
1

Confining the Apache Web Server with Security-Enhanced Linux

Michelle J. Gosselin, Jennifer Schommer
mgoss@mitre.org, jschommer@mitre.org

Keywords: Operating System Security, Web Server Security, Access Control Policy

Abstract

Restricting the access of a web server to
system resources limits the potential damage
caused to those resources through
exploitation of web server vulnerabilities.
However, allowing the web server to access
the required resources enables the web
server to provide expected functionality.
This combination of denying unnecessary
access and allowing required access results
in providing web server functionality while
limiting damage.

To demonstrate this, we hosted the
Apache web server on Security-Enhanced
Linux, an operating system that enforces a
mandatory access control policy. By
tailoring the Security-Enhanced Linux
policy, we were able to control interaction
between the Apache web server and other
processes and files on the system. The
policy dictates that Apache is only allowed
to display web pages and perform limited
functions that support the display of web
pages.

This work demonstrates the following.
∑ Security-Enhanced Linux is capable of

supporting commonly used applications.
∑ Security-Enhanced Linux can confine

applications so that a reduced level of
risk is achieved when making
applications available.

∑ Although confined, these applications
provide the functionality expected by
users.

Introduction

Commonly used applications, such as
web servers, are often vulnerable to attack.
To prevent attacks from being successful,
known vulnerabilities can be eliminated by
reducing application functionality or by
implementing fixes or patches within the
application source code. Reducing
functionality is often not acceptable to users,
and implementing fixes requires the
cooperation of the vendor and is typically in
reaction to damage that has already
occurred.

An alternative is to reduce the level of
risk by confining the application. Confining
an application means to control the
application's access to, and malicious
damage to, system resources (e.g., processes
and files).

To adequately confine an application,
the operating system that hosts the
application must enforce a mandatory access
control policy as specified by the system
security administrator. An example of an
operating system that provides mandatory
access control features is Security-Enhanced
Linux1[1][2][3][4].

To demonstrate the feasibility of
confining an application without reducing
functionality, we hosted the Apache HTTP

1 Linux is a registered trademark of Linus Torvalds.
The LSM-based Security-Enhance Linux prototype is
currently supported for kernel 2.4.17 and 2.5.2
with RedHat 7.1 or RedHat 7. 1. Red Hat is a
registered trademark of Red Hat Software, Inc.

2

Server2 on Security-Enhanced Linux and
used features provided by Security-
Enhanced Linux to confine Apache.

This paper describes
1. potential damage caused as a result

of exploitation of a web server,
2. Security-Enhanced Linux features,
3 . how these features were used to

confine the Apache web server, and
4. how potential damage resulting from

exploitation of the Apache web
server is reduced while still allowing
Apache functionality.

Web Server Security Concerns

Sharing information and conducting
business via the World Wide Web has
become a critical requirement for most
organizations. However, a web server that
allows an organization to share information
and conduct business could potentially be
exploited to cause unauthorized
modification or destruction of that
information and other system resources.

Through various attacks, such as buffer
overflow attacks, a malicious user could
gain control of a web server process. Since
web servers often run with enhanced
privileges, the user who gains control of the
web server process possesses enhanced
privileges that can be used to cause damage
to the system.

Even if a malicious user cannot gain
control of the web server process, scripts
potentially allow users to direct the web
server to perform a malicious action. A
Common Gateway Interface3 (CGI) script
accepts user input and submits it to the
server for processing. For example,
electronic purchasing forms and web site
guest books are typically implemented
through CGI scripts. Unfortunately, it is
possible for a malicious user to enter

2 Developed by the Apache Software Foundation
(http://www.apache.org)
3 Specification at http://hoohoo.ncsa.uiuc.edu/cgi/

executable code as input into a form or guest
book. If the server executes that code, the
server could cause damage to the system.

Another type of script is a Server Side
Include (SSI). An SSI is a file that can be
parsed by the web server to supply dynamic
information for a web page, such as the
current time and date. Executable shell
commands or an interface to CGI scripts can
be included in an SSI. For example, an SSI
could include a statement such as <!--#exec
cgi="runme.cgi"-->. The web server would
execute runme.cgi when it parsed the SSI. If
runme.cgi contained malicious code, the
web server could cause damage when
running the code.

Approaches to Reducing Risk

There are several approaches that can be
taken to reduce the risk associated with a
web server.

One of the easiest methods of reducing
risk is to run the server as "nobody" [5].
This can either occur when the server is
launched or whenever the server forks a
process to handle a connection on port 80.
However, once the server starts running as
"nobody", the system administrator has to
ensure that the server still has access to files
it needs access to by setting permissions
appropriately. This may result in granting
wider access to certain files than is desired.
This approach also doesn't prevent access to
world-readable/writeable/executable
directories and files, of which there are
many on a typical system. If any of these
executables happens to be setuid, it may be
possible to obtain root privileges indirectly.

Another method of reducing risk is to
tighten the configuration of the web server
and either restrict or turn off
functionality[6]. For instance, the web
server could be configured to deny the use
of SSI's or user-developed CGI scripts. This
eliminates vulnerabilities but also eliminates
functionality. It also requires the system

3

administrator to have knowledge of web
server configuration details.

A third approach is to restrict the files
and processes the web server has access to.
The web server cannot damage files and
processes that are inaccessible. This can be
done using the chroot() system call.
chroot() changes the root of the file system
as it appears to the process. Any search for
a file will start at this new root as if it were
“/”. This will cause, with appropriate
choices being made as to directory structure,
any other user files to disappear from the
viewpoint of the process. For the same
reason though, the file structure containing
the various system binaries will also become
inaccessible. This means that all of the
manifold utilities and libraries that web
servers need must be duplicated in the newly
rooted file structure.

Creation of a chroot() ‘jail’ does not
prevent root exploit attacks and barely slows
down the malefactors when they succeed.
All it takes is to execute chroot() with the
appropriate path. Even if the web server is
not running with root privileges, its
enhanced privileges may be enough for the
attacker to do some damage when it is
penetrated.

Another approach addresses the dangers
associated with CGI scripts. Wrappers, such
as suEXEC [7], cgi-wrap [8], and sbox [9],
are called by the server to execute user
scripts rather than executing them directly.
These wrappers then perform functions
such as checking various system and file
parameters, ensuring that only approved
commands are called from the scripts,
enforcing resource-usage limitations,
changing the uid of the process to match the
uid of the script, and calling chroot().
However, the wrapper approach only
addresses the CGI script concerns, and not
other web server concerns.

The solutions above represent a
reasonable attempt to deal with the problems
of web-hosting on a Linux platform.

However, they all suffer from administrative
overhead and provide no defense against
‘root exploit’ attacks that lead to unwanted
access. None of them deal with
vulnerabilities in the base server or in other
services running on that server. They also
focus on controlling access of a process to a
file, but do not address access of one process
to another.

Security-Enhanced Linux

To more effectively address a wider
range of server concerns, the operating
system that hosts the web server must
enforce a mandatory access control policy as
specified by the system security
administrator. One such operating system is
Security-Enhanced Linux.

A general security policy configuration
[10] is included with Security-Enhanced
Linux. This general policy contains Type
Enforcement4 and Role-Based Access
Control (RBAC) components.

With Type Enforcement, types are
associated with processes and files, and the
policy defines allowed interaction between
types5. For example, the policy could state
that a process of type y_t is allowed to write
to a file of type x_t.

A security configuration uses Role
Based Access Control by defining a set of
roles, and associating a list of types with
each role6. A process executing with a
particular role must always be executing
with one of the associated types; the security
server will not permit it to transition to any
other type.

4 Type Enforcement is a registered trademark of
Secure Computing Corporation.
5 This differs from traditional Type Enforcement
where domains are associated with processes and
types are associated with objects. Permissions are
defined for both pairs of domains and for domain-
type pairs.
6 This differs from traditional RBAC where
permissions are associated with roles.

4

Three roles are defined in the base
security configuration.

∑ system_r is assigned to the user
identity for system-owned processes
and files (system_u),

∑ sysadm_r is assigned to system
administrators,

∑ user_r is assigned to ordinary users
Each user process starts with an initial

role assigned to that user, although
processes may change roles.

Roles and types are associated with a
process or file through a security context7.
The security context labels the process or
file with a user identifier, a role, and a type.
For example, when a user, John Smith, first
logs in, the security context of his shell is
jsmith:user_r:user_t. The security context of
a process or file can change, or transition, as
required and as allowed by the policy.

As previously stated, a general security
policy configuration is included with
Security-Enhanced Linux. This policy is
intended as a starting point for system
administrators to customize a policy to fit
the security requirements of their system.

The Securi ty-Enhanced Linux
architecture and implementation simplify
policy changes by separating policy and
enforcement functions. As shown in figure
1, an Object Manager receives requests for
objects. The Object Manager queries a
Security Server to see if the policy permits
the requested action. The Security Server
reads the current system policy and
determines if the action is allowed or not.
The Security Server sends its decision to the
Object Manager, and the Object Manager
enforces the decision. By separating the
policy and enforcement, a change in policy
does not require a modification to the
enforcement mechanisms.

7 Since files do not transition between types as
processes do, the role associated with a file has little
function. Therefore, a default role of object_r is used
for files.

Figure 1.

Because of the flexibility of Security-
Enhanced Linux, it is possible for Security-
Enhanced Linux to both support and confine
commonly used applications through
modifications to the policy.

Policy Development Approach

To demonstrate how the security
features of Security-Enhanced Linux can
confine an application, we hosted an Apache
web server on Security-Enhanced Linux and
tailored the policy to confine Apache. The
tailored policy addresses the web server
concerns identified previously.

To implement an effective security
policy for Apache - one that reduces risk to
an acceptable level while maintaining an
acceptable level of functionality - we took
the following approach in developing the
policy:

1 . We became familiar with the
functionality provided by Apache.
We did this by reading user
documentation, inspecting Apache
source code, and running Apache
on Red Hat Linux 6.1.

2 . We determined who should be
allowed access to this functionality
(e.g. who starts the application).

3 . Based on steps 1 and 2, we
postulated a high-level policy in
English for Apache.

4. We determined files installed with
Apache and their installation
locations by using the Redhat
Package Manager (RPM).

5

5. We determined files accessed by
Apache to provide functionality
identified in step 1.

6. Based on steps 3 and 4, we refined
the high-level policy.

7 . We identified and defined roles
and types to support the refined
policy and indicated which roles
where allowed to access these
types.

8 . Based on the refined policy, we
determined allowed interaction
between types.

9 . We included these allowed
interactions in the Security-
Enhanced Linux policy using the
Security-Enhanced Linux policy
language.

1 0 . We ran Apache on Security-
Enhanced Linux and performed
both functionality testing and
security testing. If a test failed, we
returned to step 5.

Confining Apache

Apache is a full-featured, open source
web server that is packaged with RedHat
Linux. Apache's primary role is to display
web pages to users requesting the web
pages. To properly display these web pages,
Apache handles many of popular web
technologies such as CGI scripts and SSIs.

The high-level policy we stated for
Apache is:

∑ The Apache server is allowed to
- accept user requests for web

pages,
- read web pages,
- execute scripts,
- check password protection on

web pages and scripts, and
- display web pages back to the

user.
∑ The system boot process is allowed

to start the Apache server.
∑ The web administrator is allowed to

- create and modify system web
pages,

- modify and execute system
scripts,

- specify password protection on
system web pages and scripts,
and

- specify which files can be
accessed by system scripts

∑ Users are allowed to
- send requests for web pages to

the Apache server,
- modify user web pages,
- modify and execute user scripts,
- specify password protection on

their web pages and scripts, and
- specify which files can be

accessed by user scripts.
∑ Script processes are allowed to

- execute script interpreters and
libraries

- read, write, and append specially
marked files.

For Apache to provide its functionality,
we determined that Apache requires access
to various files and modified the high-level
policy to allow the Apache server to do the
following:

∑ send and receive messages to and
from the network

∑ bind to port 80
∑ read web configuration files located

in /etc/httpd/conf
∑ read and append to web log files

located in /var/log/httpd
∑ execute system libraries and Apache-

specific libraries
∑ call suEXEC prior to executing user

scripts if Apache is configured to do
so.

To support this high-level policy, we
defined a role for the web administrator
called httpd_adm_r. We also defined new
types required to control Apache processes
and files. Apache processes and files and

6

their assigned types and roles are listed in
table 1.

7

Process or File Type Role
Apache daemon (server process) httpd_t system_r
System web pages (.html or .htm files) httpd_sys_content_t object_r
User web pages (.html or .htm files) httpd_user_content_t object_r
System script file httpd_sys_script_t object_r
User script file httpd_user_script_t object_r
Files that provide web password protection on
system directories

httpd_sys_htaccess_t object_r

Files that provide web password protection on
user directories

httpd_user_htaccess_t object_r

Apache configuration files located in
/etc/httpd/conf

httpd_config_t object_r

Apache log files located in /var/log/httpd httpd_log_files_t object_r
Libraries included with Apache httpd_modules_t object_r
Apache executable file httpd_exec_t object_r
Web administrator shell process httpd _admin_t httpd_adm_r
System script process httpd_sys_script_process_t system_r
User script process httpd_user _script_process_t user_r
Files that can be read by system scripts httpd_sys_script_r_t object_r
Files that can be read and written by system
scripts

httpd_sys_script_rw_t object_r

Files that can be appended by system scripts httpd_sys_script_a_t object_r
Files that can be read by user scripts httpd_user_script_r_t object_r
Files that can be read and written to by user
scripts

httpd_user_script_rw_t object_r

Files that can be appended to by user scripts httpd_user_script_a_t object_r
suEXEC executable httpd_suexec_t object_r
suEXEC process httpd_suexec_process_t system_r

Table 1

8

initrc

Web Daemon
httpd_t

System
Web
Pages

User
Web
Pages

System
Scripts

User
Scripts

Config
Files .htaccess

Libraries

Script
Interpreters

User
Script-

Accessible
Files

Web Admin Shell
httpd_admin_t

User Shell
user_t

System Script
httpd_sys_script_process_t

Log
Files

suEXEC
httpd_suexec_process_t

User Script
httpd_user_script_process_t

System
Script-

Accessible
Files

Network,
Port 80

Read/Modify

Execute

Key

Read

Modify

Figure 2.

After defining these types, we used the
Security-Enhanced Linux policy language to
specify a "formal" policy that implemented
the high-level policy. This "formal" policy
is described below and is depicted in figure
2.

The policy states that a process of type
httpd_t (the Apache daemon) can

∑ connect to the network and bind to
port 808,

∑ r e a d f i l e s o f t y p e
httpd_sys_content_t (system web
pages) or httpd_user_content_t (user
web pages)

8 This is actually allowed in the general security
policy that is distributed with Security-Enhanced
Linux.

9

∑ e x e c u t e f i l e s o f t y p e
httpd_sys_script_t (system scripts)
and type httpd_user_script_t (user
scripts)

∑ r e a d f i l e s o f t y p e
httpd_sys_htaccess_t (files that
provide password protection on
directories containing system web
pages and sc r ip t s) and
httpd_user_htaccess_t (files that
provide password protection on
directories containing user web
pages and scripts)

∑ read files of type httpd_config_t
(web configuration files)

∑ read and append files of type
httpd_log_files_t (log files)

∑ execute files of type lib_t (system
libraries) and httpd_modules_t (httpd
libraries)

∑ execute files of type httpd_suexec_t
The policy allows files of type initrc_t to

execute files of type httpd_exec_t. This
allows the boot process to run the Apache
daemon.

The policy allows a web administrator (a
user with the httpd_adm_r role) to change
the context of his shell to httpd_admin_t.
The policy allows a process with this
context to

∑ execute files of type httpd_exec_t
(the Apache daemon)

∑ m o d i f y f i l e s o f t y p e
httpd_sys_content_t (system web
pages)

∑ modify and execute files of type
httpd_sys_script_t (system scripts)

∑ c r e a t e f i l e s o f t y p e
httpd_sys_htaccess_t (password
protection files)

∑ c r e a t e f i l e s o f t y p e
httpd_sys_script_r_t (files or
directories that can be read by
s y s t e m s c r i p t s) ,
httpd_sys_script_rw_t, (files or
directories that can be read and

written by system scripts), and
httpd_sys_script_a_t (files or
directories that can be appended by
system scripts).

∑ read and write files of type
httpd_config_t and httpd_log_files_t
(the web configuration files and web
log files)

The policy allows a user to
∑ send requests to port 80 either

locally or via the network9,
∑ m o d i f y f i l e s o f t y p e

httpd_user_content_t (user web
pages)

∑ modify and execute files of type
httpd_user_script_t (user scripts)

∑ c r e a t e f i l e s o f t y p e
httpd_user_htaccess_t (password
protection files)

∑ c r e a t e f i l e s o f t y p e
httpd_user_script_r_t (files that can
be read by user scripts),
httpd_user_script_rw_t, (files that
can be read and written by user
scripts), and httpd_user_script_a_t
(files that can be appended by user
scripts).

When a script is executed, the following
security context transitions automatically
take place:
∑ When the daemon executes a system

script (httpd_sys_script_t), the
process type transitions to
httpd_sys_script_process_t.

∑ When the daemon executes suEXEC
to invoke a user scr ipt
(httpd_user_script_t), the process
t y p e t r a n s i t i o n s t o
httpd_suexec_process_t. suEXEC
changes the user id to the user id of
the script owner and the role of the
process to user_r10. The process

9 Again, this is established in the general security
policy.
10 Modifications were made to suEXEC to transition
the role of the process.

10

t y p e t r a n s i t i o n s t o
httpd_user_script_process_t.

∑ When the daemon executes a user
script (httpd_user_script_t) without
using suEXEC, the process type
t r a n s i t i o n s t o
httpd_user_script_process_t.

∑ When a user executes a user script,
the process type transitions to
httpd_user_script_process_t.

The policy allows processes of type
httpd_sys_script_process_t (system script
processes) and httpd_user_script_process_t
to

∑ execute files of type bin_t (script
interpreters) and

∑ execute files of type lib_t (libraries).
The policy allows processes of type

httpd_sys_script_process_t (system script
processes) to

∑ r e a d f i l e s o f t y p e
httpd_sys_script_r_t,

∑ read and write files of type
httpd_sys_script_rw_t, and

∑ a p e n d f i l e s o f t y p e
httpd_sys_script_a_t.

The policy allows processes of type
httpd_user_script_process_t (user script
processes) to

∑ r e a d f i l e s o f t y p e
httpd_user_script_r_t,

∑ read and write files of type
httpd_user_script_rw_t, and

∑ a p e n d f i l e s o f t y p e
httpd_user_script_a_t.

Everything not explicitly allowed by the
policy is denied.

Limited Damage, Same Functionality

To demonstrate that the policy limits the
potential damage caused via the malicious
use of the Apache web server, we performed
security testing. During security testing, we
simulated a malicious user gaining control
of the Apache server by creating a malicious

process that had the same security context as
the Apache daemon. This process executed
a number of shell commands in an attempt
to cause damage to the system. For instance,
the malicious process attempted to remove
all of the files in the /etc directory, to install
and execute files in /bin, and to read various
files on the system.

Modifying, deleting, installing, and
executing files was also attempted in the
system web directory and in a user's web
directory. The process could append to the
web log files but could not remove data
from these files. Other than the log files, the
process could not write to any files, and,
therefore, could not deface web pages. The
malicious process was prevented from
deleting or installing files. The process was
also prevented from executing files that
were not scripts. The process could only
read files it had read access to such as web
pages, web configuration files, and web log
files.

We also created a malicious CGI script
to see what damage this could cause. The
CGI script attempted similar actions to the
ones we executed from the malicious
process. We installed this script as both a
system script and as a user script.

When the Apache server executed the
system script, most actions were again
denied. As expected, files in the web server
directory that could be written to by system
scripts were deleted or modified.
Therefore, web pages that can be written to
by scripts could potentially be defaced.
Therefore, web designers should be careful
when designing pages that allow scripts to
write to them.

When the Apache server executed the
user script, most actions were again denied.
As expected, files in the user directory that
could be written to by user scripts were
deleted or modified.

When the HTTP administrator executed
the system script, the script was able to

11

modify files that could be written to by
system scripts. Other actions were denied.

When a user executed the user script, the
script was able to damage files that could be
written to by user scripts. This included
files that allowed discretionary write access
to that user but were not necessarily owned
by that user. Other actions were prevented.

Our security testing demonstrates that if
a malicious user takes control of the web
server process or issues commands to the
web server via CGIs or SSIs, that user will
be able to cause only limited damage.
Therefore, the policy limits damage, but
does it also limit functionality?

To demonstrate that Apache
functionality operated as expected, we
performed functionality testing.

During functionality testing, all
functionality that we expected to be allowed
by the policy was tested. For example,
testing verified that the Apache server was
started at boot time. The HTTP
administrator was allowed to stop and restart
the Apache server. The administrator was
also allowed to create and modify system
web pages and create scripts. Users were
also allowed to create web pages and scripts.
Via a network connection, we requested
both a system web page and a user web page
from the Apache server. The Apache server
read both web pages, executed the CGI
scripts that they called, and displayed the
web pages. Password protection via
.htaccess files worked as expected.

Summary

This work demonstrates how the Apache
web server can be confined to limit the
potential damage caused if vulnerabilities
associated with the Apache web server are
exploited.

In addition, we have also shown that
Security-Enhanced Linux can support
commonly used applications. Therefore,
users do not have to forgo their preferred

applications to take advantage of the
security features provided by Security-
Enhanced Linux.

Because Security-Enhanced Linux
separates enforcement from policy, the
system administrator can tailor the policy to
confine site-required applications, as was
done with Apache. Tailoring the policy to
confine the applications results in a reduced
level of risk when making these applications
available.

Because of the flexibility of the
Security-Enhanced Linux policy, the policy
is able to confine an application without
reducing the application's functionality
expected by users.

12

 References

[1] The National Security Agency, Security-
Enhanced Linux,
http://www.nsa.gov/selinux

[2] P. Loscocco and S. Smalley. Integrating
Flexible Support for Security Policies into
the Linux Operating System. Technical
report, NSA and NAI Labs, February 2001.

[3] P. Loscocco and S. Smalley. Integrating
Flexible Support for Security Policies into
the Linux Operating System. In
Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference
(FREENIX '01), June 2001.

[4] P. Loscocco and S. Smalley, Meeting
Critical Security Objectives with Security-
Enhanced Linux. In Proceedings of the 2001
Ottawa Linux Symposium, July 2001.

[5] The World Wide Web Security FAQ
http://www-
genome.wi.mit.edu/WWW/faqs/www-
security-faq.html#contents

[6] Computer Incident Advisory Capability
web site,
http://ciac.llnl.gov//ciac/documents/ciac2308
.html#4

[7]Apache suEXEC Support,
http://httpd.apache.org/docs/suexec.html

[8]SLAC's Script Security Wrapper,
http://www.slac.stanford.edu/slac/www/tool/
cgi-wrap/doc/

[9] sbox,
http://stein.cshl.org/WWW/software/sbox/
by Cold Spring Harbor Laboratory,
http://www.cshl.org.

[10] S. Smalley and T. Fraser. A Security
Policy Configuration for the Security-
Enhanced Linux. Technical Report, NAI
Labs, February 2001.

