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Abstract.  The purpose of this paper is two-fold: (1)
to present a methodological framework for the design
of database architectures in a distributed database
environment, and (2) to provide support for the
Defense Information Systems Agency's (DISA)
guidelines in the segmentation of databases for use
by DoD systems and programs.  The first problem
considered addresses design options in the
partitioning of a single large database into multiple,
smaller database segments. The second problem
considers multiple data sources and determines a
preferred subset of these to form a single, composite
database while satisfying requirements and multiple
criteria.  The structured approach considered here is
that of non-linear, zero-one mathematical
programming (MP) to yield insight into the choice of
designs possible given a set of system requirements
and criteria.

Keywords. database design, distributed database
environment, virtual database design, database
segment design, DII COE, Multiple Criteria Decision
Making, MCDM.

INTRODUCTION
Increasingly today, many information systems are
being designed where the need exists to access
multiple bodies of data available not in a single data
source (i.e., a database) but in multiple data sources
distributed over many programs and systems within
the Department of Defense (DoD) community.  This
is especially apparent when creating database
“segments” for the Defense Information
Infrastructure Common Operating Environment
(COE).  The DII COE Integration and Runtime
Specification (I&RTS) defines a segment as a
collection of one or more software or data units most
conveniently managed as a unit.  A database segment
is data that is to be managed by a Data Base
Management System (DBMS) host on a DII COE
server.  This paper addresses the following questions:

• What are the options available to the database
designer as he/she considers multiple data
sources? Should a “preferred” or optimal set of
data sources be identified?

• If database segments are to be designed by
contractors for the DII COE, what techniques
and guidelines can be generated for database
“segmentation” ?

• How are segments to be integrated to create an
information system? Should the segmentation
process “encourage” the production of many
small segments or just a few large segments to
create such an information system?

The motivation for these questions stems from the
DII COE  I&RTS ( Version 4.0, October 1999).

DoD’s Vision.  "The DII COE originated with a
simple observation about command and control
systems: certain functions (mapping, track
management, communications interfaces, etc.) are so
fundamental that they are required for virtually every
command and control system.  Yet these functions
are built over and over again in compatible ways
even when the requirements are the same, or vary
only slightly, between systems.  If these common
functions could be extracted, implemented as a set of
extensible low-level building blocks, and made
readily available to system designers, development
schedules could be accelerated and substantial
savings could be achieved though software reuse.
Moreover, interoperability would be significantly
improved because common software is used across
systems for common functions, and the functional
capability only needs to be built correctly once rather
than over and over again for each project".

The DII COE Concept.  Both software and data
reuse are encouraged to achieve interoperability.
Principles that are part of this concept include
(quote):
• An architecture and approach for building

interoperable systems,
• An environment for sharing data between

applications and systems,
• An infrastructure for supporting mission-area

applications,
• A collection of reusable software components

and data,
• A rigorous set of requirements for achieving DII
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        compliance,

• An automated tool set for enforcing COE
principles and measuring DII compliance,

• An approach and methodology for software and
data reuse, and

• A set of Application Program Interfaces (APIs)
for accessing COE components.

Database Segment Development. The DII COE
document does contain general guidelines that
database segment developers can use to meet data
requirements (quote):

• Use existing data stores at runtime (this requires
acquisition of access rights). Data stores can be
used as-is or changes can be negotiated with the
data store owner.

• Review the database segments on the COE Data
Emporium for potential reuse. For example, if
the Emporium contains a database segment that
contains the common representation for
Organizations, then that segment should be used.

• Attempt to have existing segments updated to
satisfy the new requirements. Use similar
enterprise segments (preferred) or Community of
Interest segments if available.

• Create new segments to extend the existing
segment(s) as necessary to meet the
requirements.

• Create a new data segment by reusing as much
existing schema as possible and augmenting it to
meet the requirements.

Other factors are recommended as well towards
determining the structural contents of a database
(quote):
• Which tables can be conveniently managed as a

unit.
• Which tables are defined to support a functional

area.
• What are the sources of data, and
• What are the database object dependencies.

"The advantage of multiple shared database segments
is that the segments are more granular, therefore
allowing a shared data server to be configured to
support mission applications without having to carry
superfluous data and can be handled as separate
configuration items.  A disadvantage of multiple
shared database segments is the management of
database object dependencies that can be created by
such things as foreign key constraints. These inter-
segment dependencies complicate the management of

segment installation and, moreover, the removal of
segments."  These guidelines, however, do not offer
specific ways or mechanisms that a designer can
follow to select a preferred subset of data sets or to
partition a database into segments while minimizing
the number of foreign-key dependencies.

STATEMENT OF PROBLEM
This paper addresses two specific distributed-
database design problems:

Problem 1:  Given a determination to partition a
database into database segments (i.e., subsets of
tables), what are the design options available to the
developer, and what are the trade-offs involved in
terms of cost, data sharing, interoperability,
performance, and other criteria?  The designer begins
with one large database and proceeds to partition it
into several smaller databases or segments, i.e., a
“one-to-many” database segmentation problem.

Problem 2:  Given multiple, alternative data sources,
how does the database designer select an optimal
subset of data sources?  Part of the system design
may be the formation of an “integrated, virtual
database” or a system interface that enables queries
of the various data sources.  If query performance
(i.e., non-functional requirement) is important then
the design solution may identify a particular set of
data sources.  If keeping system development costs
down is a primary concern then the design solution
may identify a different set of data sources and this
design will not necessarily yield high query
performance.  The designer begins with a large
collection of databases and proceeds to select
portions of each database to form a single, composite
database, i.e., a “many-to-one” database
segmentation problem.

METHODOLOGICAL APPROACH
Mission requirements drive the selection of data
sources, database design options reflect alternative
solutions in a “solutions-space” (i.e., one single, large
database system; several small databases; single site;
multiple site, distributed database environment; etc.),
while development costs and non-functional
requirements (i.e., system performance, security,
reliability, etc.) contribute to identifying “a preferred
system”, as depicted in Figure 1.  See Ozsu and
Valdiriez (1991) and Simon (1995) for a presentation
of design issues and a preview of emerging
technologies in distributed database design.
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Figure 1.  Mapping of System Requirements to Data Elements in a Distributed Database Environment

Problem 1:  One-to-Many Database Segmentation.
An approach suggested here is to partition a large
database (i.e., a set S of tables) into multiple
segments (i.e., a database segment Si is made up of a
subset of the tables in S, such that Si  S) so that
each  table appears in one and only one segment and
the union of all segments is the set S, as depicted in
Figure 2 for the general case of n data sources:

(a) Consider now the specific example of a database
to be segmented as shown on Figure 3.  A 4-
table segment candidate in Figure 3 has 6
foreign-key dependencies, i.e., 6 segment
boundary “crossings”; an arrow points to the
child-end of a relationship between two tables;
the other 4-table segment also has 6
dependencies, and the 3-table segment has 8
dependencies; however, counting the total
number of crossings across all three segments
yields a total of N1= 10 foreign-key
dependencies.

(b) Formulation of the “segmentation design
problem” shows that the number of possible
pairwise dependencies (i.e., at least one foreign
key is involved between two tables) is the
number of combinations given by the binomial
coefficient.  For the example database in Figure 3

this possible maximum number N2 is:

 Figure 2.  Partitioning of a Database into n Segments

However, the actual number N3 of table pairs with
dependencies is only 15:

A-B D-K  C-I
A-I E-F C-D
A-F E-I C-G
B-K F-H I-C
B-D H-G I-E

(c) The number of “segment dependencies” N1 was
shown to be  10 which is smaller than the
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number  of “table dependencies”, i.e., N1<N3< N2.

Figure 3.  Candidate Database Segments with 10 Foreign-Key Dependencies

Figure 4.  Optimal Segmentation of Database Resulting in Smallest Number (7) of Foreign-Key Dependencies.

Segment 1:  Tables B, D, G, and K
Segment 2:  Tables E, F, J, and I
Segment 3:  Tables A, C, and H
Foreign-key dependencies Di:  10
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(d) Number of segments possible, 3 or 4 tables each:

Out of the set of 10 tables, for example, 210 segments
could be constructed with 4 tables each; of the
remaining 6 tables 2 segments could be constructed
with 3 tables each; the total number of possible designs
(i.e., one design consisting of one 4-table segment and
two 3-table segments) would be (210)(20) = 4,200, a
very large number of segment designs indeed.

Mathematical Formulation:
Let Xji = 1 if table i belongs to segment j, 0 if table i
does not belong to segment j, and such that i = A, B,
…K, L, and j = 1, 2, and 3 as depicted in Figure 3.
Segments 1,2, and 3, for example, have a total of 10
foreign-key dependencies.  Then, the optimization
problem can be stated as follows:

Minimize:

∑
l,k,j,i

lkji XX

where k, j = A,B,C, …L, the names of tables, but k ≠j;

also i,l = 1, 2, and 3, the names of the segments, but i ≠
l, subject to constraints:

X1A + XIB + X1C +…+ XlL = 4 to require only four
tables in segment 1; X2A +X2B +X2C +…+X2L = 4 to
require only four tables in segment 2; X3A +X3B +X3C

+…+X3L = 3 to require only 3 tables in segment 3; X1A

+ X2A +X3A = 1 to require that table A belong to one
segment only (either segment 1, 2, or 3); X1B +X2B

+X3B = 1 to require that table B belong to one segment
only; X1C +X2C +X3C = 1 to require that table C belong
to one segment only; and so forth for all other
remaining tables; also, and Xij = 1 or 0 for all i and j.

Solution:
The optimal solution to this non-linear, binary problem
was obtained using the mathematical programming
capability in Excel's Solver tool:
X1C = 1 X1G = 1 X1I = 1
X1J = 1 X2B = 1 X2B =1
X2D = 1 X2E = 1 X1K = 1
X3A = 1 X3F = 1 X3H = 1

and all other variables are zero, i.e., do not select.  A
graphical representation of this solution is shown in
Figure 4.  This solution, it is seen, produces segments
4, 5, and 6 with the smallest  possible number of 7
foreign-key dependencies. This mathematical
representation can now be applied to the general
problem with hundreds or thousands of tables, any
segment size desired, and can also accommodate other
constraints such as week entities, business rules, and
groups of tables that the user wishes to be contained
within the same segment.

Problem 2: Many-to-One Database Segmentation.
As the database designer sets to identify existing
multiple databases that may contain the tables and data
elements of interest to him/her several situations are
possible, as depicted on Table 1. In the simplest case,
Case 1, all desired data elements or objects (i.e., data
elements, tables, stored procedures, other) reside in one
data source so the design strategy is to utilize that single
data source and no decision opportunity exists. In Case
2 all desired objects reside in multiple copies of the
same data source. In Case 3 desired objects reside
across multiple, distinct data sources, with no sharing of
data objects across data sources. Finally, in Case 4
desired objects reside across multiple, distinct data
sources, but some data objects are shared across data
sources available. We proceed to consider a decision
problem in Case 4.

Selection of the Preferred Subset of Data Sources.
Next, we consider an illustrative example of Case 4
where there are a total of 7 desired data elements,
{1,2,5,7,9,10}, distributed over 5 data sources as shown
on Figure 5 that are needed to meet requirements, with
cost and query response times as shown on Table 2.

A decision point occurs given the opportunity to select
a “preferred subset” of n data sources that meets the
following criteria:

(1) all the desired data elements are represented in this
preferred subset,

(2) it contains the smallest number of data sources
needed to provide all the data elements in the
“design subset of data elements” , as in Figure 1,

(3) it belongs to the set of non-inferior solutions on the
Pareto design frontier.  This frontier can be
obtained by considering multiple criteria (e.g.,
minimize design cost, minimize aggregate query
response, other) within a multiple-criteria decision
making (MCDM) framework (Goicoechea et al.,
1992, 1982).

Visual inspection of this illustrative example reveals
three possible solutions, i.e., designs:
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Design 1: Choose data sets:  A + B + C
Design 2: Choose data sets:  A + D
Design 3: Choose data set:   E

That is, solution/design 1 yields a choice subset
consisting of data sources A, B, and C; solution 2 yields
a choice subset consisting of data sources A and D; and
solution 3 yields a choice subset consisting of data
sources E only.  We note that each of these three
solutions contain the entire design set of data elements,
{1,2,5,7,9,10}.

In a real-world problem the number or alternative data
sources may be large and simple enumeration of the
possible solutions may not be practical.  Mathematical

programming (MP) is one approach to solving this
design problem, as shown next.

Multiple Criteria
Multiple criteria in distributed database design can
include:

· Cost
· Performance (query response time, other)
· Reuse/sharing of data sources
· Flexibility of configuration

Goicoechea et al. (1992, 1982) describe the use of
multiple criteria in engineering design and business
decision problems.

Table 1. A Distribution Pattern of Data Elements Across Multiple Data Sources
Case
No.

Distribution of Available Data
Elements

Architectural Strategy Optimization Criteria

1 All desired data elements/objects
reside in one data source.

Select single data Source

None.
No decision opportunity
exists.

2 Desired data objects reside in one data
source with exact replications in
multiple sites.

Select single data source

Select site that offers
lowest system development
cost.
Other criteria:
- performance

3 Desired data objects reside across
multiple, distinct data sources; no
sharing of data objects across data
sources.

Select entire set of data
sources. No decision
opportunity exists.

4 Desired data objects reside across
multiple, distinct data sources; there is
sharing of data objects across data
sources.

Select subset of data sources

Select subset of data
sources using optimization
criterion:
- Performance
- Cost
- Other

Figure 5.  Alternative Multiple Data Source
A design variable is assigned to each data element in the
“choice sub-set of data elements” with a range of possible
values of 1 (i.e., select this data element and its data
source) and 0 (i.e., do not select this data element and its
data source).

Design variables:  Let
Xij = data element j in data source i,
XA1 = data element 1 in data source A
XA4 = data element 4 in data source A
XA7 = data element 7 in data source A
XB2 = data element 2 in data source B
XB5 = data element 5 in data source B
XC9 = data element 9 in data source C
XC10 = data element 10 in data source C
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XD2 = data element 2 in data source D
XD5 = data element 5 in data source D
XD9 = data element 9 in data source D

XD10 = data element 10 in data source D
XE1 = data element 1 in data source E

XE2 = data element 2 in data source E
XE4 = data element 4 in data source E
XE5 = data element 5 in data source E
XE7 = data element 7 in data source E
XE9 = data element 9 in data source E
XE10 = data element 10 in data source E

Decision problem.  Next, a decision problem is
formulated via mathematical programming (MP)
where the design variables become decision
variables. The MP technique proceeds to find a
combination of data elements and data sources that
identify an  optimal solution, e.g., a smallest-cost
solution.  Cost and query response time parameters
are as shown for this illustrative example.

Table 2. Cost and Query Time
Ci  Ri

Design
Variable

Cost
($,Dollars)

Query
Response

Time (Sec)
XA1

XA4

XA7

XB2

XB5

XC9

XC10

XD2

XD5

XD9

XD10

XE1

XE2

XE4

XE5

XE7

XE9

XE10

2
2
3
10
12
1
1
3
3
3
3
2
2
1
2
2
2
1

4
4
3
3
3
2
2
3
3
3
3
15
20
15
20
20
15
15

Minimize overall system cost function:
Fcost = C1XA1 + C2XA4 + C3XA7 + C4XB2 + …
+ C19XE10

Subject to the following constraints. XA1 + XA4 + XA7

+ XB2 + … + XE10 =  7
the total number data elements is 7 as needed to meet
system requirements;
(XA1 + XA4 + XA7)/3 =0,1
binary constraint, i.e., select all or none of the data
elements in data source A;
 (XB2 + XB5)/2          = 0,1
binary constraint, i.e., select all or none of the data
elements in data source B;
(XC9 + XC10)/2                              = 0,1
binary constraint, i.e., select all or none of the data
elements in data source C; 

XA1, XA4, XA7, …XE10             = 0,1   all
decision variables are binary (zero or 1 values).
The solution to this illustrative problem was then obtained
via mathematical programming (MP) with Microsoft
Excel’s Solver:
XE1 = 1 XE5 = 1 
XE2 = 1 XE7 = 1
XE4 = 1 XE9 = 1

XE10 = 1
and all other variables were determined to be zero, thus
identifying data source E as the choice data set, which
corresponds to Design 3 shown earlier.  However, if the
design criterion is to minimize aggregate query response
time across all data sources to be selected (i.e., maximize
system time performance) then new MP  solution is given
by data sources A +B +C, which corresponds to Design 1
and which can also be verified by inspection of Table 2.
Next, we proceed to apply both cost and performance
criteria:
Minimize:  F = w1Fcost + w2Fperformance

= w1[C1XA1 + C2XA4 + … + C18XE10]
      + w2[R1XA1 + R2XA4 + … + R18XE10]
subject to the same constraints since the "design space"
remains the same.  The solution to this multi-criteria
design problem with criterion weights w1= 0.6 and w2 =
0.4 yields:
XA1 = 1 XD2 = 1 XD10 = 1
XA4 = 1 XD5 = 1
XA7 = 1 XD9 = 1
which corresponds to Design 2.  Other sets of weights can
be tried such that w1+w2 = 1.0 until all non-inferior
solutions in the Pareto frontier have been identified. In
our example there are only three possible designs, and
these are now presented on  Table 3 and Figure 6.

Table 3.  Multiple Design Criteria and Database Designs

Criteria Design 1 Design 2 Design 3

1. Cost ($)
2. Performance

(Total Query
Time, Sec.)

31
21

19
23

12
120

Figure 6. Pareto Frontier in Database Design
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Several observations are made.  First, the
optimization procedure above generated the three
possible solutions/designs in this illustrative example,
and these solutions make up the Pareto design
frontier.  The DB designer aims at obtaining designs
that are Pareto-optimal, that is designs that are part
of the Pareto design frontier.  Solutions over this
frontier are such that as one moves from Design 1 to
Design 2, the cost decreases from $31 to $19 at the
expense of query performance (i.e., total query time
increases from 21 sec. to 23 sec.).  A tangent to the
design frontier at point A is ∆C/∆t, which is the
criteria tradeoff at that point; at point A, for example,
an improvement in query performance in the order of
20 seconds costs $10, approximately.

It would not be immediately apparent to the DB
designer working with say hundreds of data sources,
whether he/she is obtaining DB designs that are
"above", "below", or "on top" of the Pareto frontier,
and it then becomes necessary to obtain and compare
several solutions.  Solution B, for example, is
"inferior" to Solution C because whereas both offer
the same performance, solution C has a lower cost.
Solution D has still a lower cost but is not
technologically possible.  As the designer maintains
performance at a fixed level and continues to make
design changes each lowering the total, eventually he
will not be able to make further designs changes that
translate into a lower cost. It is at that point that he
has reached the Pareto design frontier.  Each
technology (e.g., flat file database design and
operation, Oracle DBMS, Sybase DBMS, etc.) has its
own Pareto design frontier.

CONCLUSION
Database segmentation presents many challenges to
the database engineer in his/her efforts to satisfy
system requirements while applying  multiple design
criteria. Minimizing server administrative overhead,
cost, number of table joins needed to execute a query,
and physical distance to data source, for example, is
desirable. On the other hand, maximizing data source
availability, database performance (through record
indexing at the data source, efficient schema design,
efficient reference data set design, containment of
database fragmentation, other) is desirable.
Identification of these often conflicting criteria,
relationships among them, and providing the means
to measure criteria values of alternative designs early
in the database design phase should yield a positive
payoff later during  database development and
eventual field deployment and operation.

Systems engineering can provide a framework for
effective analysis of requirements, selective
utilization of optimization techniques, and multiple
criteria tradeoff analysis of alternative database
designs.

The first part of this paper showed that it is possible to
consider the general design problem of partitioning a
large database into a desired number or database segments
in such a way that the number of foreign-key
dependencies is the smallest number possible.  This
smallest number of foreign-key dependencies can have a
beneficial impact on overall system performance,
including a decrease in database server administrative
overhead.   This approach can now be applied to large
databases containing hundreds of tables.

The second part of this paper showed how to apply
multiple-criteria decision making (MCDM) techniques to
virtual database design.  Hundreds and possibly thousands
of data sources may be initially available to the database
designer as he/she searches for the best selection of a
relatively small number of data sets.   This approach can
guide the database designer in the search  of Pareto
database designs (best selection of data sources) that
feature desired, multiple criteria levels and tradeoffs.

Topics for future research applying the problem
representation and solution techniques demonstrated
above include data sharing and system inter-operability in
a multiple-project, multiple-client distributed database
environment.
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