
A Steady State Decoupled Kalman Filter Technique for Multiuser Detection

Brian P. Flanagan and James Dunyak
The MITRE Corporation

7515 Colshire Dr.
McLean, VA 22102, USA

Telephone: (703)983-6447
Fax: (703)983-6708

Email: bflan@mitre.org

Abstract

In this paper, we describe a Kalman filter based tech-
nique for multiuser detection of asynchronous CDMA sys-
tems. Similar to previously proposed techniques, we use a
decoupled form of the Kalman filter which processes each
user independently. We then make the further simplifying
assumption that the channel statistics are constant over a
single symbol allowing us to reduce the kalman gain to
a constant dependent on the current signal to interference
plus noise ratio. We study the performance of the constant
gain filter and show that by appropriate choice of the gain
you can optimize for either minimum bit error rate or max-
imum interference reduction.

1. Introduction

Code division multiple access (CDMA) communication
systems are commonly limited in performance by multi-
ple access interference (MAI). This interference is caused
by less than perfect orthogonality between multiple simul-
taneous users all transmitting asynchronously. This prob-
lem will only get worse over time as the number of wire-
less users continues to increase. Many multiuser detection
methods have been developed to deal with MAI, but re-
ceiver complexity often limits their practical utility.

In this paper, we will be specifically investigating a
Kalman filter based technique. Standard Kalman filter ap-
proaches have been shown to significantly outperform the
conventional receiver, but at high computational complexity
[4]. A suboptimal technique was proposed in [1],[2] which
made use of a decoupled form of the Kalman filter to sig-
nificantly reduce the computational cost with only a minor
degradation in performance. We have extended this tech-
nique by observing that since the Kalman filter is reset after

every symbol, we only care about the channel statistics dur-
ing the very short interval of a single symbol. By assuming
that the statistics are roughly stationary during that interval,
we can use the steady state solution to the Kalman filter and
replace the Kalman gain with a constant. Simulations show
that this assumption has little effect on performance.

In Section 2 we define the problem and our signal model.
In Section 3 we derive the steady state Kalman filter solu-
tion to the problem and consider other potential choices for
the fixed gain constant. Section 4 analyzes the decoupled
Kalman filter and derives a prediction of its performance.
This prediction also holds for the fixed gain formulation.
Finally, simulation results are presented in Section 5.

2. Problem Formulation

We consider an asynchronous CDMA system using bi-
nary phase shift keying modulation and operating over an
additive white Gaussian noise channel. K active users are
received simultaneously. The received signal is then

y(t) =

KX
k=1

hk(t� �k)ak(t)bk(t) + n(t) (1)

Where y(t) is the received signal, hk(t � �k) is the
spreading function for user k, �k is the delay, ak(t) is the
complex channel amplitude, bk(t) is the transmitted bit
(�1), and n(t) is the background additive noise.

The user time delays �k and channel amplitudes and
phases ak are slowly varying and are estimated external
to the algorithm using early/late gates or phase-locked-loop
techniques applied to pilot channels. In typical CDMA sig-
nals (i.e. IS95) the user traffic channels are transmitted at
the same delay and phase as the pilot channels, but at dif-
ferent amplitudes (usually 6dB or so weaker than the pilot).
The amplitudes of each of the user channels has to be esti-
mated to correctly cancel the interference.
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3. Steady State Decoupled Kalman Filter

Similar to [1] and [2] we exploit the pseudorandom in-
dependence of the spreading codes and develop separate
Kalman filters for each user. The received signal model for
user k is then

yk(t) = hk(t)ak(t)bk(t) + v(t) (2)

Where v(t) now includes the interference from all other
users which through use of the central limit theorem we ap-
proximate as a zero mean gaussian with unknown variance
1

2
�2
v
(t).

Letting xk(t) = ak(t)bk(t), we can then write the state
equations as

xk(t+ 1) = �kk(t)xk(t) +wk(t) (3)

yk(t) = hk(t)xk(t) + v(t) (4)

Where the state transition matrix �kk(t) is equal to 1
except when there is a symbol change between times t� 1
and t at which point it is set to zero. Similarly, the state
noise wk(t) is zero except where there is a symbol change.
The variance ofwk(t) during a symbol change is Qk(t) and
is equal to E(ak(t)

�ak(t)).
We can now write the Riccati equations and the state

equation updates. The Riccati equations are

Pkk(t)
� = �kk(t)Pkk(t� 1)+�kk(t)

� +Qk(t)(5)

Kk(t) = Pkk(t)
�hk(t)

�[hk(t)Pkk(t)
�hk(t)

�

+
1

2
�2v(t)]

�1 (6)

Pkk(t)
+ = [1�Kk(t)hk(t)]Pkk(t)

� (7)

And the state equation updates are

xk(t)
� = �kk(t)xk(t� 1)+ (8)

xk(t)
+ = xk(t)

� +Kk(t)
�
yk(t)� hk(t)xk(t)

�

�
(9)

The nature of the state model causes the Kalman filter
to reset after every symbol change. This means that the
quality of the bit estimate is only dependent on the mea-
sured data within a single symbol. This severely limits the
amount of gain we can hope to get from additional process-
ing. However, we can use this limitation to our advantage.
Since our estimate is only dependent on the data statistics
within a single symbol (which is typically of very short du-
ration), we can assume that the channel statistics are essen-
tially constant. With everything constant, we can make use
of the steady state solution to the Kalman filter and reduce
the Kalman gain to a constant.

Combining (5, 6, and 7) we know that the steady state
covariance Pkk(1) satisfies the following

Pkk(1) = �kkfPkk(1)� Pkk(1)h�
k

�
hkPkk(1)h�

k
+

1

2
�2
v

�
�1

hkPkk(1)g��kk +Qk (10)

Solving for Pkk(1) reveals a problem related to our
choice for the process noise covariance Qk. Earlier we
had said that Qk was zero during a symbol and was
E(ak(t)

�ak(t)) when a symbol change occurred. Which
value should we use then for solving for the steady state
Kalman gain? Using zero results in a Kalman gain of zero,
so that definitely doesn’t work. The alternative results in a
non-zero gain, but implies a very large process noise error
at every state update. We instead chose to average the pro-
cess noise over an entire symbol. This accurately captures
all of the expected process noise while still preserving our
steady state model. The process noise covariance is then

Qk =
1

N
E(ak(t)

�ak(t)) (11)

where N is the coding gain of the PN sequence. Solving
(10) for Pkk(1) now yields a quadratic with the roots

1
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Qk �

s
Q2
k
+

2Qk�2v
hkh�k

!
(12)

The steady state Kalman gain is then

Kkk(1) = Pkk(1)h�
k

�
hkPkk(1)h�

k
+

1

2
�2
v

�
�1

(13)

Where Pkk(1) is the positive root from (12). Unsur-
prisingly, the constant Kalman gain is strongly related to
the current signal to interference plus noise ratio (SINR).
Which we define as

SINR =
2jakj

2

�2
v

(14)

Comparing the constant gain solution to the standard de-
coupled Kalman filter, we see that the constant gain solution
reduces the number of complex multiplies required at each
innovation update from 8 to 2. This solution is equivalent
to a Weiner filter and we refer to it as the Weiner Filter De-
modulator (WFD).

Smearing out the measurement noise across an entire
symbol is not entirely satisfactory however. We should also
consider other choices for the constant gain and try to under-
stand how they will effect performance. In Sections 4 and
5 we analyze the performance of the Kalman and fixed gain
algorithms and simulate their performance using a wide va-
riety of gain values.

In any case, to implement this technique we require
some method for estimating the multiple access interference
(MAI), 1

2
�2
v
, as well as the individual channel magnitudes



jakj
2. The simplest way to do this is directly from the re-

ceived data. We calculate the sample variance of the data as
an initial estimate of the MAI. We then run multiple passes
of the algorithm and update the estimate using the sample
variance of the residual error after each pass. This directly
captures the interference cancellation provided by the algo-
rithm. Similarly, we use the pilot channel magnitudes as an
initial estimate of the individual traffic channel magnitudes.
After each pass of the algorithm, we calculate the average
magnitude of the bit estimates for each user and use them
as the channel magnitude estimates for the next pass.

4. Performance Prediction

We would like to have a closed form prediction of de-
coupled Kalman filter performance (with or without a fixed
gain). Unfortunately, this is very difficult to do. However,
an iterative solution is fairly straightforward. If we con-
sider only a single symbol (i.e. 0 � t < T ), the standard
predictor-corrector structure of the Kalman filter is the fol-
lowing:

x̂�(0) = 0

x̂�(t) = x̂+(t� 1)

x̂+(t) = x̂�(t) + k(t)h(t)�(y(t)� h(t)x̂�(t))(15)

The state estimate x̂+(T � 1) provides the final bit esti-
mate. The goal of our Kalman filter is to choose, for each
time t, a gain k(t) that minimizes the mean squared error

E(jx̂+(t)� x(t)j2) (16)

First introduce the notation

P+(t) = E(jx̂+(t)� x(t)j2)

P�(t) = E(jx̂�(t)� x(t)j2) (17)

Clearly,

P�(0) = 1

P�(t) = P+(t� 1)

P+(t) = E(jx̂+(t)� x(t)j2)

= E(jx̂�(t)� x(t) + k(t)(�h(t)�h(t)(x̂(t)�)

�x(t)) + u(t))j2)

= P�(t)� k(t)h(t)�h(t)P�(t)

�k(t)�h(t)h(t)�P�(t)

+k(t)�k(t)(h(t)�h(t))2P�(t)

+k(t)�k(t)�2u (18)

We can now address the performance of the Kalman filter
by noting that the filter is linear, so the conditional distri-
bution of ^x(t) given b = x(t) = �1 is Gaussian within

the constraint of the Central Limit Theorem approximation
for uncancelled co-channel interference. We can write con-
ditional distributions for the mean and variance of x̂(t) in
exactly the same way as in (15).

E(x̂�(0)jb) = 0

E(x̂+(t)jb) = E(x̂�(t)jb) + k(t)h(t)�b

�k(t)h(t)�h(t)E(x̂�(t)jb)

E(x̂�(t)jb) = E(x̂+(t� 1)jb)

P�(0jb) = E((x̂�(0)� b)2jb) = 1

P+(tjb) = P�(tjb)� k(t)h(t)�h(t)P�(tjb)

�k(t)�h(t)h(t)�P�(tjb)

+k(t)�k(t)(h(t)�h(t))2P�(tjb)

+k(t)�k(t)�2u

P�(tjb) = P+(t� 1jb) (19)

These equations are iteratively solved until the end of the
symbol period. Since the conditional and non-conditional
error variances have the same initial conditions and have the
same iterative equations as the original Riccati equations,

P�(tjb) = P�(t)

P+(tjb) = P+(t) (20)

The conditional estimate x̂+(tjb) is normally distributed
with mean given in equation (19). To calculate the variance,
use equation (19) and

var(x̂+(tjb)) = E(x̂+
2

(t)jb)� (E(x̂+(t)jb))2

= P+(tjb) + 2bE(x̂+(t)jb)� 1

�(E(x̂+(t)jb))2 (21)

If F (�) is the probability that a standard normal random
variable is less than �, then the bit error rate is

BER = F

 
�bE(x̂+(t)jb)p
var(x̂+(tjb))

!
(22)

The above considers only a single user so the interaction be-
tween the filters when multiple users are present is not ac-
counted for. Still, it gives us some insight into the effect of
the gain on BER and interference cancellation performance.
Figure 1 shows a plot of the predicted performance as well
as a direct Monte Carlo simulation of the two demodulators
for a single user with a post despread SNR of Eb=Io = 8
dB. The number of chips per symbol was 64 and h(t)�h(t)
= 100. The top plot is BER, the middle plot is the residual
interference, and the bottom plot is the impulse response for
various choices of the fixed gain.

The results show the limitations of the fixed gain algo-
rithm when the interference is small. Although the effective
interference cancellation nearly equals that of the Kalman



for a normalized fixed gain of 0.054, the corresponding
BER is more than an order of magnitude larger. Exami-
nation of the impulse responses shown at the bottom of fig-
ure 1 provides an explanation. The Kalman filter impulse
response is constant. Since this then provides a matched
filter, the Kalman provides the theoretical minimum BER.
The fixed gain technique in comparison, weights informa-
tion late in the symbol much more heavily that information
early in the symbol. This loss of information results in a
much larger BER. In a multistage algorithm, however, this
may not be a significant issue. The objective of the early
stages is to cancel interference, which can be accomplished
almost optimally with a constant gain algorithm.

The advantage of the decoupled Kalman technique di-
minishes as Eb=Io decreases. The performance is summa-
rized in Table 1. For interference levels typical of heavily
loaded systems, the fixed gain technique provides an attrac-
tive option for interference cancellation.
Eb=Io Kalman

Inter-
ference

Fixed
Gain
Inter-
ference

Kalman
BER

Fixed
Gain
BER

Fixed
Gain
with
lowest
inter-
ference

8 dB 0.20 0.25 0.00019 0.0048 0.054
6 dB 0.27 0.32 0.0024 0.012 0.042
4 dB 0.35 0.39 0.0013 0.028 0.034
2 dB 0.44 0.47 0.038 0.054 0.026
0 dB 0.54 0.56 0.079 0.090 0.018

5. Simulation Results

We simulated the performance of the fixed gain algo-
rithm for a more realistic scenario in Figure 2. The IS-95
standard was used to generate the signals. Each carrier con-
sisted of a pilot with eight traffic channels. The carriers
were a mix of weak and strong signals with 75% of the car-
riers 6 dB weaker than the strong signals. All traffic chan-
nels were also 6 dB weaker than their associated pilots. The
background noise level was set so the weakest channels had
an SNR of 8 dB. Twelve carriers were used with 8 traffic
channels each, corresponding to a normalized capacity of
1.5. All carriers are received asynchronously. BER perfor-
mance and residual interference are shown versus an array
of fixed gain values.

Similar to the theoretical predictions in Figure 1, the
points of minimum BER and maximum interference reduc-
tion occur at different fixed gains. Minimum BER occurs
with a gain of 0.007 and maximum interference reduction
is at a gain of 0.022. 0.007 also corresponds to the value for
the fixed gain determined by equation (13) for the WFD al-
gorithm for this scenario. In further analysis we have found
the WFD algorithm to consistently pick the fixed gain which

results in the minimum BER.
Finally, in Figure 3, we directly compare the WFD algo-

rithm and decoupled Kalman demodulator. The input sig-
nals were identical to the simulation in Figure 2 except that
we varied the number of carriers from 4 to 28, correspond-
ing to loading factors from 0.5 to 3.5. As you can see, the
BER performance for the two techniques is virtually iden-
tical at all loading factors. We do need to point out, how-
ever, that performance at the higher normalized capacities
is almost certainly dominated by the channel magnitude es-
timates which were the same for both demodulation tech-
niques.

6. Conclusions

By making use of the steady state solution to the Kalman
filter we have reduced the already efficient decoupled
Kalman filter technique to a single calculation for each sym-
bol. This simplification causes some performance loss in
low interference environments, but very little loss in high
interference environments. Additionally the fixed gain can
be tuned to optimize for either BER performance or interfer-
ence cancellation depending on the needs of the application.
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Figure 1. Comparison of bit error rate (BER) performance, residual interference, and impulse
response vs. normalized fixed gain for Kalman and fixed gain demodulators. There were 64 chips
per symbol and the SNR was 8 dB.
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Figure 2. Comparison of bit error rate (BER) performance and residual interference vs. fixed gain
selection at a loading factor of 1.5 and 8 dB SNR.
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