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Abstract

Java implementations of algorithms used by spreadsheets to au-

tomatically recompute the set of cells dependent on a changed cell

are described using a mathematical model for spreadsheets based on

graph theory. These solutions comprise part of a Java API that allows

a client application to read, modify, and maintain spreadsheet data

without using the spreadsheet application program that produced it.

Features of the Java language that successfully improve the running

time performance of the algorithms are also described.

1 Introduction

This paper describes algorithms for the recomputation of spreadsheet cells.
The assumed context for such a recomputation occurs when a cell’s value is
changed. In general, a cell is dependent on several others for its value as
defined by its formula. Thus, to maintain the integrity of the spreadsheet,
the reading of a cell value requires the recomputation of this cell once any of
the cells on which it depends has changed.

The algorithms of this paper form the basis of ExcelComp [9], a Java
[24] application program interface (API) written by the author that al-
lows the client application to read a specially formatted Microsoft Excel [4]
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(henceforth referred to as “Excel”) spreadsheet output file, and then make
changes to cell values within the ExcelComp representation of this spread-
sheet. Changes to cell values are followed by the automatic recomputation of
dependent cell values using ExcelComp methods. ExcelComp thus allows the
client programmer to provide its users with both the data and behavior of an
existing spreadsheet without the use of the original spreadsheet application
program that produced it.

During the development of ExcelComp, it was realized that choices of
algorithms to perform cell recomputation involve two principal trade-offs: 1)
ease of use, and 2) running time performance. On the one hand, one mode of
ExcelComp can simply load a file at run time that represents the spreadsheet,
and then provide its services. While this mode is satisfactory for many tasks,
it is unsuitable for those that require a large number of cell recomputations
to support dynamic updates to real-time outputs, for example, the updating
of an on-screen map that depends on thousands of cell recomputations. To
support this latter task, a second mode was developed that allows faster cell
recomputation at the expense of a less convenient installation procedure for
the spreadsheet representation.

These considerations make ExcelComp an efficient, platform- and vendor-
independent Java API that provides built-in spreadsheet emulation for ap-
plication end-users. In particular, end-users are relieved of the burden of
conducting their spreadsheet tasks outside the domain of their running ap-
plication. In addition to the efficiency won by executing spreadsheet tasks
natively, ExcelComp also obviates the need for costly additional licenses re-
quired for multiple users of the application software that produced the spread-
sheet. Being written in the modern Java programming language allows the
client programmer to easily integrate ExcelComp’s functionality into current
software development efforts.

While other descriptions of spreadsheet algorithms are available [16][17],
this paper is distinctive in its use of graph theory to improve the reader’s
ability to visualize the algorithms, and to provide a basis for a proof of
algorithm correctness. It also presents solutions that leverage features in the
object-oriented Java API that lead to succinct, yet powerful code.

This paper focuses on the subject algorithms and the specific features of
the Java language used by ExcelComp that are well-suited for their imple-
mentation. Readers interested in a more detailed specification of ExcelComp
from the client programmer’s perspective may contact the author.
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2 A Scenario

Before getting into the technical details that comprise this report, it would
be helpful to consider a motivational scenario.

Consider a spreadsheet of financial data, where subtotals, interest earned,
and a grand total might be some examples of computed quantities that each
depend on entries in several cells. Analysts may use such a spreadsheet to
play “what-if” games by varying values in cells that will affect some target
cell, such as interest earned. The spreadsheet program would then auto-
matically recompute all cells that are dependent on the ones changed. This
capability of a spreadsheet is its hallmark, and distinguishes it from a simple
table of values that have no computational relationship to one another.

Suppose that a computer program needs this spreadsheet of information
and auto-update capability to carry out its tasks. This program is to provide
its users with the what-if capability, and therefore requires not only cell
values, but also cell formulas. Since it needs to emulate the recomputation
function of the spreadsheet, it must implement algorithms that return the
same recomputed values as the spreadsheet program. It is these algorithms
of dependent cell recomputation that are the subject of this report.

3 Modes

ExcelComp has two modes of operation:

Interpreted mode requires the reading of an eXtensible Markup Language
(XML) [2] representation of a spreadsheet. Once this file is parsed and
loaded into ExcelComp’s data structures, the subject algorithms are
implemented via ExcelComp methods. It is called interpreted, because
cell formulas are interpreted at run time using a custom parser that
recognizes a subset of Excel’s formula language.

Compiled mode uses cell-specific Java classes, created as an offline pre-
processing task, to evaluate a cell by recursively evaluating each child
cell referenced in its formula’s parse tree.

The interpreted mode is the slowest of the two. It has the advantage, how-
ever, of requiring less preprocessing, namely just the creation of the XML
input file. During the development of ExcelComp, this XML file was pro-
duced by running an Excel macro [8]. It is also easier in this mode for the
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client programmer to provide the application user the flexibility to apply Ex-
celComp to a different spreadsheet by simply changing a filename reference
in ExcelComp’s constructor. The comprehensive update of all dependent cell
values upon the change of a constant cell in this mode allows the ExcelComp
user to highlight the newly computed dependents. Such an application was
developed by the author, where changed cells are shown in a JTable [22] with
changed values highlighted in red to allow the user to gain insight into the
impact of the change of a cell value.

The compiled mode is much faster than the interpreted mode, and should
be preferred in cases where a client demands exceptionally high execution
time performance, e.g., providing a real-time screen update that depends
on the recomputations. The preprocessing needed for compiled mode in-
cludes the generation of Java source code that implements the formulas of
the spreadsheet. This source code generation was automated by using a Java
class that uses classes produced by parser generators [1, 14] to implement a
custom parser for a subset of the Excel formula language. In general, Java
classes that represent each cell formula in the spreadsheet must be created,
and then be referenced by the classpath option for the Java virtual machine
(JVM) [18].

4 Computation Model

To provide a lingua franca for the discussion to follow, we need to identify
parts of a spreadsheet that are useful to us. While the intent is to have a
model that is generic, platform-, and vendor-independent, the use of Excel
as a reference implementation for ExcelComp influenced the latter’s design.
The language of this paper will be similarly influenced, however it is germane
to any spreadsheet that adheres to the computation model described here.
While a queue-based computation model has been successfully developed
[16], we will find it advantageous to develop a model using graph theory.
In particular, proof of correctness of the algorithms can benefit from such a
treatment.

There are many ways to present data using a spreadsheet. For example,
two principal classes of representation provided by Excel are the workbook,
and the chart. We consider only the tabular computation environment found
in a workbook. The term spreadsheet will thus be used as a synonym for
workbook.

4



A spreadsheet is a finite set of cells arranged as a matrix. A cell is a
set that contains three elements of interest:

1. a value,

2. a formula, and

3. a cell reference.

A cell’s value is the result of the computation specified by its formula.
In general, this value may be a real number, a string, or some other data
type. To simplify this model, we will assume that these values are real. A
cell’s formula is an expression that defines a cell’s value as a function, f , of
a subset of the spreadsheet’s cell values. Let C denote the set of cell values
for some spreadsheet. More formally then, we have

f : Cn → C, (1)

where Cn is the n-fold Cartesian product of C for some positive integer n.
For this model, we define C =

�
. In general, a formula expresses a composite

of functions in the form (1). A formula that is not composite has constant
values for its arguments. Such a formula is termed a constant formula.

A cell reference is an ordered pair that specifies a cell uniquely within
the spreadsheet. The Excel “A1 reference style”[5] will be used, where the
first element specifies the column, and the second element specifies the row.
For example, B3 designates the cell at the intersection of the second column
and the third row. We use Xi to denote a variable whose value is a cell
reference. In the context of a formula, a cell reference is mapped to its
corresponding cell value according to (1). We thus see that, in general, a cell
reference refers to a composite function that is defined by the formula for
that cell. For example, if cell M1 depends on N1 and P2, and N1 depends on
Q3, and P2 depends on R1, then the value of M1 expressed as a composite
function is M1(N1(Q3),P2(R1)). For this expression to be fully resolved, the
formulas for both Q3 and R1 must be constant formulas.

To successfully develop the subject algorithms, the scope of the set of
spreadsheets to be considered must be defined. This will be done by identi-
fying properties that serve as axioms for the spreadsheets of interest. Spread-
sheets that satisfy the stated properties are termed admissible.

There is a cohesive relationship between a cell’s formula and its value, as
described in the following property.
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Property 1. A cell’s value is completely determined recursively by its for-

mula.

To be clear, Property 1 states that a cell’s value depends only on its
formula, but that formula in general depends on other cell values that are, in
turn, dependent only on their formulas. This recursion ends when a cell with
a constant formula is reached, thus resolving all of the recursive cell value
references.

The formulas of a spreadsheet define a potentially involved relation among
its cells. Given cell Xi, its formula may be a constant formula, or a non-
constant formula that defines Xi’s value as a function of other cell values in
the spreadsheet. In the latter case, we say that Xi is dependent on the cells
referenced in its formula. That is, the value of Xi depends on the values of
the cells referenced in its formula. The term “value” will often be omitted
when the context of “dependent” is clear. We also refer to each cell referenced
in Xi’s formula as a child of Xi. Similarly, Xi is a parent of its children. A
parent and any parent of a parent is termed an ancestor. A child and any
child of a child is termed a descendant.

The relation among the dependent cells in a spreadsheet may be repre-
sented as a weakly connected directed graph, G(V, E), where V is the set of
vertices, and E is the set of edges. Figure 1 illustrates this spreadsheet de-
pendency graph with an example that will be used throughout this paper.

E1
B1+C1

F1
C1

B1
1+A1

C1
A1+D1

A1
1

D1
10

Figure 1: Example of a Spreadsheet Dependency Graph

Each vertex of the graph is a cell represented as a box. The cell refer-
ence is given at the top of each cell box, and its corresponding formula is
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given in smaller type at the bottom of the box. It is understood that the
value of a cell is assigned the value computed by its formula. The cell values
are omitted from the cell boxes in Figure 1 for brevity. Note that C1 has
two parents: E1 and F1. This lack of a unique parent in general for each
cell precludes regarding this structure as a rooted tree. Although the more
general graph is the appropriate data structure for representing cell depen-
dencies in a spreadsheet, we will find that rooted trees will also be useful in
the algorithms to be described.

In describing Figure 1, some of the basics of graph theory, using [6] as a
guide, will be described as needed.

In Figure 1, the set of vertices V are the cells, and the set of directed
edges E is defined according to the parent/child relationships. Each edge is
directed from a parent to a child. The set E is a subset of the ordered pairs of
V . Let a sequence of vertices be ordered such that vi−1 is a parent of vi, and
let vi−1vi denote the edge directed from vi−1 to vi. A sequence of edges and
vertices that has the form {v0v1, v1v2, . . . , vn−1vn} for distinct vi is defined
as a directed path linking v0 and vn. A directed path is a directed cycle
if it consists of 2 or more vertices, and vn = v0.

We are now led to an important stipulation concerning spreadsheets.

Property 2. An admissible spreadsheet contains no directed cycles.

The Excel term for directed cycle is circular reference. Property 2 thus
states that circular references are prohibited.

A graph from the subset of graphs just described is termed a directed
acyclic graph or dag [3, section B.4].

Readers familiar with the GNU Make tool [28] will recognize this depen-
dent cell recomputation problem as being analogous to the problem solved by
Make: automatic determination of the pieces of code that require recompila-
tion, and issuing the appropriate commands to bring the program up to date.
Make uses a dependency graph model. See [26] for details and illustrations
of Make’s dependency graphs, including a description of pitfalls concerning
the proper use of Make to ensure correct dependency graph construction in
large projects.
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5 Interpreted mode

This section describes those algorithms that are implemented in the inter-
preted mode of ExcelComp. The integrity of the spreadsheet is preserved
in this mode by recomputing all dependent cells of a cell whose constant
formula (value) has changed. This behavior ensures that, upon the commit-
ment of a new value to a cell, the entire spreadsheet will be updated to reflect
the change. This matches the default behavior of Excel, where it is termed
automatic calculation. Pseudocode is given in this section to highlight the
salient features of the ExcelComp interpreted mode algorithms; the actual
code differs in some of the implementation details.

5.1 Dependency Set Generation

Suppose that we are examining a spreadsheet for the first time, and have
no a priori knowledge of its contents. Say we want to modify cell A1. By
this, we mean that A1 has a constant formula that is to be changed to
another constant formula. The more general act of modifying or adding a
non-constant formula will not be discussed here; it is assumed that non-
constant formulas remain fixed throughout our analysis.

Consider the impact that this change has on the cells that are dependent
on A1 in Figure 1. First, this change in the formula causes a recomputation
of A1’s value. This change will, in general, affect the values of all cells whose
formulas reference A1. These cells, B1 and C1, are directly dependent
on A1, and will need to be recomputed as a result. In general, the values
of these direct dependents will change as a result of recomputation. These
direct dependents must then be considered in the same light as A1; that is,
we need to find and recompute the direct dependents of the direct dependents
of A1. These cells are E1 and F1. From the point of view of A1, these latter
cells are indirect dependents of A1.

The algorithm for discovering the set of dependent cells of a given cell is
thus recursive. Let d be a set-valued function d : 2C → 2C that computes
the set of direct dependents of a subset of cells from C. (Here, 2C denotes
the set of all subsets of C, also known as the power set.) The procedure just
described can now be expressed as

Ai+1 = d(Ai), Ai ∈ 2C, A0 = {A1}. (2)
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A0 is set to {A1} in (2) to reflect Figure 1, but in general it will be
assigned to the set containing the cells that were changed.

Dependency Set Generation may be recognized as an implementation of
the breadth-first search (BFS) algorithm for graphs described in [3]. The
“frontier between discovered and undiscovered vertices” described in [3] ap-
plied here divides two generations of dependencies, i.e., child/parent, par-
ent/grandparent, etc. Also, note that we begin with a child, and then dis-
cover ancestors, in reverse to the naming convention used in [3].

For recurrence relation (2) to be practical, we must be assured that it
terminates. Indeed, an essential property of an algorithm is its finiteness;
according to [15],“An algorithm must always terminate after a finite number
of steps.” This assurance is given now as a theorem.

Theorem 1. Recurrence relation (2) terminates.

Proof. Because the indices of Ai in the recursion are strictly increasing, it is
sufficient to show that ∃imax 3 i ≤ imax.

Assume that the spreadsheet under consideration has N cells. Let ‖Ai‖
denote the number of parents of Ai−1. Because of Property 2, the number
of candidate parents for A0 is N − 1, since a cell cannot be a parent of itself
(thereby creating a circular reference). Similarly, the number of available
parents for A1 is at most N − 2, since both the children and grandchildren
of A2 must be excluded to avoid circular references. In general then,

‖Ai‖ ≤ N − i,

and in particular, ‖AN‖ = 0. At this point, no parents are available to
continue further. We have thus shown that i ≤ N ; that is, imax = N .

The final product of Dependency Set Generation is formed by taking the
union of the sets of dependent cells found in (2). Assuming that the final
index computed in (2) is n, and letting D be the set of dependent cells, we
have

D =

n⋃

i=1

Ai, Ai ∈ 2C (3)
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Input: Set of cells for which dependent cells will be found

Output: Set of cells that are dependent on the input

set of cells

DepSetGen(depSet,m)

{

initial_size = depSet.size();

for (k=m through initial_size-1;k++) {

for (j=0 through SPRSHEET_SIZE-1;j++) {

// Find all direct dependents of depSet[k].

if (sprsheet[j].formula contains depSet[k].ref) {

depSet.add(sprsheet[j].ref);

}

}

DepSetGen(depSet,initial_size);

}

if (m == 0) {

depSet.delete(depSet[0]);

}

}

Figure 2: Dependency Set Generation Algorithm

5.1.1 Example

The Dependency Set Generation algorithm is codified in Figure 2. Let us
apply this algorithm to finding all dependents of A1 in Figure 1.

Assume the number of cells in the spreadsheet, SPRSHEET_SIZE, is 6.
The array sprsheet holds all the cells in the spreadsheet. Each element
of sprsheet has the fields ref and formula for cell reference and formula,
respectively. The array depSet will be built up to contain the cell references
of all of the dependents of its initial value.

We make the initial call to DepSetGen with depSet initialized to contain
A1, and the depSet element marker m set to 0. This marker’s value is the
index of the cell in array depSet whose dependents are sought. Variable
initial_size is set to the number of elements in depSet. Since depSet

contains only A1, initial_size = 1. Loop counter k ranges from 0 through
0. The inner loop checks to see whether any spreadsheet cell formula contains
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A1. If it does, the cell reference is added to depSet. At the time where
the inner loop is finished, both B1 and C1 are appended to depSet. At
the bottom of the outer loop, it is time to make the first recursive call to
DepSetGen.

The actual parameters passed to DepSetGen are the newly updated 3-
element depSet, and the initial size of depSet before the loops, 1. Now
entering the first recursive call of DepSetGen, m is 1, initial_size is 3,
depSet consists of A1, B1, and C1. Loop variable k ranges from 1 through
2. The first time through the inner loop finds all dependents of B1, and adds
the one dependent found, E1, to depSet. When k is 2, the inner loop finds
all dependents of C1, and adds the one dependent found, F1, to depSet.

Upon the next recursive call, the marker is set to the next unexamined
element of depSet, E1 at index 3. No dependents are found. Similarly for
F1 at index 4. Finally the outer loop is skipped, and control is eventually
returned to the original call of DepSetGen, where m is 0. Lastly, the if

statement is executed, and the initial element A1 is removed from depSet,
since A1 is not dependent on itself. It is assumed depSet contains just one
cell during the initial call to DepSetGen. Though not shown in Figure 2, an
additional step of removing duplicate cell references from D is required to
ensure that all of its elements are unique.

To conclude this section, it will be shown that the Dependency Set Gen-
eration algorithm just described indeed finds all dependents of a given cell.

Theorem 2. The Dependency Set Generation algorithm identifies all depen-

dents of its input set of cells.

Proof. The proof is by contradiction. Assume we have a spreadsheet with
cells Ci, i = 0, 1, 2, . . . , N−1. Suppose ∃Ck ∈ C that is dependent on C0, but
was not identified by the Dependency Set Generation algorithm. Then by
Property 1, this dependence of Ck on C0 must be due only to Ck’s recursive
formula. There must then be a directed path in C0’s dependency graph from
Ck to C0. Since Ck was not identified, there is at least one cell Cj in this
path that was not found during the recursion. But this contradicts the step
in the algorithm that says to find all direct dependents of Cj−1.

5.2 Recomputation of Dependency Set Members

Once the dependency set D has been generated, the process of recomputing
these cells can begin.
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To evaluate a cell, designated the original cell, each argument in its
formula, the original formula, must be evaluated. This evaluation is in
general a recursive procedure. By drawing a directed edge from the original
cell to each cell referenced in the formula (one edge per cell in the formula),
we get a rooted tree that is rooted at the original cell. By applying this
algorithm recursively on each cell in the formula, we get several paths, each
of which ends at a leaf having a constant-formula cell. The resulting rooted
call tree is just a subset of the spreadsheet dependency graph. We may
then start at the leaves of the tree to construct a string of formulas of the
cells in a given path in the direction back toward the root. Each string
is a self-contained sequence of formulas that allows the original cell to be
evaluated.

Lastly, once all the arguments in the original formula have been evaluated,
the original cell can be evaluated. Those arguments in any formula that are
not members of D need not be recomputed; their current values can be used
instead.

The foregoing procedure is an implementation of the depth-first search

(DFS) algorithm described in [3]. In this case, the use of the terms “prede-
cessor” and “descendant” in [3] is consistent with our usage. However, we
do not use “timestamping.”

We can see a lot in common here with the Dependency Set Generation al-
gorithm. Once again, we see a recursive procedure being described, although
it is not as easily expressible in one line as in (2). Instead, we will codify the
algorithm in the pseudocode given in Figure 3.

5.2.1 Example (continued)

Continuing the example begun in the Dependency Set Generation section,
consider again the dependency graph in Figure 1. Suppose that E1 is to be
evaluated. The well-known left-to-right, post-order tree traversal algorithm
will be used to specify the order of evaluation of E1’s descendants. During
the first call to EvalCell, the recursion depth variable depth is initialized to
0. In addition to the ref and formula fields, assume that a cell object also
contains a field nchildren that gives the number of children in its formula
field. The object cell also contains a child array, each of whose elements
is a cell representing each child in its formula. The elements of child are
stored in order of occurrence in its formula, element 0 being the leftmost
child, and element nchildren-1 being the rightmost.
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Input: Original Cell

Output: Original Cell with newly computed value

depth = 0; // Initial value (global)

EvalCell(cell)

{

for (i=0 through cell.nchildren-1;i++) {

depth++;

EvalCell(cell.child[i]);

}

parser_str.append(cell.ref + ’=’ + cell.formula + ’;’);

if (depth == 0) {

cell.value = parse(parser_str);

}

depth--;

return cell;

}

Figure 3: Dependency Set Evaluation Algorithm

We thus begin by calling EvalCell with cell.ref set to E1. The recur-
sive evaluation of E1’s call tree begins with the leftmost cell reference in E1’s
formula, B1. B1 ∈ D, and therefore must be recomputed. We then begin
with the leftmost element of its formula, and find that it is the constant 1.
This is a constant, and thus requires no further evaluation; we move to the
next element, A1. A1 is the changed cell, and its value is known, thus no
further analysis is needed.

We have now reached the end of B1’s formula, allowing us to compute its
value. We thus go back up to E1 to process the next argument in its formula,
C1. C1 ∈ D, and therefore must be recomputed. The leftmost child of C1’s
formula is A1, and has already been evaluated. C1’s next child, D1 /∈ D, and
thus does not have to be recomputed. Its current value of 10 is used.

We have now recursively evaluated all of the children of E1’s formula, and
completed the building of parser_str. This string may then be passed to a
parser for evaluation of E1. ExcelComp uses an LALR parser developed by
the author using the tools JLex [1] and CUP [14]. LALR stands for LookA-
head Left-to-right identifying the Rightmost production, and is described in
[12]. For this example, the string is:
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A1=2;B1=1+A1;A1=2;D1=10;C1=A1+D1;E1=B1+C1;.

Here, “=” stands for assignment, and “;” delimits each assignment. It
is assumed that the parser stores values via the assignment statements, and
that these values may be retrieved at points later in the parse string. The
history of the construction of the parser string is summarized in Table 1.

depth cell.ref i parser str

0 E1 0
1 B1 0
2 A1 0 A1=2;
1 B1 0 A1=2;B1=1+A1;
0 E1 1 A1=2;B1=1+A1;
1 C1 0 A1=2;B1=1+A1;
2 A1 0 A1=2;B1=1+A1;A1=2;
1 C1 1 A1=2;B1=1+A1;A1=2;
2 D1 0 A1=2;B1=1+A1;A1=2;D1=10;
1 C1 1 A1=2;B1=1+A1;A1=2;D1=10;C1=A1+D1;
0 E1 1 A1=2;B1=1+A1;A1=2;D1=10;C1=A1+D1;

E1=B1+C1;

Table 1: History of Parser String Construction for E1

Note that there is a redundant assignment “A1=2” in parser_str. This is
an example suggesting efficiency enhancements that can be seen to improve
the performance of these algorithms. Improvements include, but are not
necessarily limited to:

1. Recompute a cell value only once.

2. Do not recursively evaluate cells that are not in D.

Although these improvements surely are desirable for minimizing the
number of algorithm steps, experience with their use in ExcelComp revealed
that the time to run the additional code required to implement these im-
provements largely cancels out the benefits of fewer cell evaluations.

More ideas concerning the speed-up of interpreted mode are given in the
Algorithm Complexity section.
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6 Compiled mode

While the compiled mode agrees with interpreted mode with respect to the
preservation of spreadsheet integrity, it uses a clever postponement of compu-
tation technique to update a dependent cell’s value just prior to the reading
of its value via its accessor method. Using this deferred recomputation strat-
egy, the execution time associated with recomputing those dependent cells
whose values are never accessed is eliminated. This deferred recomputation
is similar to Excel’s manual calculation mode, where the user specifies when
recomputation is to occur thus deferring immediate recomputation. It is also
similar to the mark-sweep garbage collection algorithm [29].

Compiled mode is implemented by ExcelComp’s use of the Cell API
[27]. The highlight of this mode is preserving spreadsheet integrity while
improving the running time performance of ExcelComp. Several techniques
are used to meet this goal, including the use of:

1. the Java Reflection API

2. Hash containers, and

3. Deferred recomputation of dependent cells.

6.1 The Cell Class

Cell is an abstract Java base class that provides a framework for modeling
the cells of a spreadsheet, each of which is represented by a class derived
from Cell named CellXi, where Xi denotes the A1-style reference to its
corresponding cell.

On its initial invocation, Cell’s accessor class method getCell instanti-
ates a CellXi object via the Java Reflection API [25]. This technique allows
a Java class to instantiate another class whose name is created at run time
by the calling method. To improve the efficiency of subsequent accesses,
Cell has a class variable workbook to reference a HashMap of references to
previously instantiated CellXi objects. Similarly, each CellXi object has
a HashSet named dependencies that contains references to CellXi objects
that correspond to cells that are direct dependents (parents) of the CellXi

object that owns dependencies.
In a CellXi’s constructor, each child’s instance method addDependency is

called to add Xi to that child’s dependencies set. The use of getCell during
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input.xml

interpreted mode

compiled mode

real-time parser

GenCell

offline parser

ExcelComp

CellXi.java
javac

CellXi.class

Figure 4: Preprocessing requirements for ExcelComp modes

this process causes each child’s object, on its first access, to be initialized with
its constructor. A DFS traversal of CellXi’s call tree thus occurs so that each
traversed parent appears in each of its children’s dependencies set. The set
of all such parents is the set of discovered ancestors. Both workbook and
dependencies contain only minimal subsets of the full set of their respective
data that describes the entire spreadsheet as determined by the history of
Cell method calls. These subsets are updated as necessary, and suffice for
computing correct results when recomputation of cell values is necessary.

6.2 Preprocessing

Figure 4 details the differences in the preprocessing requirements for the two
modes of ExcelComp.

The preprocessing necessary for compiled mode begins with the same
XML input file used in interpreted mode. A Java API named GenCell [10]
is run on this input file to produce a set of Java source files. Each source
file defines a CellXi class that corresponds to a spreadsheet cell. GenCell

uses a JLex/CUP-based parser similar to that used in interpreted mode to
allow the translation of a supported subset of the Excel formula language
into the appropriate Java statements. The important difference between the
two parsers is in their output. In interpreted mode, the ExcelComp parser
returns a string at run time that represents a newly-computed value. For
ExcelComp’s compiled mode, the GenCell parser returns Java source code
that is written to a set of source files as an offline preprocessing task. Once
GenCell has completed generating all of the source files, the Java compiler is
run to compile these files into class files of executable bytecode. The Excel-
Comp user must then ensure that the Java classpath contains the appropriate
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references to allow the client application to find the classes at run time.

6.3 Dependency Set Generation

The nature of the preprocessing performed in compiled mode allows Excel-
Comp to handle Dependency Set Generation as a distributed, on-demand
task rather than as an explicit set of steps conducted immediately after a
cell value is changed as in interpreted mode.

6.4 Deferred Recomputation of Dependent Cells

Rather than requiring that the immediate recomputation of all members of
D occur after a cell’s value has been changed, compiled mode defers the
recomputation of any member of D until the client programmer requests its
value via an ExcelComp accessor method. This algorithm saves considerable
time when compared to its interpreted mode counterpart, seeing that the
recomputation of many dependencies whose value is never sought is avoided.

6.5 Getting a Value

Each CellXi object’s getValue method contains the Java encoding of the
formula for cell Xi. The value of the cell is recomputed and stored as the
instance variable val only when that object’s boolean dirty flag is true;
this flag thus allows this method to avoid unnecessary recomputation. When
recomputation is unnecessary, getValue just returns the value of val.

6.6 Setting a Value

When a CellXi object’s setValue method is called, its instance variable
val is set to the desired value, and a DFS traversal of all of Xi’s discovered
ancestors is performed to ensure that each such ancestor’s dirty flag is set to
true. This ensures that all ancestors’ values are recomputed on a subsequent
call to an ancestor’s getValue method. Note that recomputations are only
done if an ancestor’s getValue method is called, thus saving the time of
recomputing ancestor values that may never be accessed.
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6.7 Example

The following example illustrates the workings of compiled mode using Fig-
ure 1. Given the spreadsheet represented by this graph, we will use compiled
mode to set A1’s value to 2, and then get the value of E1. Observe that E1’s
value with A1 set to 1 is 13. By changing A1’s value to 2, we expect the new
value of E1 to be 15.

The first statement given by the client program is:

Cell.getCell("A1").setValue(2);

The initial part of this statement, Cell.getCell("A1"), creates a new in-
stance of CellA1, since one does not yet exist. This new instance is cre-
ated using the forName class method in the package java.lang.Class [19].
CellA1’s base class constructor Cell() is first called to set CellA1’s dirty

flag to true. CellA1’s val variable is set to 1 by its constructor. The last
part of this statement calls Cell’s setValue method to set val to 2. In
general, setValue recursively marks all of A1’s discovered ancestors as dirty.
However, since no ancestors have yet been discovered, and thus no corre-
sponding CellXi objects have yet been instantiated, no such marking occurs
here. We are thus left with one instance of CellA1 that is marked as dirty
and has a value of 2.

We now get the value of E1. The appropriate statement is:

Cell.getCell("E1").getValue();

The first part of the statement behaves in the same way as for A1 described
above, only now the newly created object is an instance of CellE1. In addi-
tion, CellE1’s constructor initiates a DFS traversal of all of E1’s descendants
to update each descendant’s HashSet dependencies. For this example, both
CellB1’s and CellC1’s dependencies sets are updated by having a reference
to CellE1 added. Note that CellC1’s dependencies set does not refer to
CellF1 since, although F1 is dependent on C1, it is not a descendant of
E1. Such a reference to CellF1 need only be added if F1 is the subject of
future method calls. The last part of this statement checks to see whether
the instance of CellE1 has been marked as dirty. Since CellE1 was just
constructed anew, it is marked as dirty and thus its value must be recom-
puted (in this case, computed for the first time). The statement in CellE1’s
getValue method that accomplishes this is:
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this.val = Cell.getCell("B1").getValue() +

Cell.getCell("C1").getValue();

Since the objects for B1, C1, and D1 were all marked as dirty during the
DFS traversal in CellE1’s constructor, each object’s getValue method will
recompute the value for that cell. Each object’s getValue method resets that
object’s dirty flag to false after the recomputation. Subsequent accesses
to CellXi values that have not been affected by a change to a descendant’s
value simply return the value stored in val with no recomputation necessary.

7 Performance

7.1 Tests

ExcelComp was tested for its running time performance in the SATCOM
Availability Analyst (SA2) Java application [7]. The addition of ExcelComp
API calls to SA2’s map display function was chosen for test due to its de-
manding requirement that 8,518 data points be updated for an on-screen
Mercator map in such a way that the user is not burdened by long wait
times for a complete update of the map. Processing each of the data points
required 3 calls to ExcelComp methods; 2 of these calls each changed a cell
value from the input spreadsheet, and the last call read back a cell value
of interest from the newly updated spreadsheet. The map display function
was selected and run 10+ times in each mode to characterize ExcelComp’s
performance. Running times associated with the first invocation of the map
function were greater than subsequent trials, and thus were considered out-
liers and removed from the representative data. These larger values probably
reflect JVM-related setup steps that are not required on subsequent trials.

The tests were conducted on a Hewlett-Packard HP OmniBook 4150 B
running under Microsoft Windows 98 on a Pentium III 650 MHz processor.
SA2 was run using the Sun Microsystems JVM version 1.3. Running times
were computed as the difference in the start and end times returned by the
Java method System.currentTimeMillis() [23].

The results of the performance tests are summarized in Table 2. The
sample standard deviation is computed as the positive square root of the
unbiased sample variance. The large difference in performance between the
modes highlights how compiled mode can provide a very acceptable perfor-
mance level in a case where interpreted mode, requiring over 5 minutes to
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Compiled Mode Interpreted Mode

Average 677 347057
Sample Standard Deviation 116 254

Table 2: ExcelComp Running Time (milliseconds) Performance over 10 Sam-
ples

complete, would be unacceptably slow. In this particular case, it is essential
that compiled mode be chosen to make the use of ExcelComp feasible.

7.2 Algorithm Complexity

The graph traversal algorithms that underlie ExcelComp are well known to
be efficient. Both DFS and BFS have running times that are linear in the
size of the graph’s adjacency list. Specifically, BFS is O(V + E), and DFS is
Θ(V + E) [3, sect. 22.2, 22.3].

Interpreted mode does not construct an adjacency list, and could very well
benefit from a redesign to create this list upon the loading of the spreadsheet
in the ExcelComp constructor. Because this construction must take place
at run time, the user would incur a one-time performance penalty for this
initialization step. The absence of an adjacency list suggests that interpreted
mode’s running time is probably greater than the linear time cited above.

Compiled mode, on the other hand, does use a variation of adjacency
lists in CellXi’s dependencies set. However, while an adjacency list stores
references to children, dependencies stores references to parents of CellXi.
Compiled mode incurs a setup penalty during the discovery of cells, but
subsequent accesses to CellXi objects are more efficient through the use of
dependencies and workbook. Its use of adjacency lists, DFS traversals, and
the efficient Java collections framework suggests that compiled mode has a
running time that is close to Θ(V + E).

8 Conclusion

We have seen that a graph representation of spreadsheet cell dependencies
provides insight into the requirements of the algorithms used for the au-
tomatic recomputation of dependent cells. Straightforward implementation
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of well-known graph traversal algorithms suffices for correct recomputation,
however the adaptation of a well-studied garbage collection algorithm along
with facilities made available in the Java language enable client programs to
run much faster, given some additional preprocessing.

The client programmer should choose the mode of ExcelComp according
to an analysis of the application’s run time requirements and the tradeoffs
between the modes as described in this paper.
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