
M T R 9 9 W 0 0 0 0 0 2 7

M I T R E T E C H N I C A L R E P O R T

Security Services Application Programming
Interface (SS API) Developer's Security
Guidance

March 2000

Amgad Fayad
Don Faatz

Sponsor: DISA Contract No.: DAAB07-99-C-C201
Dept. No.: G024 Project No.: 0700K6B0-CA

Approved for public release; distribution
unlimited.

Center for Integrated Intelligence Systems
McLean, Virginia

ii

MITRE Department Approval:

Kathryn M. Bitting
Department Head
Secure Distributed Computing

MITRE Project Approval:

William J. Quigley
Project Leader, K6Z0

iii

Abstract

This document describes a specification of security services for distributed applications
in the Defense Information Infrastructure (DII) Common Operating Environment (COE).
Security services include identification and authentication, encryption, access control, and
auditing. The security services are referred to as the COE security services API (COE SS
API).

The document includes a high-level description of the COE SS API, a formal Java-based
specification, a mapping from the specification to the C and Java programming languages,
and sample applications to demonstrate how the COE SS API can be used.

KEYWORDS: Application Programming Interface, API, C, COE SS API, DII COE, Java,
Security Services, DII COE

iv

Acknowledgments

We would like to thank the following people for their contributions:

Dr. Gregory Frazier, SAIC Corporation, for numerous contributions to this effort starting
with requirements and design work.

Dr. Jackie Lawrence, INRI Corporation for his valuable input to the requirements and design
phase.

Dr. Thom McVitti and Elia Kosnoski, JPL, for valuable input to the requirements phase.

Erik King, Patrick Cesard and Yong Choe, SAIC, for their implementation phase support.

LTC Alex Froede for his guidance.

Tom Gregg, and Russ Reopell, MITRE.

Carol R. Oakes for editing the content and style of this document.

v

Table of Contents

Section Page

1.1 Purpose 1-1

1.2 Scope 1-2

1.3 Background 1-3

1.4 Document Structure 1-4

Elements of the Security Services API 2-1

2.1 Security Context 2-1

2.2 Security Credentials 2-2

2.3 Secure Connections 2-3

2.4 Other Services 2-3

COE SS API Implementation and Architecture 3-1

vii

Executive Summary

DII COE applications are usually distributed applications. This document defines the
COE SS API, a security services specification which can be used to provide identification
and authentication, encryption, access control, and auditing to COE distributed applications.

In a distributed application with multiple tiers of clients and servers (n-tier applications),
security services are needed at multiple levels. Point-to-point and End-to-end
communications must be secured. In addition, multicast and file security must be secured.

This release of the COE SS API will provide a solution for the point-to-point problem.
Future releases of the COE SS API will address the other components of n-tier applications.

The formal specification of the COE SS API is provided in Java in a generic fashion
without utilizing Java-specific features. A mapping to the C, and Java, programming
languages is provided along with sample application programs. The relationship between the
COE SS API and other distributed application security mechanisms is also discussed.

1-1

Section 1

1.1 Purpose
In addition to their intended functionality, information systems need to exhibit other

properties such as security. System security involves providing appropriate data integrity
protection, data confidentiality protection, and accountability for actions taken while using
the system. Some level of security can be provided without specific application
contributions; however, in many cases application software needs to invoke security services
explicitly to achieve the desired level of system security. The Defense Information Systems
Agency (DISA) issued tasking to identify a set of security services application programming
interfaces (APIs) and implementations for the Defense Information Infrastructure (DII)
Common Operating Environment (COE). These APIs will be used by DII COE applications
to contribute to system security. This document presents security guidance for developers of
the DII COE (herein called the COE SS API.)

DII COE applications are typically distributed and they involve one or more of the
interactions illustrated in Figure 1-1. A software client, acting on behalf of a user, interacts
with a server. The server may interact with other servers or data sources such as a relational
database management system. The application may need to provide security for any of these
interactions. It may need to provide security for data manipulated by the client, the servers or
the data sources. Finally, it may need to provide end-to-end security from the client, through
the intermediate servers, to the data sources. To provide security, the application needs
access to a variety of security services, such as identification and authentication, encryption,
access control, and auditing. The COE SS API will provide applications with access to these
services.

Figure 1-1. Typical Distributed Application

SS ee rr vv ee rr

SS ee rr vv ee rrCC ll ii ee nn tt

UU ss ee rr

Data

Sources

1-2

1.2 Scope
In selecting APIs and their associated implementations, three factors must be considered:

• Level of abstraction

• Location of security policy

• Implementation technology

The level of abstraction presented by an interface represents a tradeoff between ease of
use and detailed control of implementation mechanisms. A high level of abstraction provides
less control over the implementation mechanism, but reduces the application learning curve.
A smaller learning curve reduces the potential for vulnerabilities introduced by the developer
who is incorrectly using the security services.

In the COE SS API, the goal is to provide a level of abstraction for security services that
matches the abstraction level of other services being used. For example, if the application
developer uses an interface such as OpenConnection() to create an unsecure communications
path to another server, a secure connection should use a similar interface, such as
OpenSecureConnection(). That is, the developer should be able to interact with a secure
service in the same way he/she interacts with the same service that does not provide security.

Security policy determines the level of protection needed in a particular system. While an
application program may need to enforce portions of the security policy, the application
should not dictate the policy because applications can be used in many different
environments. Hence, it is usually inappropriate to code security policy directly into an
application. For this reason, the COE SS API will place the system security policy inside the
security services implementations.

Applications that use the COE SS API implementations will have the appropriate system
policy enforced for them by the COE SS API implementations. Applications will be able to
query the policy in effect through the API and raise the level of security protection. This
process will ensure that the system security policy will be applied consistently across all
applications, and that changes to the policy will not affect the applications themselves. The
system policy specification is beyond the scope of this document.

A security services API implementation should be provided by current technology. This
technology should have widespread use in order to have interoperability with other
commercial technologies, such as World Wide Web-based products and office automation
products.

The target COE version for the initial implementation of the COE SS API is COE 4.x.
Since the C and Java programming languages are the languages used for developing
applications in the COE, mappings to these two languages is provided.

1-3

1.3 Background
In researching potential APIs and implementations for the COE SS API, several products

were considered: Northern Telecom’s Entrust Toolkit, CyberSafe’s TrustBroker, Netscape’s
Security Services (NSS), and Security Dynamics’ SecureSight. While each of these products
offers some of the needed security services, none provide a complete solution for the DII
COE. Each product provides vendor-specific APIs to security services. Some of these
products provide the Internet Engineering Task Force’s (IETF) Generic Security Services
API (GSS-API). However, each vendor extends the GSS API such that applications
developed using one vendor’s GSS-API implementation might not be compatible with an
implementation of a similar product by another vendor. Also, GSS-API uses unfamiliar
abstractions to application developers, thereby requiring a steep learning curve.

Based on this research and the cost of acquiring these products, the DISA DII COE Chief
Engineer decided to pursue security services for the COE SS API using NSS. NSS uses the
Secure Sockets Layer (SSL) protocol to provide mutual authentication, integrity, and
confidentiality protection for data over point-to-point network connections. Numerous
commercial products can interoperate with applications that use NSS due to the popularity of
the SSL protocol.

In July 1998, a task was initiated to design a COE SS API that provides data integrity and
data confidentiality protection for information exchanged between clients and servers using
NSS. The COE SS API allows COE developers to write security-aware applications without
providing security enforcement mechanisms. The security enforcement mechanisms will be
provided in separate DII COE segments, called bindings. The COE SS API will mimic the
unsecured sockets API to simplify the learning curve of COE application developers.

A COE SS API binding will consist of two parts (Figure 1-2), a thin isolation layer that
maps security services to interface functions in the COE SS API and a security services
product, such as NSS. The isolation layer will provide two distinct benefits: it will provide a
vendor-independent interface definition and a location to incorporate the system security
policy. Hence, when an application invokes a security service through the COE SS API, the
isolation layer will first check the system security policy to determine which underlying
security services are needed and then it will invoke those services in the security services
product.

The COE SS API is specified using the Java programming language. As stated earlier, a
mapping to the C and Java programming languages is provided. The Java specification
differs from the Java mapping in that the mapping makes use of Java-specific features, while
the Java specification is more generic, in order to facilitate defining mappings to other
languages, such as C.

1-4

Figure 1-2. Selected Solution

1.4 Document Structure
Section 1 provides an introduction to the COE SS API and the document. Section 2

presents the elements of the COE SS API that have been defined to support secure point-to-
point connections using NSS. Section 3 describes how COE SS API implementations can be
incorporated in the DII COE. Appendices provide the Java specification for the COE SS API,
mappings of the COE SS API to both the C and Java programming languages, sample C and
Java programs, and a description of how the COE SS API relates to other middleware
technologies.

Netscape NSS or other vendor
Binding in COE segment

COE SS API
(Vendor-Neutral High-Level Abstraction)

JL ACTDCOP JRAMS COMPASS APM
System
Security
Policy

2-1

Section 2

Elements of the Security Services API

This section describes the basic elements of the COE SS API. Figure 2-1 illustrates these
elements: the Security Context, the Credential, and the Secure Connection. These elements
are used by security-aware client and server application programs to achieve secure
communications, by creating instances of these elements. In addition, a System Security
Policy, used by the binding, establishes the initial Security Context instance.

Section 2.4 describes additional services, which will be provided by the COE SS API in
the future.

Security ContextSecurity Context

CredentialCredential
CredentialCredential

State Information

Security ContextSecurity Context

CredentialCredential
CredentialCredential

State Information

Secure ConnectionSecure Connection

ClientClient
CredentialCredential

State Information

ServerServer
CredentialCredential

ServerServerClientClient

System
Security
Policy

Client
Principal

Server
Principal

Figure 2-1. Elements of the COE SS API

2.1 Security Context
The Security Context is a data structure to be maintained by the COE SS API binding

that contains information used to create Secure Connections. A system should have a default
security policy that describes the level of security protection required between the clients and
servers that operate with that system. This policy information is assumed to be encoded and
available to the binding as the System Security Policy. This policy might state that all
connections require integrity protection but not confidentiality protection.

2-2

When a program (client or server) creates its Security Context, the binding reads the
System Security Policy and stores it in the context. If the program does not modify the
context, this information is used when creating secure connections for the program. The
System Security Policy may also contain binding-specific information such as the algorithms
to use when providing integrity or confidentiality protection for communication.

The Security Context provides methods that programs can use to modify information in
the Security Context. For example, a program can increase the level of protection on its
communication by modifying its Security Context to require confidentiality protection.
Programs are not allowed to reduce the level of protection below that specified in the System
Security Policy.1

2.2 Security Credentials
One critical element of the Security Context is the principal’s credentials. Credentials are

data structures used to identify the principal on whose behalf a program is executing. The
actual structure of a credential depends on the technology used in the COE SS API binding.
In an NSS binding, a credential would be a principal’s public key certificate. In a Kerberos
binding, the credential might be a ticket granting ticket (TGT) or service ticket.

The COE SS API will not provide a method for creating credentials. This will be done
either at login to the system or by the creation of the Security Context. Every binding must
define a default credential that is used when establishing connections if no other credential is
identified for use. If a binding provides multiple credentials, the COE SS API will provide
methods to select which is used as the default and which should be used for a particular
connection. Further, if permitted by the binding technology, the COE SS API will provide
methods to change information in the credentials.

Every binding must provide two attributes for its credentials, an identifier and a
principal’s name. The identifier must uniquely identify each credential in a program’s
security context. The identifier can be used by programs to indicate which credential is to be
used for a particular purpose. The principal’s name, which may or may not be the same for
each credential, identifies the principal who is being authenticated by the Security
Credentials element.

1 This document does not address the form or content of the System Policy as it is accessed only by the COE
SS API binding and is not directly available to programs using the COE SS API. However, as part of the
implementation of the first COE SS API binding, a standard approach to providing the System Policy to
bindings should be defined.

2-3

2.3 Secure Connections
The COE SS API will provide methods to establish or accept connections. Servers will

use the methods for accepting connections to wait for an incoming connection from a client.
Clients will use methods for establishing a connection to initiate a new connection to a
server. At the time the connection methods are invoked, the information from the Security
Context of the client and the server will be copied to the Secure Connection element. Future
changes in the Security Context of either end will not affect existing connections, but will be
used by future connections.

The COE SS API will not address the behavior of the connection methods when the
Security Contexts of the client and the server require different levels of protection.
Resolution of this behavior may depend on binding technology capabilities and is, therefore,
left as an issue for binding developers. However, several approaches can be envisioned and
are used in existing systems. For example, the System Policy may specify how the binding
will handle differences in protection requirements. The client and the server might negotiate
a mutually acceptable level of protection. Failing any of these, connections might simply fail
if the client and server cannot agree on an acceptable level of protection.

The COE SS API technology must implicitly assume that the existence of an
environment in which programs can use multiple threads to handle blocking input/output
(IO) operations. As such, most of the operations defined for Secure Connections are blocking
operations. To accommodate existing software, such as the Common Operating Picture
(COP) that uses the UNIX select() system call to poll multiple IO sources, bindings
developers may need to provide a separate select-like mechanism as an add-on to the C
programming language binding. This mechanism should not be used in newly developed
programs. Also, environments that already have multiple threading support, such as those
using Java, will not provide select-like functionality.

2.4 Other Services
In addition to providing point-to-point mutual authentication, data integrity, and data

confidentiality, future versions of the COE SS API will need to provide other security
services, such as secure storage and access control. The basic elements of the COE SS API
(described herein as the Security Context and Security Credentials) provide information that
many security services will need, such as policy information and identification of principals.

Using these basic elements, additional elements, such as Secure Storage, could be added
as shown in Figure 2-2. Secure Storage would contain methods for accessing data stored in
signed or sealed files. The System Security Policy would be extended to include a file-
signing and encryption policy. The Security Credentials would be extended to include any
cryptographic keys needed in signing or sealing a file. A principal would obtain access to a
secure file in storage depending on the credential the principal presents and the System

2-4

Security Policy used when the file was encrypted. Other security services also could be
supported.

Security ContextSecurity Context

CredentialCredential
CredentialCredential

State Information

Security ContextSecurity Context

CredentialCredential
CredentialCredential

State Information

Secure ConnectionSecure Connection

ClientClient
CredentialCredential

State Information

ServerServer
CredentialCredential

ServerServerClientClient

Secure StorageSecure Storage

System
Security
Policy

Client
Principal

Server
Principal

Figure 2-2. Secure Storage

3-1

Section 3

COE SS API Implementation and Architecture

The COE kernel will ship with a simple default implementation of the COE SS API that
allows security-aware applications to operate but may add little security. Specific security
enforcement mechanisms will be added as infrastructure service segments, which will
provide the appropriate COE SS API implementation.

Figure 3-1 illustrates this approach. The default implementation of the COE SS API will
be provided as part of the COE kernel, thus allowing any applications built with the COE SS
API to function, but without added security. As stated earlier, specific implementations of
security services, (bindings), will be added as COE segments. When a binding segment is
installed, applications built using the COE SS API will automatically use the provided
security services. An initial binding to NSS will be provided with the COE.

NSS
Binding

COE Segment

COE SS API

Default
Binding

COE Kernel

Figure 3-1. Approach to Providing SS API Bindings

In addition to bindings, mappings of the COE SS API to COE programming languages
must be provided. A particular binding may implement only some of the defined language
mappings. In the COE 4.x time frame, mappings to the Java and C programming languages
are included in Appendixes B and D. In the future, mappings to other languages, such as
C++, are likely to be needed.

The COE SS API was initially specified in Java. The Java language mapping, however,
differs from the Java specification (Appendix A). This is because the Java specification does
not make full use of Java-specific features to make the specification general enough to map
to other languages. An attempt was made to specify the COE SS API in the Object
Management Group’s (OMG) Common Object Request Broker Architecture (CORBA)
Interface Definition Language (IDL) and take advantage of the language mappings defined

3-2

from this IDL to implement languages such as Java and C. Unfortunately, the translation
process from IDL generated a significant amount of CORBA-specific environment
information. This approach was abandoned in favor of using Java as the specification
language and manually generated mappings to the required languages.

The system security policy will be dependent on the particular binding. For example,
some bindings will require listing allowable cryptographic algorithms that apply to the
particular technology that the binding depends on.

Figure 3-2 shows where the COE SS API fits in the architecture that DISA calls the
Security Services Architecture Framework (SSAF). The SSAF is an adaptation of a standard
security framework called the Common Data Security Architecture (CDSA). The Open
Group is responsible for maintaining the CDSA specification.

CDSA defines a low-level API layer called the Common Security Services Module
(CSSM). The CSSM interfaces with lower-level security service modules. In addition, CSSM
interfaces with a middleware layer (high-level APIs). As of this writing, this layer is not
specified in detail by the Open Group. Recently, MITRE presented the COE SS API and the
SSAF in an Open Group meeting in order to initiate an Open Group action item defining a
standard high-level API for CDSA.

3-3

Figure 3-2. SSAF Architecture

Applications

Security Service APIs

SecureConnection SecureStorage

System Security Policy

AccessDecision

COE Security
Service

Binding Segments

COE Security
Service

Implementation
Segments

CSSM API

CSP
Manager

TP Module
Manager

CL Module
Manager

DL Module
Manager

SPI TPI CLI DLI

Crypto
Service

Providers

Crypto
Service

Providers

Crypto
Service

Providers

Trust
Model

Library

Trust
Model

Library

Trust
Model

Library

Cert
LibraryCert

Library
Cert

Library

Data
Storage
Library

Data
Storage
Library

Data
Storage
Library

DB
Microsoft CryptoAPI

GSS-API
 SPKM Kerberos

IDUP GSS-API
MSP S/MIME

Other APIs (?)NSS

A-1

Appendix A

Java Specification for the COE SS API

Class mil.disa.dii.kernel.securityServices.Credential

java.lang.Object

 |

 +----mil.disa.dii.kernel.securityServices.Credential

public class Credential

extends Object. Credential is the interface to the operator's identity. Credential objects have
the ability to describe themselves, and a limited mechanism to allow the application to
control how it can be used for authentication.

There are no constructor methods for credentials available to applications. Credentials are
created or activated during authentication of the principal using an application. Hence, the
credentials are either created by user login to the system or by securityContext
constructor. There is an optional copy method that allows an application to make a copy of
an existing credential before making modifications.

See Also:

SecurityContext

Method Index:

copy()

Make a copy of an existing credential.

getCredentialIdentifier()

Return a string that uniquely identifies this amongst all of the Credentials available to the
application.

getExpirationDate()

Get the date/time at which the Credential did or will expire (cease to be a valid Credential).

A-2

getNameOfPrincipal()

Return a string that uniquely identifies the operator.

getValidationDate()

Get the date/time at which the Credential became or will become valid.

Methods:

copy

 public Credential copy() throws SecurityException

Make a copy of an existing credential.

Returns:

a copy of the Credential.

Throws: SecurityException

thrown if the binding does not support delegation.

getCredentialIdentifier

 public String getCredentialIdentifier()

Return a string that uniquely identifies this amongst all of the Credentials available to the
application.

Returns:

the "name" of the Credential.

getNameOfPrincipal

 public String getNameOfPrincipal()

Return a string that uniquely identifies the operator. This is the string that is made available
to the process at the other end of a connection established using this Credential.

Returns:

the "name" of the operator.

See Also:

getOtherPrincipalName

getExpirationDate

A-3

 public Date getExpirationDate()

Get the date/time at which the Credential did or will expire (cease to be a valid Credential).

Returns:

the date/time that the Credential did/will expire.

See Also:

Date, getValidationDate

getValidationDate

 public Date getValidationDate()

Get the date/time at which the Credential became or will become valid.

Returns:

the date/time that the Credential did/will become valid.

See Also:

Date, getExpirationDate, setExpirationDate

Class mil.disa.dii.kernel.securityServices.SecurityContext

java.lang.Object

 |

 +----mil.disa.dii.kernel.securityServices.SecurityContext

public class SecurityContext

extends Object. The SecurityContext is the interface to security services. It gives the
application access to attributes of the security services (allowing applications to specify
and/or learn the level of service) and to credentials available to the application. It is also the
source of SecureConnection objects.

See Also:

Credential, SecureConnection

A-4

Constructor Index:

SecurityContext(boolean)

Create a new SecurityContext.

SecurityContext(String, boolean)

Create a new SecurityContext, prompting for operator authentication if necessary.

SecurityContext(String, String, boolean)

Create a new SecurityContext using the operator authentication passed in as arguments.

Method Index:

acceptConnection()

Accept a secure connection from another process.

acceptConnection(Credential)

Accept a secure connection to another process.

establishConnection(String, int)

Establish a secure connection to another process.

establishConnection(String, int, Credential)

Establish a secure connection to another process.

getAvailableCredentials()

Get the credentials that are available to the process.

getBindingName()

Return a string that describes the security implementation.

getDefaultCredential()

Get the Credential that is the default when establishing connections.

getEncryption()

Return the real encryption state.

listen(int)

A-5

Listen for connection requests from clients.

setDefaultCredential(Credential)

Set the Credential that will be used to establish future connections when a Credential is not
specified for that specific connection.

setEncryption(boolean)

Specify whether communication connections created via the SecurityContext will encrypt
communication.

Constructors:

SecurityContext

 public SecurityContext(boolean allowAnonymous) throws SecurityException

Create a new SecurityContext. If authentication cannot be obtained from the environment,
throw a SecurityException. (This constructor will not prompt the operator for
authentication.)

Parameters:

allowAnonymous - true allows anonymous credentials.

Throws: SecurityException

Thrown if the operator's authentication cannot be obtained from the environment or if the
constructor fails for any reason.

SecurityContext

 public SecurityContext(String prompt,

 boolean allowAnonymous) throws SecurityException

Create a new SecurityContext, prompting for operator authentication if necessary. If
authentication cannot be obtained from the environment, prompt the operator for
authentication (e.g. name and/or password). The number of tries given to the operator is
established by the binding and the local security administrator. Applications that catch the
SecurityException thrown by this method should not call the method again to give the
operator another chance to authenticate. This constructor can be used by clients or any
machine that has an operator present (in order to type in the name and/or password.)

Parameters:

prompt - If the binding prompts the operator to enter authentication information (e.g.
name/password), this string will accompany the prompt.

A-6

allowAnonymous - true allows anonymous credentials.

Throws: SecurityException

Thrown if the operator fails to authenticate or if the constructor fails for any reason.

SecurityContext

 public SecurityContext(String username,

 String passsword,

 boolean allowAnonymous) throws SecurityException

Create a new SecurityContext using the operator authentication passed in as arguments.
The application passes in the password that is used to authenticate the operator. Prompt the
operator for authentication (e.g. name and password). The number of tries given to the
operator is established by the binding and the local security administrator. Applications that
catch the SecurityException thrown by this method should not call the method again to
give the operator another chance to authenticate. This constructor can be used by servers or
any machine that does not have an oprator present.

Parameters:

username - the name used to authenticate the operator.

password - the password used to authenticate the operator.

allowAnonymous - true allows anonymous credentials.

Throws: SecurityException

Thrown if authentication fails.

Methods:

getAvailableCredentials

 public Credential[] getAvailableCredentials()

Get the credentials that are available to the process. The credentials are returned in an array.
If no credentials are available, null is returned.

Returns:

an array of credentials.

See Also:

Credential

A-7

setEncryption

 public void setEncryption(boolean useEncryption)

Specify whether communication connections created via the SecurityContext will encrypt
communication. Note that no exception is thrown. The application does not know
whether/how the underlying security implementation supports encryption. And it does not
need to know - the application will function correctly without this knowledge (in contrast to
the Credential setExpirationDate and setDelegatable methods).

Parameters:

useEncryption - set to TRUE if encryption is desired.

getEncryption

 public boolean getEncryption()

Return the real encryption state. In other words, if the application specifies that encryption is
to be used, but the security binding does not support encryption, getEncryption will return
FALSE. Conversely, if this application specifies to not use encryption, but the system default
is to encrypt all communication, getEncryption will return TRUE.

Returns:

TRUE if communication is to be encrypted, FALSE if not.

getBindingName

 public String getBindingName()

Return a string that describes the security implementation.

Returns:

the name of this binding between the security APIs and security implementation.

setDefaultCredential

 public void setDefaultCredential(Credential defaultCredential) throws SecurityException

Set the Credential that will be used to establish future connections when a Credential is not
specified for that specific connection. Note that every instance of the SecurityContext has a
binding-specific default Credential prior to a call to this method (assuming that any
Credential is available). An exception is thrown if the Credential cannot be used as the
default. For example, if the Credential is not one of the Credentials listed in a call to
getAvailableCredentials.

Parameters:

A-8

defaultCredential - The Credential to use as a default. Specify null if an anonymous
connection is to be the default.

Throws: SecurityException

Thrown if the Credential cannot be used as the default credential.

See Also:

Credential, getDefaultCredential

getDefaultCredential

 public Credential getDefaultCredential()

Get the Credential that is the default when establishing connections. null is returned if there
are no credentials available.

Returns:

The Credential to use as a default.

See Also:

Credential, setDefaultCredential

establishConnection

 public SecureConnection establishConnection(String host,

 int port) throws SecurityException, IOException

Establish a secure connection to another process. Takes a hostname and port number as
arguments. Opens a secure connection to the specified port, using the current
SecurityContext state and default Credential as the connection parameters. Note that the
other process participating in the connection must use acceptConnection for the connection
to be successfully established.

Parameters:

host - The DNS name or IP address of the machine to establish the connection to.

port - The socket port to establish the connection to.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

A-9

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

acceptConnection

establishConnection

 public SecureConnection establishConnection(String host, int port,

 Credential credential) throws SecurityException, IOException

Establish a secure connection to another process. Takes a hostname, port number and a
Credential as arguments. Opens a secure connection to the specified port, using the current
SecurityContext state as the connection parameters. Note that the other process participating
in the connection must use acceptConnection for the connection to be successfully
established.

Parameters:

host - The DNS name or IP address of the machine to establish the connection to.

port - The socket port to establish the connection to.

credential - The credential to use for this connection.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

acceptConnection

listen

 public void listen(int port) throws SecurityException, IOException

A-10

Listen for connection requests from clients. Takes port number as argument. Note that the
other process participating in the connection must use establishConnection. Also, the
server must call acceptConnection after listen

Parameters:

port - The socket port to monitor for connections.

Returns:

void

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

acceptConnection

acceptConnection

 public SecureConnection acceptConnection() throws SecurityException, IOException

Accept a secure connection from another process. Returns a SecureConnection to another
process that communicates with the port being listened on using the same Security Services
binding. The current SecurityContext state and default Credential are used as the
connection parameters. Note that the other process participating in the connection must use
establishConnection for the connection to be successfully established.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

A-11

establishConnection

acceptConnection

 public SecureConnection acceptConnection(Credential credential) throws
SecurityException, IOException

Accept a secure connection to another process. Takes a Credential as an argument. Returns a
SecureConnection to another process that communicates with the port being listened on
using the same Security Services binding. The current SecurityContext state is used as the
connection parameters. Note that the other process participating in the connection must use
establishConnection for the connection to be successfully established.

Parameters:

credential - The credential to use for this connection.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

establishConnection

Class mil.disa.dii.kernel.securityServices.SecureConnection

java.lang.Object

 |

 +----mil.disa.dii.kernel.securityServices.SecureConnection

public class SecureConnection

A-12

extends Object. The SecureConnection is the interface to the state associated with a specific
connection. This object is created as a result of establishing a connection via the
SecurityContext. It provides methods to query the connection state (e.g. the identity of the
principle at the other end of the connection, the credential used to establish the connection,
the level of service provided by the connection, etc.), and methods to write data to and read
data from the connection. No methods are provided to change the state of the connection.

See Also:

SecurityContext

Method Index:

close()

Close the connection.

getBindingName()

Return a string that describes the security implementation associated with this connection.

getEncryption()

Indicate whether encryption is being used by this connection.

getMyCredential()

Return the Credential that was used to create this connection.

getOtherPrincipalName()

Return the name of the principal at the other end of the connection.

read()

Read a "block" of data from the connection and return it as a byte array.

write(byte[])

Write a "block" of data (an array of bytes) to the connection.

Methods:

getMyCredential

 public Credential getMyCredential()

A-13

Return the Credential that was used to create this connection.

Returns:

the Credential used to create this connection. If the connection was made with no
Credential, return null.

getOtherPrincipalName

 public String getOtherPrincipalName()

Return the name of the principal at the other end of the connection. The value of this name
should be equal to what is returned by a call to the getNameOfPrincipal method of the
credential object used by the other principal to establish this connection.

Returns:

the name of the principal at the other end of the connection.

See Also:

getNameOfPrincipal

getEncryption

 public boolean getEncryption()

Indicate whether encryption is being used by this connection.

Returns:

true if communication is to be encrypted, false if not.

getBindingName

 public String getBindingName()

Return a string that describes the security implementation associated with this connection.

Returns:

the name of this binding between the security APIs and security implementation.

read

 public byte[] read() throws SecurityException, IOException

Read a "block" of data from the connection and return it as a byte array. Note that this is a
blocking read.

Returns:

An array of bytes that is the data that was transmitted by the other principal.

A-14

Throws: SecurityException

thrown if encryption is on and the data cannot be decrypted, validation is on and the data
cannot be validated, or any other binding-specific security failure occurs.

Throws: IOException

thrown if an IO failure occurs.

See Also:

write

write

 public void write(byte data[]) throws SecurityException, IOException

Write a "block" of data (an array of bytes) to the connection. The existence of a reliable
transport protocol is assumed. Thus, if the transport protocol indicates a successful
transmission, then so will write. If the corresponding read fails, it is up to the application
protocol to NACK.

Parameters:

An - array of bytes that is the data to be transmitted.

Throws: SecurityException

thrown if encryption is on and the data cannot be decrypted, validation is on and the data
cannot be validated, or any other binding-specific security failure occurs.

Throws: IOException

thrown if an IO failure occurs.

See Also:

read

close

 public void close() throws SecurityException, IOException

Close the connection. All pending outgoing data is flushed. All pending incoming data is
dropped. Any read or write invocations subsequent to the close will result in
IOException being thrown.

Throws: SecurityException

thrown if an error occurs.

Throws: IOException

A-15

thrown if the connection cannot be closed (perhaps because it was already closed).

Class mil.disa.dii.kernel.securityServices.SecurityException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----mil.disa.dii.kernel.securityServices.SecurityException

public class SecurityException

extends Exception. This is the exception class thrown by the classes in the
mil.disa.dii.kernel.securityServices package when a security violation has occurred (e.g.
failure to authenticate).

Constructor Index:

SecurityException()

SecurityException(String)

Constructors:

SecurityException

 public SecurityException()

SecurityException

 public SecurityException(String msg)

A-16

Class mil.disa.dii.kernel.securityServices.IllegalValueException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----mil.disa.dii.kernel.securityServices.IllegalValueException

public class IllegalValueException

extends Exception. This is the exception class used when an illegal value is passed to a
parameterized service in the mil.disa.dii.kernel.securityServices package.

Constructor Index:

IllegalValueException()

IllegalValueException(String)

Constructors:

IllegalValueException

 public IllegalValueException()

IllegalValueException

 public IllegalValueException(String msg)

B-1

Appendix B

Java Programming Language Mapping

Class mil.disa.dii.kernel.securityServices.SecurityFactory

java.lang.Object

 |

 +----mil.disa.dii.kernel.securityServices.SecurityFactory

public class SecurityFactory

extends Object. Instantiates objects that implement the securityService interfaces.

Constructor Index:

SecurityFactory()

Method Index

getBindingName()

Return a string that describes the security implementation.

makeSecurityContext(String, boolean)

Create a new SecurityContext.

makeSecurityContext(String, boolean, String)

Create a new SecurityContext, prompting for operator authentication if necessary.

makeSecurityContext(String, boolean, String, String)

Create a new SecurityContext using the operator authentication passed in as arguments.

Constructors:

SecurityFactory

 public SecurityFactory()

B-2

Methods:

getBindingName

 public static String getBindingName()

Return a string that describes the security implementation.

Returns:

the name of this binding between the security APIs and security implementation.

makeSecurityContext

 public static SecurityContext makeSecurityContext(String path,

 boolean allowAnonymous) throws SecurityException

Create a new SecurityContext. If authentication cannot be obtained from the environment,
throw a SecurityException. (This constructor will not prompt the operator for
authentication.)

Parameters:

allowAnonymous - If false and authentication cannot be obtained, throw a
SecurityException. If true and authentication cannot be obtained, return a SecurityContext
whose only credential is ANONYMOUS.

Throws: SecurityException

Thrown if the operator's authentication cannot be obtained from the environment or if the
constructor fails for any reason.

makeSecurityContext

 public static SecurityContext makeSecurityContext(String path,

 boolean allowAnonymous,

 String prompt) throws SecurityException

Create a new SecurityContext, prompting for operator authentication if necessary. If
authentication cannot be obtained from the environment, prompt the operator for
authentication (e.g. name and/or password). The number of tries given to the operator is
established by the binding and the local security administrator. Applications that catch the
SecurityException thrown by this method should not call the method again to give the
operator another chance to authenticate.

Parameters:

B-3

allowAnonymous - If false and authentication cannot be obtained, throw a
SecurityException. If true and authentication cannot be obtained, return a SecurityContext
whose only credential is ANONYMOUS.

prompt - If the binding prompts the operator to enter authentication information (e.g.
name/password), this string will accompany the prompt.

Throws: SecurityException

Thrown if the operator fails to authenticate or if the constructor fails for any reason.

makeSecurityContext

 public static SecurityContext makeSecurityContext(String path,

 boolean allowAnonymous,

 String username,

 String password) throws SecurityException

Create a new SecurityContext using the operator authentication passed in as arguments.
The application passes in the password that is used to authenticate the operator. prompt the
operator for authentication (e.g. name and password). The number of tries given to the
operator is established by the binding and the local security administrator. Applications that
catch the SecurityException thrown by this method should not call the method again to
give the operator another chance to authenticate.

Parameters:

allowAnonymous - If false and authentication cannot be obtained, throw a
SecurityException. If true and authentication cannot be obtained, return a SecurityContext
whose only credential is ANONYMOUS.

username - the name used to authenticate the operator.

password - the password used to authenticate the operator.

Throws: SecurityException

Thrown if authentication fails.

Interface mil.disa.dii.kernel.securityServices.SecurityContext
public interface SecurityContext. The SecurityContext is the interface to security services. It
gives the application access to attributes of the security services (allowing applications to

B-4

specify and/or learn the level of service) and to credentials available to the application. It is
also the source of SecureConnection objects.

Note that some of the methods specified in this class throw the
MethodNotImplementedException exception. These are "optional" APIs for the interface.
Any application developers writing code that calls these methods must understand the
implications to their code if a method throws that exception.

See Also:

Credential, SecureConnection

Method Index:

acceptConnection()

Accept a secure connection from another process.

acceptConnection(Credential)

Accept a secure connection to another process.

establishConnection(String, int)

Establish a secure connection to another process.

establishConnection(String, int, Credential)

Establish a secure connection to another process.

getAvailableCredentials()

Get the credentials that are available to the process.

getDefaultCredential()

Get the Credential that is the default when establishing connections.

getEncryption()

Return the real encryption state.

getSequencing()

Return the real sequencing state.

getValidation()

Return the real validation state.

listen(int)

B-5

Directs the context to listen to the specified port.

setDefaultCredential(Credential)

Set the Credential that will be used to establish future connections when a Credential is not
specified for that specific connection.

setEncryption()

Specify whether communication connections created via the SecurityContext will encrypt
communication.

setSequencing()

Specify whether communication connections created via the SecurityContext will use
sequencing to detect missing or duplicated messages.

setValidation()

Specify whether communication connections created via the SecurityContext will integrity
seal communication.

Methods:

getAvailableCredentials

 public abstract Credential[] getAvailableCredentials()

Get the credentials that are available to the process. The credentials are returned in an array.
If no credentials are available, null is returned.

Returns:

an array of credentials.

See Also:

Credential

setEncryption

 public abstract void setEncryption()

Specify whether communication connections created via the SecurityContext will encrypt
communication. Note that no exception is thrown. The application does not know
whether/how the underlying security implementation supports encryption. And it does not
need to know - the application will function correctly without this knowledge (in contrast to
the Credential setExpirationDate and setDelegatable methods).

Parameters:

B-6

useEncryption - set to TRUE if encryption is desired.

getEncryption

 public abstract boolean getEncryption()

Return the real encryption state. In other words, if the application specifies that encryption is
to be used, but the security binding does not support encryption, getEncryption will return
FALSE. Conversely, if this application specifies to not use encryption, but the system default
is to encrypt all communication, getEncryption will return TRUE.

Returns:

TRUE if communication is to be encrypted, FALSE if not.

setValidation

 public abstract void setValidation()

Specify whether communication connections created via the SecurityContext will integrity
seal communication. Note that no exception is thrown. The application does not know
whether/how the underlying security implementation supports validation. And it does not
need to know - the application will function correctly without this knowledge (in contrast to
the Credential setExpirationDate and setDelegatable methods).

Parameters:

useValidation - set to TRUE if validation is desired.

getValidation

 public abstract boolean getValidation()

Return the real validation state. In other words, if the application specifies that validation is
to be used, but the security binding does not support validation, getValidation will return
FALSE. Conversely, if this application specifies to not use validation, but the system default
is to encrypt all communication, getValidation will return TRUE.

Returns:

TRUE if communicated data is to be validated, FALSE if not.

setSequencing

 public abstract void setSequencing()

Specify whether communication connections created via the SecurityContext will use
sequencing to detect missing or duplicated messages. Note that no exception is thrown. The
application does not know whether/how the underlying security implementation supports
sequencing. And it does not need to know - the application will function correctly without

B-7

this knowledge (in contrast to the Credential setExpirationDate and setDelegatable
methods).

Parameters:

useSequencing - set to TRUE if sequencing is desired.

getSequencing

 public abstract boolean getSequencing()

Return the real sequencing state. In other words, if the application specifies that sequencing
is to be used, but the security binding does not support sequencing, getSequencing will
return FALSE. Conversely, if this application specifies to not use sequencing, but the system
default is to encrypt all communication, getSequencing will return TRUE.

Returns:

TRUE if communicated data is to be sequenced, FALSE if not.

setDefaultCredential

 public abstract void setDefaultCredential(Credential defaultCredential) throws
SecurityException

Set the Credential that will be used to establish future connections when a Credential is not
specified for that specific connection. Note that every instance of the SecurityContext has a
binding-specific default Credential prior to a call to this method (assuming that any
Credential is available). An exception is thrown if the Credential cannot be used as the
default. For example, if the Credential is not one of the Credentials listed in a call to
getAvailableCredentials.

Parameters:

defaultCredential - The Credential to use as a default. Specify null if an anonymous
connection is to be the default.

Throws: SecurityException

Thrown if the Credential cannot be used as the default credential.

See Also:

Credential, getDefaultCredential

getDefaultCredential

 public abstract Credential getDefaultCredential()

Get the Credential that is the default when establishing connections. null is returned if there
are no credentials available.

B-8

Returns:

The Credential to use as a default.

See Also:

Credential, setDefaultCredential

establishConnection

 public abstract SecureConnection establishConnection(String host,

 int port) throws SecurityException, IOException

Establish a secure connection to another process. Takes a hostname and port number as
arguments. Opens a secure connection to the specified port, using the current
SecurityContext state and default Credential as the connection parameters. Note that the
other process participating in the connection must use acceptConnection for the connection
to be successfully established.

Parameters:

host - The DNS name or IP address of the machine to establish the connection to.

port - The socket port to establish the connection to.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

acceptConnection

establishConnection

 public abstract SecureConnection establishConnection(String host,

 int port,

 Credential credential) throws SecurityException,
IOException

B-9

Establish a secure connection to another process. Takes a hostname, port number and a
Credential as arguments. Opens a secure connection to the specified port, using the current
SecurityContext state as the connection parameters. Note that the other process participating
in the connection must use acceptConnection for the connection to be successfully
established.

Parameters:

host - The DNS name or IP address of the machine to establish the connection to.

port - The socket port to establish the connection to.

credential - The credential to use for this connection.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

acceptConnection

acceptConnection

 public abstract SecureConnection acceptConnection() throws SecurityException,
IOException

Accept a secure connection from another process. Takes port number as argument. Listens
for connections to the port, and returns a SecureConnection to another process that
communicates with that port using the same Security Services binding. The current
SecurityContext state and default Credential are used as the connection parameters. Note
that the other process participating in the connection must use establishConnection for the
connection to be successfully established.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

B-10

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if the other principal cannot be communicated with or if the other principal does not
speak the protocol specific to the security binding.

See Also:

establishConnection

acceptConnection

 public abstract SecureConnection acceptConnection(Credential credential) throws
SecurityException, IOException

Accept a secure connection to another process. Takes port number and a Credential as
arguments. Listens for connections to the port, and returns a SecureConnection to another
process that communicates with that port using the same Security Services binding. The
current SecurityContext state is used as the connection parameters. Note that listen must be
invoked before acceptConnection. Note that the other process participating in the
connection must use establishConnection for the connection to be successfully
established.

Parameters:

credential - The credential to use for this connection.

Returns:

the SecureConnection interface that represents this connection.

Throws: SecurityException

thrown if the other principal fails to authenticate in accordance with the binding, system and
instance parameters or if the other principal rejects this process's authentication.

Throws: IOException

thrown if listen has not been called, the other principal cannot be communicated with, or if
the other principal does not speak the protocol specific to the security binding.

See Also:

establishConnection, listen

listen

 public abstract void listen(int port) throws SecurityException, IOException

B-11

Directs the context to listen to the specified port. This creates within the SecurityContext an
SSLServerSocket that listens to the specified port. This method must be invoked before any
calls to acceptConnection.

Parameters:

port - The socket port to monitor for connections.

Throws: SecurityException

thrown if the principal fails to initialize the SSL server socket with appropriate security
settings

Throws: IOException

thrown if there is a system error associated with creating the server socket. e. g.) unavailable
system resources/port

Interface mil.disa.dii.kernel.securityServices.Credential
public interface Credential. Credential is the interface to the operator's identity. Credential
objects have the ability to describe themselves, and a limited mechanism to allow the
application to control how it can be used for authentication.

See Also:

getAvailableCredentials

Method Index:

getCredentialIdentifier()

Return a string that uniquely identifies this amongst all of the Credentials available to the
application.

getExpirationDate()

Get the date/time at which the Credential did or will expire (cease to be a valid Credential).

getNameOfPrincipal()

Return a string that uniquely identifies the operator.

getValidationDate()

Get the date/time at which the Credential became or will become valid.

isAnonymous()

B-12

Methods:

isAnonymous

 public abstract boolean isAnonymous()

getCredentialIdentifier

 public abstract String getCredentialIdentifier()

Return a string that uniquely identifies this amongst all of the Credentials available to the
application.

Returns:

the "name" of the Credential.

getNameOfPrincipal

 public abstract String getNameOfPrincipal()

Return a string that uniquely identifies the operator. This is the string that is made available
to the process at the other end of a connection established using this Credential.

Returns:

the "name" of the operator.

See Also:

getOtherPrincipalName

getExpirationDate

 public abstract Date getExpirationDate()

Get the date/time at which the Credential did or will expire (cease to be a valid Credential).

Returns:

the date/time that the Credential did/will expire.

See Also:

Date, getValidationDate

getValidationDate

 public abstract Date getValidationDate()

Get the date/time at which the Credential became or will become valid.

B-13

Returns:

the date/time that the Credential did/will become valid.

See Also:

Date, getExpirationDate

Interface mil.disa.dii.kernel.securityServices.SecureConnection
public interface SecureConnection. The SecureConnection is the interface to the state
associated with a specific connection. This object is created as a result of establishing a
connection via the SecurityContext. It provides methods to query the connection state (e.g.
the identity of the principle at the other end of the connection, the credential used to establish
the connection, the level of service provided by the connection, etc.), and methods to write
data to and read data from the connection. No methods are provided to change the state of the
connection.

See Also:

SecurityContext

Method Index:

close()

Close the connection.

getEncryption()

Indicate whether encryption is being used by this connection.

getInputStream()

Return an input stream to read from the connection.

getMyCredential()

Return the Credential that was used to create this connection.

getOtherPrincipalName()

Return the name of the principal at the other end of the connection.

getOutputStream()

Return an output stream to write to the connection.

B-14

getSequencing()

Indicate whether sequencing is being used by this connection.

getValidation()

Indicate whether data signing/validation is being used by this connection.

Methods:

getMyCredential

 public abstract Credential getMyCredential()

Return the Credential that was used to create this connection.

Returns:

the Credential used to create this connection. If the connection was made with no
Credential, return null.

getOtherPrincipalName

 public abstract String getOtherPrincipalName()

Return the name of the principal at the other end of the connection. The value of this name
should be equal to what is returned by a call to the getNameOfPrincipal method of the
credential object used by the other principal to establish this connection.

Returns:

the name of the principal at the other end of the connection.

See Also:

getNameOfPrincipal

getEncryption

 public abstract boolean getEncryption()

Indicate whether encryption is being used by this connection.

Returns:

true if communication is to be encrypted, false if not.

getValidation

 public abstract boolean getValidation()

Indicate whether data signing/validation is being used by this connection.

B-15

Returns:

true if communicated data is to be validated, false if not.

getSequencing

 public abstract boolean getSequencing()

Indicate whether sequencing is being used by this connection. Sequencing allows the
detection of duplicated or missing messages.

Returns:

true if communicated data is being sequenced, false if not.

getInputStream

 public abstract InputStream getInputStream() throws IOException

Return an input stream to read from the connection.

Returns:

The input stream that reads from the connection.

Throws: IOException

Thrown if an IO error occurs.

getOutputStream

 public abstract OutputStream getOutputStream() throws IOException

Return an output stream to write to the connection.

Returns:

The output stream that writes to the connection.

Throws: IOException

Thrown if an IO error occurs.

close

 public abstract void close() throws IOException

Close the connection. All pending outgoing data is flushed. All pending incoming data is
dropped. All resources held by the connection are released.

Throws: IOException

thrown if the connection cannot be closed (perhaps because it was already closed).

C-1

Appendix C

Sample Java Programs

Sample Java Client
import mil.disa.dii.kernel.securityServices.*;
import java.io.*;
public class coeclient{

public static void main(String[] argv) {
String message;
try {
SecurityContext s =

SecurityFactory.makeSecurityContext("triton_db",true,argv[0],"admin123");
SecureConnection a = s.establishConnection("calypso",8888);

OutputStream o = a.getOutputStream();
System.out.print ("To "+ a.getOtherPrincipalName()+": ");
BufferedReader kbi = new BufferedReader (new InputStreamReader

(System.in));
o.write(kbi.readLine().getBytes());
o.flush();

byte[] b = new byte[100];
InputStream i = a.getInputStream();
int tmpi = i.read(b);
System.out.println ("Received from server: "+ new String(b));

a.close();
} catch (Exception e) {System.out.println(e.toString());}

}
}

Sample Java Server
import mil.disa.dii.kernel.securityServices.*;
import java.io.*;
public class coeserver {

public static void main (String[] argv) {
SecurityContext s=null;
SecurityContext t=null;
String incoming = "nothing";
byte[] b = new byte[64];

try {

C-2

s = SecurityFactory.makeSecurityContext("calypso_db",true,"Enter
password");

Credential c=s.getDefaultCredential();
System.out.println ("Current Security Context Using: " +

c.getCredentialIdentifier()+ c.getExpirationDate());
s.listen(9999);
} catch (Exception e) {System.out.println ("Error "+e.toString());}

while (true) {
try {
SecureConnection a = s.acceptConnection();
System.out.println("connected to: " + a.getOtherPrincipalName());
InputStream i = a.getInputStream();
int tmpi = i.read(b);
incoming=new String (b);
System.out.println ("Received: "+ incoming);

OutputStream o = a.getOutputStream();
o.write (incoming.getBytes());

i.close();
o.close();
} catch (Exception e) {System.out.println ("Error

Communicating"+e.toString());};
}

}
}

D-1

Appendix D

C Language Mapping

/*---
 * coesecserv.h
 ---/
#ifdef NT
#include <time.h>
#else
#include <sys/time.h>
#endif

#ifdef __coesecserv_h

#else
#define __coesecserv_h
typedef int COEBoolean;

typedef void *SecContextHandle;
typedef void *CredentialHandle;
typedef void *SecConnectionHandle;

/*---
 * The secExcep structure is used to emulate exceptions
 * in java. On each call that could generate an exception,
 * a pointer to a secExcep structure is provided. If
 * the value of secErrno is anything other than
 * NoException, the operation generated an exception.
 ---/
struct secExcep{

int secErrno;
char *secDescription;

};
typedef struct secExcep SecExcep;

#define NoException 0
#define IllegalValueException 1
#define SecurityException 2

/*---
 * Security Context
 ---/

enum whichparam1 {CONTEXT_A1, CONTEXT_B1, CONTEXT_C1};
// enum is used to identify which parameter list is to be used:
// CONTEXT_A1: SecExcep*, COEBoolean allowAnonymous
// CONTEXT_B1: char* prompt, SecExcep* e, COEBoolean allowAnonymous

D-2

// CONTEXT_C1: char* name, char* passwd, SecExcep* e, COEBoolean
allowAnonymous

SecContextHandle newSecurityContext(const whichparam1, ...);

CredentialHandle *getAvailableCredentials(SecContextHandle cx,
SecExcep *e);

void setEncryption(COEBoolean useEncryption);
COEBoolean getEncryption(SecContextHandle cx, SecExcep *e);

char *getBindingName(SecContextHandle cx, SecExcep *e);

void setDefaultCredential(SecContextHandle cx, COEBoolean flag,
SecExcep *e);

CredentialHandle getDefaultCredential(SecContextHandle cx,
SecExcep *e);

/*---
 * Client side establishConnection() methods
 ---/

enum whichparam2 {CONTEXT_A2, CONTEXT_B2};
// enum is used to identify which parameter list is to be used:
// CONTEXT_A2: SecContextHandle cx, char *host, int port, SecExcep *e
// CONTEXT_B2: SecContextHandle cx, char *host, int port, CredentialHandle
cr,
// SecExcep *e

SecConnectionHandle establishConnection(const whichparam2, ...);

/*---
 * Server side listenConnection() method
 ---/

void listenConnection(SecContextHandle cx, int port, SecExcep *e);

/*---
 * Server side acceptConnection() methods
 ---/

enum whichparam3 {CONTEXT_A3, CONTEXT_B3};
// enum is used to identify which parameter list is to be used:
// CONTEXT_A3: SecContextHandle cx, SecExcep *e
// CONTEXT_B3: SecContextHandle cx, CredentialHandle cr, SecExcep *e

SecConnectionHandle acceptConnection(const whichparam3, ...);

/*---
 * Credential

D-3

 ---/

char *getCredentailIdentifier(CredentialHandle cr, SecExcep *e);
char *getNameOfPrincipal(CredentialHandle cr, SecExcep *e);

struct tm getExpirationDate(CredentialHandle cr, SecExcep *e);

struct tm getValidationDate(CredentialHandle cr, SecExcep *e);

CredentialHandle copyCredential(CredentialHandle cr, SecExcep *e);

/*---
 * Secure Connection
 ---/

CredentialHandle getMyCredential(SecConnectionHandle ch,
SecExcep *e);

CredentialHandle getOtherPrincipalCredential(
SecConnectionHandle ch,SecExcep *e);

char *getBindingName(SecConnectionHandle ch,
SecExcep *e);

COEBoolean getEncryption(SecConnectionHandle ch, SecExcep *e);

int writeSecureConnection(SecConnectionHandle ch, char *buffer,
int bufsiz, SecExcep *e);

int readSecureConnection(SecConnectionHandle ch,
char *buffer, int bufsiz, SecExcep *e);

void closeSecureConnection(SecConnectionHandle ch, SecExcep *e);

#endif

E-1

Appendix E

Sample C Programs

Sample C Client
/*--

Name: client.c
Description: Sample client application using the COE Security Services API
Author: Patrick O. Cesard
Date: 11/11/98
Version: 1.0
--
----*/
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "coesecserv.h"

#ifdef _WINDOWS
#include <conio.h>
#endif

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

int main(int argc, char *argv[]) {

SecContextHandle sxh = NULL;
SecConnectionHandle sch = NULL;
CredentialHandle Credential = NULL;
CredentialHandle* Credential_List = NULL;
char* Identifier = NULL;
char* Name = NULL;
char* HostName = NULL;
char* CertDBPwd = NULL;
char* Nickname = NULL;
COEBoolean Allow_Anonymous = TRUE;
struct tm ExpireDate = {0,0,0,0,0,0,0,0,0};
struct tm ValidDate = {0,0,0,0,0,0,0,0,0};
int PortNum = 9999;
const DataSize = 20;

E-2

char* CertDir = "c:\\client_db"; //
Certificate DB path

int i = 0;
char ProgName[10];
char Buffer[20];
char ch;
SecExcep e;

// Read in the command line parameters
if (argc == 3) {

HostName = argv[1]; // Host to connect to
PortNum = atoi(argv[2]); // Port number to use
Nickname = NULL; // No certificate specified so

anonymous user
}
else if (argc >= 4) {

HostName = argv[1]; // Host to connect to
PortNum = atoi(argv[2]); // Port number to use
Nickname = argv[3]; // Certificate nickname

}
else {

strcpy(ProgName, argv[0]);
printf("Usage: %s <host> <port> [<nickname>]\n\n", ProgName);
exit(1);

}

// Initialize exception reporting
e.secErrno = NoException;
e.secDescription = NULL;

// Create a security context
sxh = newSecurityContext_C(CertDir, Allow_Anonymous, Nickname,

CertDBPwd, &e);

// Check for errors
if (e.secErrno != NoException) {

printf("Error: %s\n", e.secDescription);
secServShutdown();
exit(1);

}

printf("\nCreated a new security context\n");

// Retrieve all available credentials
Credential_List = getAvailableCredentials(sxh, &e);
printf("\nRetrieved all credentials...\n");

// Go thru list and print useful info out
for (i = 0; (Credential = Credential_List[i]) != NULL; i++) {

E-3

// Get credential identifier
Identifier = getCredentialIdentifier(Credential, &e);
printf("\nCredential identifier is: %s\n", Identifier);

// Get credential principal's name
Name = getNameOfPrincipal(Credential, &e);
printf("Credential principal name is: %s\n", Name);

// Get credential expiration date
ExpireDate = getExpirationDate(Credential, &e);
printf("Credential expiration date is: %s",

asctime(&ExpireDate));

// Get credential validation date
ValidDate = getValidationDate(Credential, &e);
printf("Credential validation date is: %s",

asctime(&ValidDate));

}

// Establish a connection with server
sch = establishConnection_C(sxh, HostName, PortNum, &e);

// Check for errors
if (e.secErrno != NoException) {

printf("Error: %s\n", e.secDescription);
secServShutdown();
exit(1);

}

printf("\nEstablished a connection!\n");
printf("\nReady to communicate with server\n");
printf("Press . to end communication\n");

while (TRUE) {

// Read in data to sent over
i = 0;
while (((ch = getchar()) != '\n') && (ch != EOF))

Buffer[i++] = (char)ch;
Buffer[i] = 0;

// Send data to server
writeSecureConnection(sch, Buffer, 20, &e);
printf("Client sent to server: %s\n", Buffer);

// Empty data buffer
Buffer[0] = 0;

// Read server response

E-4

readSecureConnection(sch, Buffer, 20, &e);
printf("Client read from server: %s\n", Buffer);

// Check for end of communication
if (Buffer[0] == '.')

break;

// Empty data buffer
Buffer[0] = 0;

}

// Close the connection
closeSecureConnection(sch, &e);
printf("\nClosed the connection\n");

// Shut down security services
secServShutdown();
printf("Shut down security services\n");

return(0);
}

Sample C Server
/*--

Name: server.c
Description: Sample server application using the COE Security Services
API.
Author: Patrick O. Cesard
Date: 11/18/98
Version: 1.0
--
----*/
#include <stdio.h>
#include <string.h>
#include "coesecserv.h"

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

int main(int argc, char *argv[]) {

E-5

SecContextHandle sxh = NULL;
SecConnectionHandle sch = NULL;
CredentialHandle crh = NULL;
CredentialHandle* crhh = NULL;
ConnectionStatus status = NULL;
char* Identifier = NULL;
char* Name = NULL;
char* HostName = NULL;
char* certname = NULL;
char* certDBpwd = NULL;
int PortNum = 9999; //

Port number to use
COEBoolean allow_anonymous = TRUE;
char* user_prompt = "Please enter the DB

password:";
char* certdir = "c:\\server_db";

// Certificate DB path
const DataSize = 20;
char progName[10];
char Buffer[20];
SecExcep e;

// Read in command line arguments, if provided
if (argc >= 3) {

PortNum = atoi(argv[1]); // Port number to use
certname = argv[2]; // Certificate nickname

}
else {

strcpy(progName, argv[0]);
printf("Usage: %s <port> <nickname>\n\n", progName);
exit(1);

}

// Initialize exception reporting
e.secErrno = NoException;
e.secDescription = NULL;

// Create a security context
sxh = newSecurityContext_C(certdir, allow_anonymous, certname,

certDBpwd, &e);
printf("\nA security context was created\n");

// Check for errors
if (e.secErrno != NoException) {

printf("Error: %s\n", e.secDescription);
secServShutdown();
exit(1);

}

E-6

// Create a rendez-vous socket
listenConnection_A(sxh, PortNum, &e);

if (e.secErrno != NoException) {
printf("Error: %s\n", e.secDescription);
secServShutdown();
exit(1);

}

while (TRUE) {

printf("\nWaiting for a connection...\n\n");

// Accept a connection
sch = acceptConnection_A(sxh, &e);

if (e.secErrno != NoException) {
printf("Error: %s\n", e.secDescription);
secServShutdown();
exit(1);

}

printf("\nA connection was made!\n\n");

// Get the status on the secure connection
status = getSecureConnStatus(sch, &e);

if (status->cipher)
printf("Cipher used is %s, key size is %d, secret key

size is %d\n", status->cipher, status->key_size, status->secret_key_size);

if (status->security_on)
printf("Security is ON\n");

else
printf("Security is OFF\n");

if (status->issuer && status->subject)
printf("Client cert issued by %s,\n for %s\n", status-

>issuer, status->subject);

// Get the client credential name
Name = getOtherPrincipalName(sch, &e);

printf("Client name is: %s\n", Name);

printf("\n");

// Loop until a '.' is received

E-7

while (TRUE) {

// Read data on the secure connection
readSecureConnection(sch, Buffer, 20, &e);

if (e.secErrno != NoException) {
printf("Error: %s\n", e.secDescription);
break;

}

printf("Server received from client: %s\n", Buffer);

// Write data on the secure connection
writeSecureConnection(sch, Buffer, 20, &e);

if (e.secErrno != NoException) {
printf("Error: %s\n", e.secDescription);
break;

}

printf("Server sent to client: %s\n", Buffer);

if (Buffer[0] == '.') {

// Close this secure connection
closeSecureConnection(sch, &e);

break;
}

// Empty the data buffer
Buffer[0] = 0;

} // Current connection loop

} // Accept new connection loop

printf("Shut down security services\n");

// Shut down security services
secServShutdown();

}

F-1

Appendix F

Relationship of COE SS API to Other Technologies

The Secure Connection element of the COE SS API was designed for use with
distributed applications that use sockets as the communications mechanism. Hence, it
satisfies the security needs of current DII COE applications. However, this architecture may
cause people to ask the question, “Will the COE SS API support future applications built
using distributed middleware?”

The answer to this question depends on the particular COE SS API security services one
wants to use and the particular middleware. However, it is unlikely that the Secure
Connection element will support such applications. One perspective on middleware is that it
sits in the middle between the application and the socket communications mechanism. For
example OMG’s CORBA, Microsoft Corporation’s Component Object Model (COM) and
Remote Procedure Calls (RPCs) involve a significant layer of software between the
application and the socket. As such, the Secure Connection element, which will operate
directly on a socket, cannot be used to provide security.

Each of these techniques has its own approach to providing the equivalent security
provided by the Secure Connection element. CORBA has the CORBA Security
Specification, which defines “invocation security” for providing mutual authentication,
integrity, and confidentiality protection for CORBA method invocations. COM uses a secure
RPC mechanism to provide similar protections.

Should the COE SS API define a Secure Storage element for access to signed and/or
sealed files, CORBA, COM, and RPC applications could take advantage of the service
because these middleware technologies do not intervene between an application and its
access to file storage. Hence, they could use the COE SS API Secure Storage element.

GL-1

Glossary

API: Application Programming Interface
APM Accounts Profile Manager

COE Common Operating Environment
COM Component Object
COMPASS Common Operational Modeling, Planning, and Simulation Strategy
COP Common Operating Picture

DII Defense Information Infrasture
DISA Defense Information Systems Agency

GSS-API Generic Security Services API

I/O input/ouput
IETF Internet Engineering Task Force

JL ACTD Joint Logistics Advanced Concept Technology Demonstration
JRAMS Joint Readiness Automated Management System

NSS Netscape’s Security Services

RPC Remote Procedure Call

SS Security Services
SSAF Security Services Architecture Framework

TGT ticket granting ticket

