilities, the benefits of concurrent access
decrease. However, the large database instance,
which has extra memory and superior I/O, was able
to process the additional concurrent transactions
more efficiently.

Figure 3-2. RDS Performance Results

4.0 Google Apps Datastore™ 24

Google’s App Engine is a PaaS offering that offers an
integrated application and database environment.
It supports applications written in Python, the Go
open source project, and Java software languages.
For each of these languages, App Engine provides a
virtual application server environment that supports
webpage generation and background processing.

App Engine implements a key-value Datastore for
applications running in the App Engine environ-
ment. Datastore is not intended to be used for
storage that is independent of the Google applica-
tion layer as it cannot be accessed from outside of
App Engine. Because the App Engine Datastore is
so closely tied to the rest of the App Engine envi-
ronment (and vice versa), the decision to use the
Datastore is not an independent decision—it is part
of the decision of whether to write an application for
App Engine or use a different PaaS engine or an IaaS
provider.

Google provides three App Engine software devel-
opment kits: one for each programming environ-
ment that App Engine supports. Each kit includes
an App Engine specific API and a run-time environ-
ment that developers can use to run their applica-
tions locally for development and local testing. Java
Data Objects (JDOs) can also be used for industry
standard access. As the App Engine specific APIs
may limit future portability options, architects and
developers should consider using the JDO access for
future portability.

There are two additional categories of factors that
Federal IT leadership should consider when using
Google’s Datastore. The first category is driven by
Google’s PaaS architecture, and the second category

Average writes
per second

Average reads
per second

Single threaded
JVM/small database 2,042 1,983

Multi-threaded JVM/
small database 4,782 4,173

Single threaded
JVM/large database 2,567 2,551

Multi-threaded JVM/
large database 7,576 7,905

10 Cloud Computing

CASE STUDY FROM INDUSTRY

Giftag, a Web application provided by Best Buy, provided a gift registry capability for Internet Explorer
and Firefox. Giftag enabled users to add items to wish lists and share the wish lists via the Internet
or Facebook.25 Prior to moving to the cloud, the Giftag developers had technical skills and a positive
experience with Django, a Python Web framework. Given that Google App Engine offered a Python-
based environment, the technology match was a consideration in their choice of cloud platforms.26
Additionally, they viewed scalability, cost, and ease of deploying the application to an operational
environment as an important factor.27

In the Federal domain, the performance needs of this type of system would be similar to existing
systems for conveying information to the public or for registration (e.g., “cash for clunkers rebates”).
Availability and reliability are highly desirable attributes for citizen satisfaction, but not at the level of
national security systems.

is inherent to Datastore’s NoSQL architecture. Due
to Google’s PaaS architecture, IT leadership must
trust Google to provide the entire infrastructure not
just the database. They need to cede control of capa-
bilities such as where the code operates and where
the data is stored and backed up. Additionally,
interoperability beyond simple Web-based appli-
cations is challenging. Access to an application’s
Datastore, for example, is not possible except from
the application. For example, developers cannot
assume that they can plug a third-party report-
generation tool into their applications.

Cost—App Engine applications may store up to 1
GB at no cost. Additional storage rates are:

•	 Master/Slave $0.15 per GB per month
•	 High Replication $0.45 per GB per month.

Google charges $0.10 per GB for incoming data trans-
fers and $0.12 per GB for outbound data transfers.28
App Engine CPU usage (for writing and reading
Datastore information) is billed at $0.10 per CPU hour.

The App Engine Datastore supports two modes of
operation: Master/Slave and High Replication. Master/
Slave is faster and less resource-intensive (therefore
lower cost), but can occasionally suffer planned down-
time.29 High Replication is more expensive but offers
stronger availability guarantees. High Replication is
also rate-limited to one write per second per resource
group. Therefore, it should be used only where the
developer is certain that the application write rates
will not exceed that limit.30 Because of this constraint,
we did not test the performance of High Replication.

Maximum Database Size—Maximum database
sizes are not published for “billing enabled” applica-
tions.31 Nevertheless, there are published limits that
can indirectly determine size. For example, each
entity (roughly equivalent to a row in an RDBMS
database) is limited to 1 MB.32 The maximum
number of values for an entity can be 5,000, and the
number of indexes is restricted to 200.33

Security Considerations—Datastore databases
are managed through a Web-based administra-
tion portal, which uses Google Accounts as an
authentication mechanism. This approach provides
coarse-grained access that may not be sufficient for
Government organizations that need controls for
specific users.

As a dedicated back-end storage mechanism for App
Engine applications, Datastore does not provide
direct access for development tools or applications
owned by different accounts. From a functionality
perspective, this may be considered limiting; how-
ever, from a security perspective, it minimizes the
avenues into a Datastore database.

Performance—We used the Google App Engine
PaaS environment to assess read and write perfor-
mance capabilities of the App Engine Datastore. Due
to resource quota limitations, we were restricted to
running smaller-scale tests than those conducted for
other database products in this report.34 We wrote
and read 100,000 records rather than the 1 million
records in the other tests. While the duration was
shorter, we were still able to obtain a number for
writes and reads per second.

 Database as a Service: A Marketplace Assessment 11

Google App Engine
(Java API 1.4.2)

Google PaaS Infrastructure

Task Worker
(point of

measurement)

Browser

Datastore
API

Datastore

Work Queue

Test Kind

Google
Network

Servlet
(handles

user requests)
HTTP

Request/
Response

Figure 4-1. Google PaaS App Engine and Datastore

As shown in Figure 4-1, the test client was hosted
in the Google App Engine cloud. The test measured
the amount of time it took for the messages to be
sent on the Google network, for Datastore to do its
work, and for the messages to be returned on the
Google network.

Over time, App Engine enforces resource con-
straints on applications that may be too restrictive
for Government IT leadership. Individual applica-
tion requests will be killed if they take longer than
App Engine considers acceptable. In addition, appli-
cations are constrained in their aggregate resource
consumption over longer periods.35 Examples of
the first type of constraint include time limits on
how long an individual Web request can take, how
long a background process can take, and how long
an HTTP client-side request from App Engine to
the outside world can take. Examples of the second
type of constraint include per-minute and per-day
resource quotas for CPU time, database storage,
and API calls. Quota restrictions and timeouts are
documented and available to developers and plat-
form administrators when acquiring the service, but
not necessarily end-user consumers of the service.
Quotas and restrictions are, in general, less restric-
tive for paid apps and more restrictive for no-cost
apps; IT leadership may request that Google lift
some restrictions, but they should not assume that
Google will do so.

Average writes
per second

Average reads
per second

Master Slave Test 288 200

Figure 4-2. Google Datastore Performance

App Engine applications are constrained in their
ability to open connections to resources outside the
App Engine environment. This would make using
a database management system other than the
App Engine Datastore difficult and inefficient. It is
important that Federal IT leadership considering
implementing an App Engine application under-
stand the Datastore’s data model thoroughly.

As shown in Figure 4-2, the average write perfor-
mance of a single App Engine task writing 100,000
entities was 288 entities per second. (For the other
databases in this document, we wrote 1 million
database records.)

The average read performance of a single task read-
ing 50,000 entities of a single entity kind was 200
entities per second.

5.0 Microsoft SQL Azure™ 36

Microsoft offers an SQL-based RDBMS in the cloud
with its SQL Azure Database. The similarity of
cloud-based RDBMS offerings, such as SQL Azure
and Amazon’s RDS, with existing RDBMS prod-
ucts benefits a development community that relies
largely on traditional relational models of data sets
and hopes to model normalized entity relations in
its data stores. The Microsoft cloud database model
should look familiar to Microsoft SQL Server users;
a high level of compatibility is suggested between
the products. For example, familiar concepts such as
tables, schemas, indexes, views, stored procedures,
and triggers can be found in the online service.

The use of the “remote service in a cloud” para-
digm removes some workload from MS SQL Server
administrators. For example, Microsoft writes,
“Unlike administration for an on-premise instance
of SQL Server, SQL Azure abstracts the logical
administration from the physical administration;
you continue to administer databases, logins, users,
and roles, but Microsoft administers the physical
hardware such as hard drives, servers, and storage.
… SQL Azure automatically replicates all data to

Google’s App Engine is a PaaS-style capability that
provides very abstract runtime support. Therefore,
the geographic location of the data center and the
precise servers that hosted our application and data-
base service was not known to us.

12 Cloud Computing

provide high availably. SQL Azure also manages
load balancing and, in case of a server failure, trans-
parent fail-over. To provide this level of physical
administration, you cannot control the physical
resources of SQL Azure.” 41 By giving up control
of physical administration details, the consumer
relies on Microsoft to control the high availability
architecture.

As with all multi-tenant, cloud DBaaS offerings,
the decision process for usage needs to balance the
potential cost savings, scalability, performance, and
other factors against the risks. As SQL Azure lever-
ages many Microsoft-specific concepts and capabili-
ties, organizations that are already using Microsoft
development and operational environments will
have an easier time transitioning to SQL Azure. The
database schema and database code (e.g., stored pro-
cedures) can be easily ported from SQL Server, but
database administration tools and processes may
not be useable. For example, Microsoft does not give
consumers the ability to tune usage of memory and
other underlying configuration options.

Cost—Example SQL Azure monthly prices are
listed below.42 Specific costs can be affected by
vendor offerings, such as introductory specials, and
regional differences in pricing.

CASE STUDY FROM INDUSTRY

Xerox Corporation ported an on-premise enterprise print capability to a public cloud environment.
This capability allowed mobile users to find printers with their smartphones and route printouts. As
the on-premise version leveraged Microsoft SQL Server for the database component, Xerox selected
Microsoft SQL Azure for cloud storage.37 This approach allowed them to reuse their prior investments
in SQL Server-based technology and .NET, and minimize the technical challenges of porting to a
cloud based environment.38 They were also able to minimize their skills-based challenges because the
development team was trained on Microsoft products.

Xerox used SQL Azure for “user account information, job information, device information, print job
metadata, and other such data,” but the actual print files were stored in Azure Blob Storage, not SQL
Azure.39 Azure Blob Storage had different pricing and characteristics than SQL Azure. For example,
unlike SQL Azure, Blob Storage was not limited to 10 GB (Web edition) or 50 GB (Business edition).40

In the Federal domain, the performance needs of this type of system would be similar to existing print
capabilities or on-line public information systems. While availability and reliability would be desired,
they are not mission-critical attributes (beyond the potential loss of fees for usage paid by citizens to
the government).

•	 Web Edition
 – $9.99 per database up to 1 GB per month
 – $49.95 per database up to 5 GB per month

•	 Business Edition
 – $99.99 per database up to 10 GB per month
 – $199.98 per database up to 20 GB per month
 – $299.97 per database up to 30 GB per month
 – $399.96 per database up to 40 GB per month
 – $499.95 per database up to 50 GB per month

•	 Data transfer costs:
 – Inbound $0.10 per GB
 – Outbound $0.15 per GB.

Other than size and price, the features are the same
for the Web and Business versions; however, in later
offerings, capabilities for the Business Edition may go
beyond the Web version.43 Example technologies that
may be offered in the Business Edition are for opti-
mization and application access capabilities that are
currently available in SQL Server but not SQL Azure.

Maximum Database Size—As of April 2011,
Microsoft requires databases to be under 10 GB per
instance for Web databases and 50 GB per instance
for Business databases. The 10 GB or 50 GB offerings
may be sufficient storage for a small system or single
purpose database, but it is significantly smaller than
the storage needs of many enterprise databases.

 Database as a Service: A Marketplace Assessment 13

Security Considerations—SQL Azure allows an
administrator user name and password for each
database.44 Once these credentials have been cre-
ated, an administrator can establish users with
access that is more restricted. In addition to user
name and password authentication, an adminis-
trator can require requestors be from a specified
Internet Protocol (IP) address, range of IP addresses,
or within the Microsoft Azure ecosystem (e.g.,
Windows Azure).

Performance—Using Microsoft Azure to host a
client application, we assessed the write and read
performance capability of SQL Azure. Robust per-
formance capabilities for database writes and reads
are essential to the scalability and adequacy of many
classes of government systems that use batches of
data or that render data to users via a Web-based,
thin client.

Windows Azure
Tested with med VM (multi-test),

extra large VM (single test)

Azure
Network

Microsoft Azure Infrastructure
Central Availability Zone (Database Affinity Zone)

Azure PaaS VM
instance (s)

C# Client
(point of

measurement)

ADO.NET

SQL Azure
(Tested with Web database)

Test Table

Figure 5-1. SQL Azure Test Environment

Average writes
per second

Average reads
per second

Single client instance 406 410

Multi-client instance 1,737 1,893

Figure 5-2. SQL Azure Benchmark Results

The test was to write and read 1 million records with
approximately 100 characters of data per record. The
objective was to test under specific circumstances,
rather than tune the test for the fastest possible
execution. The default configuration of all environ-
ments was utilized for the test.

The test results showed that writes and reads were
executed at approximately the same rate (see Figure
5-2). As anticipated, the multi-virtual machine
(VM) test performed better than single VM tests.
The test with five VMs showed that the database
could handle the extra concurrent load with a near
linear improvement in performance.

As shown in Figure 5-1, the C# test client was hosted
in a Windows Azure instance running within the
same “database affinity zone” as SQL Azure. The
test measured the amount of time it took the mes-
sages to be sent on the Microsoft Azure network, for
SQL Azure to do its work, and for the messages to be
returned on the Microsoft Azure network.

14 Cloud Computing

Acronyms
Acronym Definition

API Application Programming Interface

AWS Amazon Web Services

C&A Certification and Accreditation

CIO Chief Information Officer

COOP Continuity of Operations

CPU Central Processing Unit

DBaaS Database as a Service

DBA Database Administrator

EC2 Elastic Cloud Computing

FFRDC Federally Funded Research and Development Centers

FISMA Federal Information Security Management Act

GB Gigabyte

GSA General Services Administration

http Hypertext Transfer Protocol

I/O Input/Output

IaaS Infrastructure as a Service

IAM Identity and Access Management

IP Internet Protocol

IT Information Technology

JDBC Java Database Connection

JDO Java Data Objects

JVM Java Virtual Machine

NoSQL No Structure Query Language

PaaS Platform as a Service

RDBMS Relational Database Management System

RDS Relational Database Service

SDK Software Development Kit

SLA Service-Level Agreement

SOA Service-Oriented Architecture

SQL Structured Query Language

TB Terabyte

VM Virtual Machine

WAN Wide Area Network

 Database as a Service: A Marketplace Assessment 15

References
1 “Datastore Overview,” Google App Engine

http://code.google.com/appengine/docs/python/datastore/overview.html.

2 “Amazon Relational Database Service Pricing,” Amazon Web Services,
http://aws.amazon.com/rds/pricing/.

3 “Database Count and Size Limits,” MSDN Library,
http://msdn.microsoft.com/en-us/library/ee336245.aspx#dcasl.

4 “How much data can I store?,”
http://aws.amazon.com/simpledb/faqs/#How_much_data_can_I_store.

5 ACID stands for atomicity, consistency, isolation, and durability. For more information on ACID transactions, refer to
http://msdn.microsoft.com/en-us/library/aa719484(v=vs.71).aspx

6 Yuhanna, N., M. Gilpin, and A. Knoll, November 19, 2010, “Stay Alert To Database Technology Innovation,”
http://www.forrester.com/rb/Research/stay_alert_to_database_technology_innovation/q/id/57947/t/2.

7 Harrison, G., January 28, 2011, “Real World NoSQL: MongoDB at Shutterfly,” The New York Times, accessed November 14, 2011
http://www.nytimes.com/external/gigaom/2011/01/28/28gigaom-real-world-nosql-mongodb-at-shutterfly-165.
html?partner=rss&emc=rss.

8 Yuhanna, N., M. Gilpin, and A. Knoll, November 19, 2010, “Stay Alert To Database Technology Innovation,” accessed November 14, 2011
http://www.forrester.com/rb/Research/stay_alert_to_database_technology_innovation/q/id/57947/t/2.

9 Information in this subsection is drawn in part from the online manuals provided by Amazon.com.
http://aws.amazon.com/documentation/simpledb/.

10 “Amazon SimpleDB Pricing,” Amazon Web Services,
http://aws.amazon.com/simpledb/pricing/.

11 ibid.

12 Conceptually SimpleDB domains are similar to an unrelated RDBMS database table.

13 “Amazon SimpleDB FAQs: How much data can I store?,” Amazon Web Services,
http://aws.amazon.com/simpledb/faqs/#How_much_data_can_I_store.

14 “Amazon SimpleDB FAQs: What kind of data can I store?,” Amazon Web Services,
http://aws.amazon.com/simpledb/faqs/#What_kind_of_data_can_I_store.

15 2011, “AWS Identity and Access Management Using IAM API Version 2010-05-08,” Amazon Web Services,
http://awsdocs.s3.amazonaws.com/IAM/latest/iam-ug.pdf.

16 Varia, J., June 2008, Cloud Architectures, Amazon Web Services.

17 ibid.

18 Typically writes would not be faster than reads, but in this case it is reasonable. The write test required 25 times fewer round trips
between EC2 and SimpleDB, due to the batching capability provided by the SDK.

19 “Amazon Relational Database Service (Amazon RDS),” Amazon Web Services, accessed November 14, 2011
http://aws.amazon.com/rds/.

20 http://aws.amazon.com/solutions/case-studies/airbnb/

21 http://nerds.airbnb.com/mysql-in-the-cloud-at-airbnb

22 ibid.

23 “Amazon Relational Database Service Pricing,” Amazon Web Services, accessed November 14, 2011
http://aws.amazon.com/rds/pricing/.

16 Cloud Computing

24 Information in this subsection is drawn in part from the online manuals provided by Google at
http://code.google.com/appengine/.

25 http://code.google.com/appengine/casestudies.html#giftag

26 http://www.youtube.com/watch?v=uwFvCz4pkMQ

27 ibid.

28 “Billing and Budgeting Resources,” Google App Engine,
http://code.google.com/appengine/docs/billing.html#Billable_Quota_Unit_Cost.

29 “Choosing a Datastore (Java),” Google App Engine,
http://code.google.com/appengine/docs/java/datastore/hr/

30 “Using the High Replication Datastore,” Google App Engine,
http://code.google.com/appengine/docs/java/datastore/hr/overview.html.

31 “Quotas,” Google App Engine,
http://code.google.com/appengine/docs/quotas.html.

32 “Datastore Overview,” Google App Engine,
http://code.google.com/appengine/docs/python/datastore/overview.html#Quotas_and_Limits.

33 “Quotas,” Google App Engine,
http://code.google.com/appengine/docs/quotas.html.

34 After we ran our tests, Google introduced a new feature “Backends” which allows requests to run indefinitely. Refer to
http://code.google.com/appengine/docs/python/backends/overview.html#Properties_of_Backends

35 “Quotas,” Google App Engine
http://code.google.com/appengine/docs/quotas.html.

36 Lee, J., G. Malcolm, and A. Matthews, September 2009,
http://go.microsoft.com/?linkid=9686976. Microsoft.com.

37 http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=4000008986

38 http://www.youtube.com/watch?v=zHr8gwwJyzg

39 http://www.microsoft.com/windowsazure/pricing/

40 ibid.

41 “SQL Azure Overview,” MSDN Library,
http://msdn.microsoft.com/en-us/library/ee336241.aspx.

42 “Pricing Overview,” Microsoft Windows Azure,
http://www.microsoft.com/windowsazure/pricing/#sql.

43 ibid.

44 “Exercise 1: Preparing Your SQL Azure Account,” MSDN Library,
http://msdn.microsoft.com/en-us/gg282144.

MITRE
www.mitre.org

©2012 The MITRE Corporation
All Rights Reserved

Approved for Public Release
Distribution Unlimited
Case Number: 11-4727

Document Number: MTR110536

MITRE
www.mitre.org

