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Abstract

In security protocol analysis, it is important to learn gen-
eral principles that limit the abilities of an attacker, and
that can be applied repeatedly to a variety of protocols. We
introduce the notion of an ideal—a set of messages closed
under encryption and invariant under composition with ar-
bitrary messages—to express such principles.

In conjunction with the strand space formalism, we use
the concept of ideals to prove bounds on a penetrator’s ca-
pabilities, independent of the security protocol being ana-
lyzed. From this we prove a number of correctness proper-
ties of the Otway Rees protocol, using these results to ex-
plain the limitations of the protocol.

1 Introduction and Review

A security protocol is a sequence of messages between
two or more parties in which encryption is used to pro-
vide authentication or to distribute cryptographic keys for
new sessions. In this paper we extend the ideas of [7],
in which we introduced the concept of a strand space and
used it to formulate and prove correctness properties for the
Needham-Schroeder-Lowe protocol.

In this paper, we will develop more of the algebra of mes-
sages. We will be more explicit about the structure that we
need to assume on the set of messages, under the opera-
tions of encryption and message concatenation (Section 2).
In [7], to simplify the exposition, we assumed that these
formed a free algebra.

We will also introduce additional algebraically natural
sets of messages—we call them ideals—that make it eas-
ier to state and prove general facts about the powers of the
penetrator (Section 3). An ideal is a set of messages closed
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under encryption and invariant under composition with ar-
bitrary messages.

These general theorems about the powers of the pene-
trator are independent of the protocols to be analyzed, so
that they can be re-used effectively for many protocols. A
typical specimen asserts that if a legitimate protocol entity
never utters any message in an ideal I , then a penetrator
can never utter any message in I either (Section 4). We call
these kinds of theorems “bounds on the penetrator.”

We have applied these methods to analyze the Otway-
Rees protocol and the Yahalom protocol [6]. In this paper
(Section 5), we will use Otway-Rees to illustrate the util-
ity of the penetrator bounds. Our results explain in a very
clear way exactly what the protocol establishes, and what
its fundamental limitations are.

In order to make the paper self-contained, we review
some of the terminology of our earlier paper [7] in the re-
mainder of this introduction.

1.1 Strands

Throughout the paper, A will denote the set of messages
that can be exchanged between principals in a protocol.1 We
will refer to the elements of A as terms. In a protocol, prin-
cipals can either send or receive terms. We will represent
sending a term as the occurrence of that term with positive
sign, and receiving a term as its occurrence with a negative
sign.

Definition 1.1 A signed term is a pair h�; ai with a 2 A

and � one of the symbols +;�. We will write a signed
term as +t or �t. (�A)� is the set of finite sequences of
signed terms. We will denote a typical element of (�A)� by
h h�1; a1i; : : : ; h�n; ani i.

Definition 1.2 A strand space is a set � with a trace map-
ping tr : �! (�A)�.

1In this paper, we will use a sansserif style for sets like A and its im-
portant subsets, and for the basic operators on A. In [7], bold face was
used for these as well as for other items.
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In particular applications of the theory, the mapping tr may
fail to be injective because we may need to distinguish be-
tween various instances of the same trace. For instance, to
model authentication properties of certain protocols it may
be necessary to distinguish identical traces originating from
different principals, or to model simple replay attacks we
may need to distinguish identical traces originating from the
same principal.

Fix a strand space �.

1. A node is a pair hs; ii, with s 2 � and i an integer
satisying 1 � i � length(tr(s)). The set of nodes is
denoted by N . We will say the node hs; ii belongs to
the strand s. Clearly, every node belongs to a unique
strand.

2. If n = hs; ii 2 N then term(n) is (tr(s))
i
, i.e. the ith

signed term in the trace of s. Similarly, uns term(n) is
((tr(s))

i
)2, i.e. the unsigned part of the ith signed term

in the trace of s.

3. If n1; n2 2 N , n1 ! n2 means term(n1) = +a and
term(n2) = �a. It means that node n1 sends the mes-
sage a, which may be received by n2, creating a causal
link between their strands.

4. If n1; n2 2 N , then n1 ) n2 means n1; n2 occur on
the same strand s with n1 = hs; ii and n2 = hs; i+1i.
It expresses the causal dependence of a later action on
its predecessor.

N becomes an ordered graph with both sets of edges
n1 ! n2 and n1 ) n2.

1.2 Bundles

A bundle in a strand space is a finite subgraph of the node
graph N , for which we can regard the edges as expressing
the causal dependencies of the nodes.

Definition 1.3 Let C be a set of edges, and letNC be the set
of nodes incident with any edge in C. C is a bundle if:

1. C is finite.

2. If n1 2 NC and term(n1) is negative, then there is a
unique n2 such that n2 ! n1 2 C.

3. If n1 2 NC and n2 ) n1 then n2 ) n1 2 C.

4. C is acyclic.

We will speak of a node as being in the bundle C if in fact it
is in NC .

A well-formed bundle is illustrated in Figure 1, although
this bundle does not exemplify a useful protocol.
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Figure 1. A Bundle

Definition 1.4 If C is a bundle and s 2 �, then the C height
of s, denoted height

C
(s), is the largest i � length(tr(s))

such that s 2 � and hs; ii 2 C.
C contains s if height

C
(s) = length(tr(s)).

Clearly hs; ji 2 C for all j � height
C
(s). The model in-

tentionally allows strands representing legitimate protocol
agents to have less than full height.

Definition 1.5 If s is a strand and C a bundle, the C-
trace of s is the restriction of tr(s) to the integer interval
f1; : : : ; height

C
(s)g. A partial C-trace of s is the restric-

tion of tr(s) to any interval f1; : : : ; kg for k � height
C
(s).

Definition 1.6 Suppose that S is a set of edges, i.e. a subset
of the union of ! and ), and let NS be the set of nodes
incident with any edge in S.

Then �S is the transitive closure of S, and �S is the
reflexive, transitive closure of S.

Each relation is a subset of NS �NS . Moreover, n �S n0

means that there is a sequence of one or more edges (of
either kind) belonging to S leading from n to n0. Similarly,
n �S n0 means that there is a sequence of zero or more
edges belonging to S leading from n to n0.

Lemma 1.7 Suppose C is a bundle. Then�C is a partial or-
der, i.e. a reflexive, antisymmetric, transitive relation. Every
non-empty subset of the nodes in C has �C-minimal mem-
bers.

When a bundle C is understood, we will simply write �.

1.3 Messages

In the remainder of this paper, we will specialize the set
of messages A and assume it has additional structure in-
tended to model message construction and message encryp-
tion. We specialize A by introducing:
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� A set T � A of texts (representing the atomic mes-
sages), and a disjoint set K � A of cryptographic keys.

� A unary operator inv : K ! K. We assume that inv
maps each member of a key pair for an asymmetric
cryptosystem to the other, and that it maps a symmetric
key to itself.

� Two binary operators

encr : K� A! A

join : A� A! A

To follow accepted notation, we will write: inv(K) = K�1,
encr(K;m) = fmgK and join(a; b) = a b. To minimize the
use of parentheses in our notation, we will implicitly asso-
ciate terms on the right. Thus a b c is an abbreviation of
a (b c). Note that nothing is stated about the kind of encryp-
tion used here.

We will refer to the range of encr, namely the ciphertexts
of the form fhgK , as E. We will refer to the set of terms of
the form a b, as C. A term is simple if it is an element of
K [ E [ T. Note that the range of encryption is included in
the simple terms.

1.4 Infiltration

A penetrator set consists of a set of keys KP . It con-
sists of all keys initially known to the penetrator. Typically
it would contain all public keys, all private keys of penetra-
tors and all symmetric keys Kpx;Kxp initially shared be-
tween the penetrator and a principal that plays by the proto-
col rules. It may also contain “lost keys” that are known to
the penetrator, either because of the carelessness of a non-
malicious principal, or else because the pentrator has suc-
ceeded in some cryptanalysis.

The actions available to the penetrator are encoded in a
set of penetrator traces that summarize his ability to discard
messages, generate well known messages, piece messages
together, and apply cryptographic operations using keys that
become available to him.

Definition 1.8 A penetrator trace is one of the following:

M. Text message: h+ti where t 2 T

F. Flushing: h�gi

T. Tee: h�g; +g; +gi

C. Concatenation: h�g; �h; +g hi

S. Separation into components: h�g h; +g; +hi

K. Key: h+Ki where K 2 KP .

E. Encryption: h�K; �h; +fhgKi.

D. Decryption: h�K�1; �fhgK ; +hi.

It is also possible to extend the set of penetrator traces given
here if it is desired to model some special ability of the
penetrator, such as the ability to cryptanalyze some kinds
of encrypted messages, without any essential change to our
overall framework.

Definition 1.9 An infiltrated strand space is a pair (�;P)

with � a strand space and P � � such that tr(p) is a pene-
trator trace for p 2 P .

A strand s 2 � is a penetrator strand if it belongs to
P , and a node is a penetrator node if the strand it lies on
is a penetrator strand. Otherwise we will call it a non-
penetrator or regular strand or node.

A node n is a M, F, etc. node if n lies on a penetrator
strand with a trace of kind M, F, etc.

We would not expect an infiltrated strand space to real-
ize all of the penetrator traces of type M. In that case, the
space could not model unguessable nonces. The more use-
ful spaces � lack M-strands for many text values, which the
legitimate participants can use as fresh nonces.

2 Unique Readability

When reasoning about terms, it is important to know
whether they are ambiguous, in the sense that there are dif-
ferent ways to “read” or “parse” them. We can draw conclu-
sions more effectively if portions (at least) of the term can
be read in only one way. In [7], we took the short way with
this issue, assuming that the algebra of messages is free. In
this section, we develop a more flexible algebraic frame-
work that allows (for instance) message concatenation to be
associative. The conclusions of [7] remain true in this more
realistic context.

Axiom 2.1 handles the case of a term that can be re-
garded as a ciphertext, and asserts that it can be regarded as
a ciphertext in only one way. Axiom 2.2 deals with the de-
composition of composite terms, and their relation to other
terms.

Axiom 2.1 If ftgK = ft0gK0 then K = K 0 and t = t0.

We will refer to this assumption as the free encryption as-
sumption; other authors such as Paulson [5] and Marrero et
al [4] make similar assumptions.

There exist interpretations of the theory we are present-
ing in which this axiom is satisfied, for instance, the set of
formal expressions built from K and T using the operations
join and encr. However, in the most common application
of the theory—namely cryptography—Axiom 2.1 is false,
because there are many relations in the algebra of real mes-
sages. For instance a cardinality argument immediately es-
tablishes that there must be many distinct pairs of an input
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block of plaintext and a DES key (for instance) that yield
the same block of ciphertext. Nevertheless, a good cryp-
tosystem makes it hard to find pairs that will collide in this
way. Moreover, there should be very few different mean-
ingful texts for which there exist keys that will cause them
to collide, for most notions of “meaningful.” Axiom 2.1
idealizes the situation by assuming that there are none. This
matches our goal, namely to determine whether protocols
have weaknesses independent of the choice of cryptosys-
tem. An initial step in giving a complete answer to this
question is to consider whether there would still be weak-
nesses, even if the cryptosystem is ideal.

Axiom 2.2 No simple element is in C, the range of join. If
p a = q b with p; q simple, then p = q and a = b.

We turn now to the question of decomposing a composite
term into a succession of simple components. An exhausted
term is one for which this is no longer possible.

Definition 2.3 a 2 A is exhausted iff a cannot be expressed
in not the form p h for p simple.

Clearly any simple term is exhausted since by Axiom 2.2, it
cannot be written in the form a b.

Proposition 2.4 For any term a either

1. a can be expressed as p1 � � � pk h where where each pi
is simple and h is exhausted. If such a representation
exists it is unique.

2. There is a unique pair of infinite sequences fpig1�i,
fhig1�i where each pi is simple such that a =

p1 � � � pk hk.

PROOF. Suppose

p1 � � � pk h = q1 � � � qn g

where pi; qj are simple and k < n. Applying Axiom 2.2
repeatedly,

h = qk+1 � � � qn g

contradicting the assumption h is exhausted. Similarly, we
can exclude n < k. Thus k = n and it follows immediately
from Axiom 2.2 that pi = qi and h = g. If there is no
representation of a in the form stated, then for any any k

there is a unique representation of a in the form p1 � � � pk h

where h is not exhausted. �

Definition 2.5 Let a 2 A and 1 � k:

1. a has width k iff a = p1 � � � pk�1 h where each pi is
simple and h exhausted.

2. a has width +1 if a does not have a representation
p1 � � � pk�1 h where each pi is simple and h is ex-
hausted.

Lemma 2.6 Any a 2 A has width k for exactly one 1 �

k �1.

PROOF. Follows immediately from Proposition 2.4. �
This lemma may be used in various forms to show that

sets of terms of certain forms are disjoint from each other.
For instance, the result of concatenating an atomic text and
a key never collides with the result of concatenating two
texts before any member of A, which we need in treating
the Otway-Rees protocol (Section 5).

Proposition 2.7 The set of terms of the form hK is disjoint
from the set of terms of the form hh0 a for all h; h0 2 T,
K 2 K and a 2 A.

Attacks that might exist if there are terms that may be “read”
as having more than one form are referred to as type flaw
attacks [2]. Some type flaw attacks seem implausible, in the
sense that most implementations would not be vulnerable
to them, while others are more troublesome. We will not
consider type flaws further in the current paper, although
there are various possible approaches to extending strand
spaces to model them.

3 Ideals

We introduce the concept of ideal for two purposes:

1. To make it easier to formulate general facts about the
penetrator’s capabilities.

2. As a technical device for stating assumptions and prov-
ing facts about the subterm relationship. In our pre-
vious paper, [7] we made the simplifying assumption
that the message algebra was free and so no additional
assumptions were necessary to guarantee results such
as Corollary 3.14 below.

Definition 3.1 If k � K, a k-ideal of A is a subset I of A
such that for all h 2 I , g 2 A and K 2 k

1. h g; g h 2 I .

2. fhgK 2 I .

The smallest k-ideal containing h is denoted Ik[h].

We now define a subterm relation @ that uses the struc-
ture of message composition and encryption specific to Sec-
tion 1.3.

Definition 3.2 h is a subterm of g, written h @ g is defined
as g 2 IK[h].
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This definition gives a more restricted notion of subterm
then one might have expected. In particular, K 6@ (fhgK)

unlessK already happened to be a subterm of h. Restricting
subterms in this way reflects an assumption about the pen-
etrator’s capabilities, to wit, that keys can be obtained from
cyphertext only if they are embedded in the text that was en-
crypted. This might not always be the case—for instance,
if a dictionary attack is possible—but it is the assumption
we will make in this paper. Future work within the same
framework could certainly relax the assumption.

Proposition 3.3 @ is a transitive, reflexive relation. More-
over, if h; g 2 A and K 2 K, then

1. h @ h g and g @ h g.

2. h @ fhgK .

PROOF. Clearly h 2 IK[h], so h @ h. If g @ g0, then
g0 2 IK[g]. If in addition h @ g, then g 2 IK[h], so by the
definitions IK[g] � IK[h]. Therefore g0 2 IK[h].

If h; g 2 A and K 2 K, then clearly h g; g h; fhgK 2

IK[h]. �

Axiom 3.4 If t is a simple term and g h 2 I;[t] then either
g 2 I;[t] or h 2 I;[t].

Axiom 3.5 If K 2 K, t 2 T , e 2 E and c 2 C.

1. e 6@ K.

2. e 6@ t.

3. K 6@ t.

4. c 6@ K.

5. c 6@ t.

It also follows that t 6@ K, although this fact is not needed
here.

Lemma 3.6 The sets K, T, E and C are pairwise disjoint.

PROOF. Since t @ t the result follows from immediately
from Axioms 3.5 and 2.2.

Definition 3.7 Suppose k � K. s 2 A is a k-subterm of
t 2 A, written s @k t iff t 2 Ik[s].

If s @; t, then we use the expression s is a visible subterm
of t.

Proposition 3.8 @k is a transitive, reflexive relation. More-
over, h @k g implies h @ g.

PROOF. To prove @k is a transitive, reflexive relation, see
the proof of Proposition 3.3. If h @k g then g 2 Ik[h] �

IK[h] so h @ g as asserted. �

Definition 3.9 If S � A, Ik[S] is the smallest k-ideal con-
taining S.

The ideal structure is very simple:

Proposition 3.10 If S � A, Ik[S] =
S
x2S

Ik[x].

PROOF. The property of being a k-ideal is equivalent to
closure under the mappings x 7! x a, x 7! a x and
x 7! fxgk for k 2 k. Thus the union of k-ideals is a
k-ideal. Thus

S
x2S

Ik[x] is a k-ideal which contains S.
Clearly

S
x2S

Ik[x] � Ik[S]. �

Lemma 3.11 Let S0 = S, Si+1 = ffggK : g 2

I;[Si];K 2 kg. Then Ik[S] =
S
i
I;[Si].

PROOF. By induction, Si � Ik[S], so
S
i
I;[Si] � Ik[S].

In the other direction,
S
i
I;[Si] is clearly a k-ideal which

contains S. �

Proposition 3.12 Suppose S � A, and every s 2 S is sim-
ple. If g h 2 Ik[S] then either g 2 Ik[S] or h 2 Ik[S].

PROOF. In virtue of the previous lemma, g h 2 I;[Si] for
some i. By Proposition 3.10, g h 2 I;[x] for some x 2 Si.
This x is simple, as either i = 0, in which case Si = S,
or else i = j + 1, in which case each x 2 Si is of the
form fhgK , and hence simple. Thus by Axiom 3.4, either
g 2 I;[x] or h 2 I;[x].

Proposition 3.13 Suppose K 2 K; S � A; and for every
s 2 S, s is simple and is not of the form fggK. If fhgK 2

Ik[S], then h 2 Ik[S].

PROOF. Assume K 2 K, fhgK 2 Ik[S] and h 62 Ik[S].
Let I 0 be the set difference Ik[S] n f fhgK g. Clearly
S � I 0, since S does not contain anything encrypted with
outermost key K. Moreover I 0 is a k-ideal: Since Ik[S]

is already an ideal and fhgK is not of the form a b, I 0

clearly satisfies the join closure condition for ideals. If
fhgK = fh1gK0 for h1 2 I 0, then by Axiom 2.1 (free
encryption), h = h1 2 I 0 � Ik[S] a contradiction. Thus I 0

is an ideal which contains S. This contradicts the definition
of Ik[S] as the smallest ideal which contains S. �

In Proposition 3.13, S may contain a term fggK0 where
K 0 6= K and g in turn contains subterms encrypted in K.

Corollary 3.14 Suppose K 6= K 0 and fh0gK0 @ fhgK .
Then fh0gK0 @ h.

PROOF. The assumption means fhgK 2 IK[fh
0gK0 ], which

by the Proposition implies h 2 IK[fh
0gK0 ].

Proposition 3.15 Suppose K 2 K; S � A; and every s 2
S is simple and is not of the form fggK . If fhgK 2 Ik[S]

for K 2 K, then K 2 k.
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Figure 2. Entry Point for I

The proof is similar to the proof of Proposition 3.13.
PROOF. Assume K 2 K, fhgK 2 Ik[S] and K 62 k. As in
the preceding proposition, let I 0 = Ik[S] n f fhgK g. For
the same reason as before, S � I 0 and I 0 satisfies the join

closure condition for ideals. Moreover, by free encryption,
fhgK is not of the form fh0gK0 for any K 0

2 k. Thus I 0 is
an ideal which contains S. This contradicts the definition of
Ik[S]. �

4 Origination and Honesty

Definition 4.1 Suppose � is a strand space, N the set of
nodes of �. An unsigned term t originates on n 2 N iff:
term(n) is positive; t @ term(n); and whenever n0 precedes
n on the same strand, t 6@ term(n0). An unsigned term t is
uniquely originating iff t originates on a unique n 2 N .

Definition 4.2 A node m is an entry point for I � A if and
only if term(m) is positive, term(m) 2 I and for all nodes
m0 which precede m on the same strand, term(m0) 62 I .

We sometimes write m0
)

+ m to mean that m0 precedes
m on the same strand.

Proposition 4.3 Suppose C is a bundle over A. If m is min-
imal in fm 2 C : term(m) 2 Ig, then m is an entry point
for I .

PROOF. If term(m) = �h, then by Definition 1.3 Clause 2,
there is a node m0 2 C with term(m0) = +h, violating
minimality. If m0 )+ m and term(m0) 2 I , then using
Definition 1.3 Clause 3 repeatedly, m0 2 C, again contra-
dicting minimality. �

Definition 4.4 A set I � A is honest relative to a bundle C
if and only if whenever a penetrator node p is an entry point
for I , p is an M node or a K node.

Thus, I is honest relative to C if the penetrator can
achieve entry into I only by a lucky guess: either he ut-
ters the right nonce or other text in a lucky M node, or he
utters the right key in a lucky K node. He does not deduce
it via his abilities to decrypt and encrypt, or to concatenate
and separate.

Our main theorem interrelates the structure of ideals with
the possible cases for a penetrator strand.

Theorem 4.5 Suppose C is a bundle over A; S � T [ K;
k � K; and K � S [ k�1. Then Ik[S] is honest.

PROOF. Let I = Ik[S]. Because I \ K = S \ K, we may
infer K n I = K n S � k�1. Also, since S � T [ K, the
set S contains nothing encrypted and no concatenations, so
Propositions 3.12 and 3.13 can be applied.

Suppose m is a penetrator node and an entry point for I .
We now consider the various kinds of strands on which a
penetrator node can occur. By the definition of entry point,
m cannot be on a strand of kind F or kind T. Consider now
the remaining cases:

C. m is on a strand with trace h�g;�h;+h gi. Since
h g 2 I , by Proposition 3.12, one of g; h must be in I ,
contradicting the definition of entry point.

S. m is on a strand with trace h�h g;+h;+gi. Since
term(m) must be positive, m is either the second or third
node of the strand, so either h 2 I or g 2 I . By the ideal
property,h g 2 I , contradicting the definition of entry point.

D. m belongs to a strand with trace
h�K�1

0 ;�fhgK0
;+hi. By the assumption that m is

an entry point for I , K�1
0 62 I . Hence, K�1

0 62 S. However,
K � S [ k�1. Therefore K�1

0 2 k�1, so K0 2 k. By
the k-ideal property of I , fhgK0

2 I , contradicting the
definition of entry point.

E. m belongs to a strand with trace
h�K 0;�h;+ fhgK0i. By assumption fhgK0 2 I .
By Proposition 3.13, h 2 I , contradicting the definition of
entry point.

The only remaining possibilities are that m is on a strand
of kind M or of kind K as asserted. �

In our analysis of Otway-Rees, we use two corollaries of
this main result. The first allows us to conclude (in some
situations) that if a key is transmitted that is not originally
known to the penetrator, then a regular (i.e. non-penetrator)
node has provided the entry point.

Corollary 4.6 Suppose C is a bundle, K = S [ k�1 and
S \ KP = ;. If term(m) 2 Ik[S] for some m 2 C, then for
some regular node n 2 C, n is an entry point for Ik[S].

PROOF. Suppose m is minimal in fn 2 C : term(n) 2

Ik[S]g. By Proposition 4.3, m is an entry point for Ik[S].
Since by assumptionm is not regular (and so must be a pen-
etrator node), Theorem 4.5 implies m is either a penetrator
node of kind M or of kind K.

However, since K = S[k�1, S � K. Hence Ik[S]\T =

;, so m is not of kind M. Because S \ KP = ;, m is not of
kind K. �
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Where

1. M1 = M AB fNaM ABgKAS .

2. M2 = M AB fNaM ABgKAS fNbM ABgKBS .

3. M3 = M fNaKABgKAS fNbKABgKBS .

4. M4 = M fNaKABgKAS .

Figure 3. Message Exchange in Otway-Rees

The second corollary gives a condition under which en-
cryption guarantees a non-penetrator origin.

Corollary 4.7 Suppose C is a bundle; K = S [ k�1; S \
KP = ;; and no regular node 2 C is an entry point for
Ik[S]. Then any term of the form fggK for K 2 S does not
originate on a penetrator strand.

PROOF. By Corollary 4.6, for every node m 2 C,
term(m) 62 I = Ik[S]. Suppose t1 = fggK for K 2 S

originates on a penetrator strand m. By inspection, m can-
not occur on a penetrator strand of kind F, T, K, M, C or S.
Consider the remaining cases:

E. m occurs on a strand with trace h�K0;�h;+fhgK0
i.

Now K0 62 I and so K0 6= K. Since fggK @ fhgK0
,

Corollary 3.14 implies fggK @ h, contradicting the defini-
tion of entry point.

D. m belongs to a strand with trace
h�K0

�1;�fhgK0
;+hi: If fggK @ h, then

fggK @ fhgK0
, contradicting the definition of entry

point. �

5 Otway-Rees: The Protocol

This protocol has three roles: initiator, responder, and
server. The goal of the protocol is to mutually authenticate
initiator and responder and to distribute a session key gen-
erated by a server. See Figure 3.

To provide a mathematical model of this protocol, we
further refine the assumptions on the algebra A.

� A set Tname � T of names.

� A mappingK : Tname ! K. This is intended to denote
the mapping which associates to each principal the key
it shares with the server. In the literature on this pro-
tocol this mapping is usually written using subscripts
K(A) = KAS : We assume the mapping A 7! KAS is
injective. We also assume KAS = K�1

AS
, i.e. that the

protocol is using symmetric cryptography.

We will adopt some conventions on variables for the re-
mainder of this section:

� Variables A;B range over Tname;

� Variables K;K 0 range over K;

� Variables N;M (or the same letters decorated with
subscripts) range over T n Tname, i.e. those texts that
are not names.

Other letters such as G and H range over all of A. We
would emphasize that Na is just a variable, having no reli-
able connection to A, whereasKAS is the result of applying
the function K to the argument A. Thus, the latter reliably
refers to the long term key shared between A and S.

� Init[A;B;N;M;K] is the set of strands s 2 � whose
trace is

h+M AB fN M ABgKAS ;�M fN KgKASi

�init is the union of the range of Init.

� Resp[A;B;N;M;K;H;H 0] is defined when N 6@ H ;
its value then is the set of strands in � whose trace is

h � M ABH;

+ M ABH fNM ABgKBS ;

� M H 0
fN KgKBS ;

+ M H 0
i

�resp is the union of the range of Resp.

� Serv[A;B;Na; Nb;M;K] is defined if K 62 KP , K 62

fKAS : A 2 Tnameg and K = K�1; its value then is
the set of strands in � whose trace is:

h � M AB fNaM ABgKAS fNbM ABgKBS ;

+ M fNaKgKAS fNbKgKBSi

�serv is the union of the range of Serv.
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The condition N 6@ H in the definition of a responder
strand ensures that the nonceN must originate on the strand
Resp[A;B;N;M;K;H;H 0] itself. A protocol participant
cannot inspect the contents of H to enforce this condition,
since under normal operation of the protocol, H is cypher-
text inaccessible to the participant. Rather, we assume that
this condition is enforced by a probabilistic mechanism.

Lemma 5.1 If f(~v) \ f(~v
0
) 6= ;, then ~v = ~v

0, when f is
one of the mappings Serv; Init;Resp.

Lemma 5.2 The sets �serv;�init;�resp are pairwise dis-
joint.

PROOF. It suffices to prove the sets of traces are disjoint.
Originator traces begin with a positive term. The second
term of of a responder trace has width at least 4, whereas
for a server trace the width is exactly 3.

Definition 5.3 An Otway-Rees strand space is an infiltrated
strand space � such that � = �serv [ �init [ �resp [ P .

This union is disjoint, by Lemma 5.2 and the observation
thatP contains no strands of the same form as �serv[�init[

�resp.
Fix an Otway-Rees strand space � over A.
We sometimes find it convenient to use the � to

indicate union over some indices. Thus for instance
Resp[A;B;Nb;M;K; �; �] =

[

H;H0

Resp[A;B;Nb;M;K;H;H 0]

6 Otway-Rees: Secrecy

We first prove that session keys distributed by the server
cannot be disclosed unless the penetrator possesses one of
the long-term keys used in the run. We show that a session
key can never occur in a form in which it is not encrypted
by the participants’ long-term keys.

Theorem 6.1 Suppose C is a bundle in �; A;B 2 Tname;
K is uniquely originating; KAS ;KBS 62 KP ; and sserv 2

Serv[A;B;Na; Nb;M;K] has C-height 2.
Let S = fKAS ;KBS;Kg and k = K n S. For every

node m 2 C, term(m) 62 Ik[K].

PROOF. By Proposition 3.10, it suffices to prove the
stronger statement that for every nodem, term(m) 62 Ik[S].
Since S \ KP = ; , k = k�1 and K = k [ S, by Corol-
lary 4.6 it suffices to show that no regular nodem is an entry
point for Ik[S].

We will argue by contradiction and assumem is a regular
node which is an entry point for Ik[S]. Since m is an entry
point for Ik[S], by the definitions, it follows that term(m)

is an element of Ik[S]. By 3.10, this implies that one of
the keys K, KAS , KBS is a subterm of term(m). Now
no regular node contains any key of the form KXS as a
subterm. In fact the only keys which occur as subterms of
term(m) form regular, are the session keys emanating from
a server. But by assumption the set of such keys is disjoint
from the set of keys of the form KXS . It thus follows K
must be a subterm of term(m).

If m is a positive regular node on a strand s, then K @

term(m) implies either:

1. s 2 �serv and m = hs; 2i, in which case K is the
session key of s; or

2. s 2 Resp[�; �; �; �; �; H; �], m = hs; 2i, and K @ H .

In case 2, m is not an entry point for Ik[S], because H @

hs; 1i, which is a preceding negative node.
So consider case 1. By the unique origination of K,

s = sserv, so term(m) = M fNaKgKAS fNbKgKBS . By
Proposition 3.12, either

1. M 2 Ik[S], or

2. fNaKgKAS 2 Ik[S], or

3. fNbKgKBS 2 Ik[S].

But the first is impossible by Axiom 3.5; the second and
third are impossible by Proposition 3.15. �

7 Otway-Rees: Authentication

In this section we will prove the authentication guaran-
tees that Otway-Rees provides to its initiator and responder.
It is also possible to prove that the protocol provides au-
thentication guarantees to the server [6], but we will not do
so here. We first “import” the consequence of Corollary 4.6
that we will need to prove the authentication goals.

Proposition 7.1 Consider a bundle C in �. Suppose X 2

Tname is such that KXS 62 KP . Then no term of the form
fggKXS for X 2 Tname can originate on a penetrator node
in C.

PROOF. Let S = fKXSg and k = K. To apply Corol-
lary 4.7, we must check that no regular node is an entry
point for IK[S], or equivalently, that KXS does not origi-
nate on any regular node.

A key K originates on a regular node only if it is
a session key K originating on a server strand s 2

Serv[�; �; �; �;K; �; �]. However, by the definition of �serv,
the session key K is never a long term key KXS.

Hence, we may apply Corollary 4.7 to IK[S], so any term
fggKXS can only originate on a regular node. �
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Proposition 7.2 If fHgKXS originates on a regular strand
s, then:

1. If s 2 �serv, then H = N K.

2. If s 2 �init, then H = NM X C for X;C 2 Tname.

3. If s 2 �resp, then H = N M CX for X;C 2 Tname.

PROOF. By the definition of originating (Definition 4.1), if
the term fHgKXS originates on m, then m is positive.

If s 2 �init then m = hs; 1i. Thus term(m) is of the
formM AB fNM ABgKAS . The only encrypted subterm
of this term, fNM ABgKAS , is of form 2.

If s 2 �resp, then the positive nodes of s are hs; 2i and
hs; 4i. The encrypted subterms of hs; 2i have plaintext of
forms 2 and 3 respectively, while the encrypted subterm of
hs; 4i has form 1.

A similar argument holds if s 2 �serv. �

Corollary 7.3 Suppose s is a regular strand of �.

1. If fN KgKXS originates on s, then either

� s 2 Serv[A;X;N;N 0;M;K]

� s 2 Serv[X;B;N 0; N;M;K]

for some A;B;N 0;M . In either case the term origi-
nates on the node hs; 2i and K originates on s.

2. If fNM ABgKAS originates on s, with A 6= B then

� s 2 Init[A;B;N;M;K]

for some K. The term originates on the node hs; 1i
and N originates on s.

3. If fNM ABgKBS originates on s, with A 6= B then

� s 2 Resp[A;B;N;M;K;H;H 0]

for some K;H;H 0. The term originates on the node
hs; 2i and N originates on s.

PROOF. Since s is regular, s 2 �serv [�init [�resp. Apply
Propositions 7.2 and 2.7. �

7.1 Initiator’s Guarantee

The following theorem asserts that if a bundle contains a
strand s 2 �init, then under reasonable assumptions, there
are regular strands sresp 2 �resp and sserv 2 �serv which
agree on the initiator, responder, and M values.

Theorem 7.4 Suppose C is a bundle in �; A 6= B; Na is
uniquely originating in C; and KAS ;KBS 62 KP .

If s 2 Init[A;B;Na;M;K] has C-height 2, then there
are regular strands

� sresp 2 Resp[A;B;Nb;M; �; �; �] of C-height at least
2.

� sserv 2 Serv[A;B;Na; Nb;M;K] of C-height 2.

PROOF. The assumption of the theorem means

h+ M AB fNaM ABgKAS ;

� M fNaKgKASi

is the C-trace of a strand s.
SinceKAS 62 KP , by Proposition 7.1, fNaKgKAS orig-

inates on a regular node in C. By Corollary 7.3, this node
belongs to a strand sserv which satisfies one of the condi-
tions:

1. sserv 2 Serv[A;X;Na; N;M1;K]

2. sserv 2 Serv[X;A;N;Na;M1;K]

where X 2 Tname, and N;M1 2 T. Since hsserv; 2i 2 C,
sserv has C-height 2.

If condition 1 holds, fNaM1AXgKAS @

term(hsserv; 1i). By Proposition 7.1, fNaM1AXgKAS
originates on a regular strand s1, and by Corollary 7.3,
Na originates on the same strand s1. By the unique
origination of Na, s1 = s. Thus M1 =M and X = B, and
sserv 2 Serv[A;B;Na; N;M;K].

By Proposition 7.1, fNM ABgKBS originates on a reg-
ular node in C. By Corollary 7.3, this node is the sec-
ond on a strand sresp 2 Resp[A;B;N;M; �; �; �]. Since
hsresp; 2i 2 C, it follows sresp has C-height at least 2.

Suppose that condition 2 holds instead. Then
fNaM1X AgKAS is a subterm of term(hsserv; 1i). By
Proposition 7.1, fNaM1X AgKAS originates on a regular
strand s1, and by Corollary 7.3, Na originates on the same
strand s1. By the unique origination of Na, s1 = s. Hence
by Corollary 7.3, fNaM1X AgKAS = fNaM1ABgKAS ,
so A = B, contradicting an assumption. �

Remarks. Even though the intention of the protocol de-
sign is to have B receive H = fNaM ABgKAS from
A there is no way to prevent a penetrator from replacing
fNaM ABgKAS with garbage. Moreover a penetrator can
prevent the output of the server from reaching B. Thus, we
cannot show that B has C-height > 2.

7.2 Responder’s Guarantee

The responder can rest assured that if a bundle contains a
strand s 2 �resp, then under familiar assumptions there are
regular strands sinit 2 �init and sserv 2 �serv which agree
on the initiator, responder, and M values. Its proof is very
similar to the proof of Theorem 7.4.
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Theorem 7.5 Suppose C is a bundle in �; A 6= B; Nb is
uniquely originating in C; and KAS ;KBS 62 KP .

If s 2 Resp[A;B;Nb;M;K;H;H 0] has C-height at
least 3, then there are regular strands

� sinit 2 Init[A;B; �;M; �] of C-height at least 1.

� sserv 2 Serv[A;B; �; Nb;M;K] of C-height 2.

PROOF. The assumption of the proposition means the C-
trace of s contains at least:

h � M ABH;

+ M ABH fNbM ABgKBS;
� MH 0

fNbKgKBSi

SinceKBS 62 KP , by Proposition 7.1, fNbKgKBS orig-
inates on a regular node in C. By Corollary 7.3, this node
belongs to a strand sserv which satisfies one of the following
two conditions:

1. sserv 2 Serv[B;X;Nb; N;M1;K]

2. sserv 2 Serv[X;B;N;Nb;M1;K]

where X 2 Tname, and N;M1 2 T. Since hsserv; 2i 2 C,
sserv has C-height 2.

If condition 1 holds, then fNbM1BXgKBS @

hsserv; 1i. By Proposition 7.1, fNbM1BXgKBS origi-
nates on a regular strand s1, and by Corollary 7.3, Nb orig-
inates on the strand s1. By the unique origination of Nb,
s = s1. Hence fNbM1BXgKBS = fNbM1ABgKBS ,
so that B = A, contradicting an assumption.

Suppose that condition 2 holds instead. Again,
fNbM1X BgKBS @ hsserv; 1i. By Proposition 7.1,
fNbM1X BgKBS originates on a regular strand s1, and by
Corollary 7.3,Nb originates on the strand s1. By the unique
origination of Nb, s1 = s. Thus, M1 = M and X = A,
and sserv 2 Serv[A;B;N;Nb;M;K].

By Proposition 7.1, fNM ABgKAS originates on a reg-
ular node in C. By Corollary 7.3, this node belongs to a
strand sinit 2 Init[A;B;N;M; �]. sinit has C-height at least
1. �

Remarks. As in the previous theorem there are some pen-
etrator behaviors that cannot be prevented. For instance the
penetrator could take the encrypted session key that B is
supposed to pass on to A and throw it away. Hence, we can
not show that the initiator’s strand has C-height > 1.

More significantly, the above argument makes vividly
clear why the BAN modification to Otway-Rees [1, Sec-
tion 4] might fail, as was shown by Mao and Boyd [3]. In
that modification the nonce Nb is outside the encryption.
Though it is still true, when condition 2 holds, that the term
fM1X BgKBS originates on a regular strand s1, this term

does not contain Nb. Hence, s1 may not be an origination
point for Nb, and we can no longer conclude that s1 = s.

Indeed, the BAN modification also requires a weakening
of Theorem 7.4, as we can no longer infer that the responder
and the server strands will agree on the responder’s nonce
Nb.

7.3 The Missing Guarantee

The authentication theorems do not establish something
that we had expected they would, namely that if a bundle C
contains complete initiator and responder strands, then they
agree on the session key distributed.

That is, one cannot strengthen Theorem 7.4
by replacing the asterisk by K to obtain sresp 2

Resp[A;B;Nb;M;K; �; �]. Nor can one strengthen
Theorem 7.5 by replacing an asterisk by K to obtain
sinit 2 Init[A;B; �;M;K]. The reason is that there is a
counterexample, a bundle C (illustrated in Figure 4) in
which each player has a complete strand in C, and they
agree on A, B, and M , but they do not agree on K.

Although this protocol has been studied very carefully in
the past (e.g. [1, 3, 5]), this weakness appears not to be ex-
plicit in the literature. For instance, the BAN authors [1,
Section 4] suggest the contrary, that the two participants
at the end each believe of a (single) key KAB that it is a
good shared key for A and B. The authors comment that
neither principal can know whether the key is known to
the other, but this is presumably because neither principal
knows whether the other has completed his strand. Paul-
son [5], despite his very detailed argument, does not com-
ment on this point.

Presumably this protocol weakness is not serious, as no
shared keys are disclosed. However, it serves to illustrate
the subtleties that remain poorly understood even in very
familiar protocols.

8 Discussion

This paper, an extension of [7], has served two purposes.
First, we have developed new algebraic machinery—

the notion of ideal—to supplement the strand space idea,
and to prove general, re-usable bounds on the penetrator
(Sections 3–4). Our methods exploit two partial orderings,
namely the subterm relation @ between terms and the �
relation between nodes. Inductive characteristics of these
orderings are formulated via the notion of an ideal in the
case of@, and via a least element principle in the case of�.
In addition, the strand space machinery, together with our
treatment of unique origination, provides great power for
localizing the crucial steps in potential attacks. One knows
on which strand a particular event must occur, and the form
of the term at the relevant node. This gives finer grained
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Where

1. M1 = M AB fNaM ABgKAS .

2. M2 = M AB fNaM ABgKAS fNbM ABgKBS .

3. M3 = M fNaKABgKAS fNbKABgKBS .
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Figure 4. An Otway-Rees Weakness: Mismatched Keys
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control over the analysis than other methods seem to us to
provide.

Second, we have used our methods to provide simple and
revealing proofs about a particular protocol (Sections 5–7).
These proofs show that even in the case of a very well-
studied protocol, there remain fine points that have not been
understood.

The specific algebraic properties we have considered are
still elementary. They are applied under assumptions (such
as “free encryption”) that are still restrictive. However, it is
likely that the approach can be used in the case of message
algebras with less restrictive assumptions.
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