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Abstract

A strand is a sequence of events; it represents either the
execution of legitimate party in a security protocol or else
a sequence of actions by a penetrator. A strand space is a
collection of strands, equipped with a graph structure gen-
erated by causal interaction. In this framework, protocol
correctness claims may be expressed in terms of the con-
nections between strands of different kinds.

In this paper we develop the notion of a strand space.
We then prove a generally useful lemma, as a sample re-
sult giving a general bound on the abilities of the penetra-
tor in any protocol. We apply the strand space formalism
to prove the correctness of the Needham-Schroeder-Lowe
protocol. Our approach gives a detailed view of the condi-
tions under which the protocol achieves authentication and
protects the secrecy of the values exchanged. We also use
our proof methods to explain why the original Needham-
Schroeder protocol fails.

We believe that our approach is distinguished from other
work on protocol verification by the simplicity of the model
and the ease of producing intelligible and reliable proofs of
protocol correctness even without automated support.

1 Introduction

A security protocol is a sequence of messages between
two or more parties in which encryption is used to provide
authentication or to distribute cryptographic keys for new
conversations [17]. Even when security protocols have been
developed carefully by experts and reviewed carefully by
other experts, they are often found later to have flaws that
make them unusable (see, for example, [6, 11]). In many
cases, the attacks do not presuppose any weakness in the
cryptosystem being used, and would be just as harmful with
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an ideal cryptosystem. In other cases, characteristics of the
cryptosystem and characteristics of the protocol combine to
cause protocol failure [16, 5, 18].

Analyzing security protocols consists mainly in two
complementary activities. The first is to find flaws in those
protocols that are not correct, and the second is to estab-
lish convincingly the correctness of those that are. These
activities are interrelated, because the discovery of a flaw
may suggest an altered protocol that we may wish to prove
correct, and because a failure to prove the correctness of a
protocol may suggest a particular flaw.

In this paper, however, we focus on the second activity,
proving the correctness of protocols when they are in fact
correct. Moreover, at this stage, we consider only protocol
correctness assuming ideal cryptography.

Much work both recently (for instance, [1, 21, 24]) and
of an earlier vintage (such as [7, 3]) has proposed techniques
for proving protocols correct. We believe that the approach
presented here has several advantages. First, our approach
gives a clear semantics to the assumption that certain data
items, such as nonces and session keys, are fresh, and never
arise in more than one protocol run. Second, our approach
works with an explicit model of the possible behaviors of
a system penetrator; this allows us to develop general theo-
rems that bound the abilities of the penetrator, independent
of the protocol under study. One such theorem is presented
below in Section 3.2. Third, our approach allows various
notions of correctness, involving both secrecy and authenti-
cation, to be stated and proved. And finally, in our opinion,
the approach leads to detailed insight into the reasons why
the protocol is correct, and the assumptions required. Proofs
are simple and informative: they are easily developed by
hand, and they help to identify more exact conditions under
which we can rely on the protocol.

Our basic contribution is the strand space. A strand is a
sequence of events that a participant may engage in. For a
legitimate participant, each strand is a sequence of message
sends and receives; it represents the actions of that party
(but of that party only, not its presumed interlocutor) in a
particular run of the protocol, with specific values of all data



items such as keys and nonces. A strand for a penetrator is
a sequence of message sends and receives possible for the
penetrator. Penetrator strands include such activities as:

� receiving a symmetric key and a message encrypted
using that key, and then sending the result of decrypt-
ing the message;

� receiving two messages and sending the result of con-
catenating them;

� sending out a guessable data item such as a name; and
so on.

A strand space is a set of strands consisting of strands for
the various legitimate protocol parties, together with pene-
trator strands.

A bundle consists of a number of strands—legitimate
or otherwise—hooked together where one strand sends a
message and another strand receives that same message.
Typically, for a protocol to be correct, each such bundle
must consist of one strand for each of the legitimate par-
ties, all agreeing on the participants, nonces, and session
keys [14, 23, 27]. Penetrator strands may also be entangled
in a bundle, even in a correct protocol, but they do not pre-
vent the legitimate parties from agreeing on the data values,
or from maintaining the secrecy of the values chosen.

Protocol correctness typically depends essentially on the
freshness of data items such as nonces and session keys. For
this reason, the strand spaces that concern us are not full, in
the sense that they do not contain all the strands that would
arise if every participant used every possible data item. A
strand space models the fact that some values occur only
freshly by including only one strand originating that data
item by initially sending a message containing it. Many
strands, by contrast, may stand ready to combine with the
originating strand by receiving the message and processing
its contents further. A strand space will also model the as-
sumption that some values are impossible for a penetrator
to guess; in essence, the space simply lacks any penetrator
strand in which this value is sent without having first been
received.

In this paper, we will develop the basic machinery of
strand spaces (Section 2). This machinery includes a par-
tial order that models causal contribution, and justifies an
induction-like proof method (Section 2.2). We then develop
our model of the penetrator (Section 3), including a sim-
ple but useful theorem that gives a general bound on what
the penetrator can do, regardless of the protocol being mod-
eled (Section 3.2). In Section 4, we study the Needham-
Schroeder-Lowe public key protocol [17, 11, 12] as an ex-
ample, proving both an authentication result (Section 4.2)
and a secrecy result (Section 4.4).

A technical report [25] develops more powerful bounds
on the penetrator, akin to the one in Section 3.2. These

are then used to prove authentication and secrecy results for
two other protocols, namely the Otway-Rees protocol and
the Yahalom protocols. In each case, we discover detailed
(and unexpected) information on the exact conditions under
which the protocol is correct.

2 Strand Spaces

In this section, we will introduce strand spaces and re-
lated notions (Section 2.1). A bundle is a portion of a strand
space large enough to represent a full protocol exchange;
it has a natural causal precedence relation relative to which
inductive arguments may be carried out (Section 2.2). The
terms that we will consider in the present paper are de-
scribed in Section 2.3; a less restrictive treatment is avail-
able in [25], but would merely distract from the main points
here. We finish this section by summarizing some of the
notions of correctness that are natural to state and prove in
our context (Section 2.4).

2.1 Basic Notions

Consider a set A, the elements of which are the possi-
ble messages that can be exchanged between principals in a
protocol. We will refer to the elements ofA as terms. In the
applications that we consider, the setA has more structure,
but in this section we assume that at least a subterm relation
is defined onA. t1 @ t means t1 is a subterm of t. In a pro-
tocol, principals can either send or receive terms. We will
represent sending a term as the occurrence of that term with
positive sign, and receiving a term as its occurrence with a
negative sign.

Definition 2.1 A signed term is a pair h�; ai with a 2 A

and � one of the symbols +;�. We will write a signed
term as +t or �t. (�A)� is the set of finite sequences of
signed terms. We will denote a typical element of (�A)� by
h h�1; a1i; : : : ; h�n; ani i.

By abuse of language, we will still treat signed terms as
ordinary terms, for instance as having subterms.

Definition 2.2 A strand space is a set � with a trace map-
ping tr : �! (�A)�.

In particular applications of the theory, the mapping tr need
not be injective, because we may want to distinguish be-
tween various instances of the same trace. For instance, to
model authentication properties of certain protocols it may
be necessary to distinguish identical traces originating from
different principals, or to model simple replay attacks we
may need to distinguish identical traces originating succes-
sively from the same principal.

Fix a strand space �.
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1. A node is a pair hs; ii, with s 2 � and i an integer
satisying 1 � i � length(tr(s)). The set of nodes is
denoted by N . We will say the node hs; ii belongs to
the strand s. Clearly, every node belongs to a unique
strand.

2. If n = hs; ii 2 N then index(n) = i and strand(n) =
s. Define term(n) to be (tr(s))

i
, i.e. the ith signed term

in the trace of s. Similarly, uns term(n) is ((tr(s))
i
)2,

i.e. the unsigned part of the ith signed term in the trace
of s.

3. If n1; n2 2 N , n1 ! n2 means term(n1) = +a and
term(n2) = �a. It means that node n1 sends the mes-
sage a, which is received by n2, creating a causal link
between their strands.

4. If n1; n2 2 N , then n1 ) n2 means n1; n2 occur on
the same strand with index(n1) = index(n2) � 1. It
expresses that n1 is an immediate causal predecessor
of n2 on the strand.

5. An unsigned term t occurs in n 2 N iff t @ term(n).

6. An unsigned term t originates on n 2 N iff: term(n)

is positive; t @ term(n); and whenever n0 precedes n
on the same strand, t 6@ term(n0).

7. An unsigned term t is uniquely originating iff t origi-
nates on a unique n 2 N .

If a term t originates uniquely in a particular strand space,
then it can play the role of a nonce or session key in that
structure.
N becomes an ordered graph with both sets of edges

n1 ! n2 and n1 ) n2.

2.2 Bundles and Causal Precedence

A bundle is a finite subgraph of this graph, for which we
can regard the edges as expressing the causal dependencies
of the nodes.

Definition 2.3 Let C be a set of edges, and letNC be the set
of nodes incident with any edge in C. C is a bundle if:

1. C is finite.

2. If n1 2 NC and term(n1) is negative, then there is a
unique n2 such that n2 ! n1 2 C.

3. If n1 2 NC and n2 ) n1 then n2 ) n1 2 C.

4. C is acyclic.

Notational Convention 2.4 A node n is in a bundle C,
written n 2 C, if n 2 NC; a strand s is in a bundle if
all of its nodes are in NC .

Definition 2.5 Suppose that S is a set of edges, i.e. a subset
of the union of ! and ), and let NS be the set of nodes
incident with any edge in S.

Then �S is the transitive closure of S, and �S is the
reflexive, transitive closure of S; each is a subset of NS �

NS .

n �S n0 means that there is a sequence of one or more
edges (of either kind) belonging to S leading from n to n0.
Similarly, n �S n0 means that there is a sequence of zero
or more edges belonging to S leading from n to n0. In case
S is a bundle, �S is a partial ordering. We regard it as
expressing causal precedence, because n �S n0 holds just
in case n’s occurrence contributes to allowing n0 to occur.

Lemma 2.6 Suppose C is a bundle. Then�C is a partial or-
der, i.e. a reflexive, antisymmetric, transitive relation. Every
non-empty subset of the nodes in C has �C-minimal mem-
bers.

When a bundle C is understood, we will simply write �.
Similarly, “minimal” will mean �C-minimal.

Most of our arguments turn on the�C-minimal elements
in some set of nodes. These arguments are motivated by the
question, “What did he know, and when did he know it?”
The existence of minimal members in non-empty sets serves
as a kind of induction principle, an observation that clari-
fies the relation of our approach to Paulson’s and Schnei-
der’s [21, 24].

Lemma 2.7 Suppose C is a bundle, and suppose S is a set
of nodes such that uns term(m) = uns term(m0) implies
that m 2 S iff m0 2 S, for all nodes m;m0. If n is a
�C-minimal member of S, then the sign of n is positive.

PROOF. If term(n) were negative, then by the bundle prop-
erty, n0 ! n for some n0 2 C and sign apart, term(n) =

term(n0). Hence, n0 2 S, violating the minimality property
of n. �

Lemma 2.8 Suppose C is a bundle, t 2 A and n 2 C is a
�C-minimal element of fm 2 C : t @ term(m)g. The node
n is an originating occurrence for t.

PROOF. By Lemma 2.7, the sign of n is positive. If n0 � n

lies on the strand of n, then n0 2 C, so by the minimality
property of n, t 6@ term(n0). Thus n is originating for t. �

2.3 Terms and Encryption

We will now specialize the set of terms A. In particular
we will assume given:

� A set T of texts (representing the atomic messages).
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� A set K of cryptographic keys disjoint from T,
equipped with a unary operator inv : K ! K. We
assume that inv maps each member of a key pair for an
asymmetric cryptosystem to the other, and that it maps
a symmetric key to itself.

� Two binary operators

encr : K�A! A

join : A�A! A

As usual, we will write inv(K) as K�1, encr(K;m) as
fmgK , and join(a; b) as a b.

The proofs in this paper will use an assumption we will
call the assumption of free encryption; many other authors
(e.g. [13, 15, 21]) make similar assumptions. It stipulates
that a ciphertext can be regarded as a ciphertext in just one
way:

fmgK = fm0
gK0 =) m = m0

^K = K 0

For the purposes of this paper we will make a stronger as-
sumption, namely that A is the algebra freely generated
from T and K by the two operators encr and join, in the
sense that these two operators are injective, and have range
disjoint from each other and from T and K. This is more
than would be needed for our method [25], but it leads to
the simplest exposition of the main points.

Attacks that might exist if there are terms that may be
“read” as having more than one form are referred to as type
flaw attacks [4]. Some type flaw attacks seem implausible,
in the sense that most implementations would not be vul-
nerable to them, while others are more troublesome. Type
flaws could be modeled by extending strand spaces in vari-
ous possible ways.

The subterm relation @ is defined inductively, so that:

� a @ t for t 2 T iff a = t;

� a @ K for K 2 K iff a = K;

� a @ fggK iff a @ g or a = fggK ;

� a @ g h iff a @ g, a @ h or a = g h.

We should emphasize that, for K 2 K, K @ fggK only
if K @ g already. Restricting subterms in this way re-
flects an assumption about the penetrator’s capabilities, to
wit, that keys can be obtained from cyphertext only if they
are embedded in the text that was encrypted. This might
not always be the case—for instance, if a dictionary attack
is possible—but it is the assumption we will make here.

This notion of subterm does not always mesh perfectly
with the definition of origination and unique origination,
which refers to the subterm relation (Section 2.1, Clauses 6

and 7). In some cases [26], it is more natural to use a no-
tion of origination referring to the larger relation @0; that
relation would be defined so that

a @0
fggK iff a @0 g _ a = K _ a = fggK

2.4 Notions of Correctness

Gavin Lowe studies a range of authentication properties
in [14]; strand spaces are a natural model for stating and
proving his agreement properties.1 A protocol guarantees a
participant B (say, as the responder) agreement for certain
data items ~x if:

each time a principal B completes a run of the
protocol as responder using ~x, apparently with A,
then there is a unique run of the protocol with the
principal A as initiator using ~x, apparently with
B.

A weaker non-injective agreement does not ensure unique-
ness, but requires only:

each time a principal B completes a run of the
protocol as responder using ~x, apparently with A,
then there exists a run of the protocol with the
principal A as initiator using ~x, apparently with
B.

Non-injective agreement is weaker because it does not pre-
vent the other partyA from being duped into executing mul-
tiple runs matching a single run by B.

We can prove non-injective agreement by establishing
that, whenever a bundle C contains a responder strand using
~x, then C also contains an initiator strand using ~x. We can
establish agreement by showing that C contains a unique
initiator strand using ~x. We will illustrate these properties
in Propositions 4.2 and 4.8.

A simple notion of secrecy, sufficient for our purposes
here, for a data value x may also be easily stated. We stipu-
late that no node n—whether a regular node or a penetrator
node—ever has x unprotected as its term. Thus, a value x
is secret in a strand space � if, for every bundle C in �, and
every node n 2 C, term(n) 6= x. We illustrate this property
in Proposition 4.10.

This notion of secrecy concerns only what is “said on the
wire.” In this sense, a value is secret if the non-penetrator
strands never emit it, and the penetrator can never derive
(and emit) it from what they do emit. Legitimate protocol
participants may “know” a secret value in the sense of car-
rying out computations that depend on it, so long as their
behavior in the protocol does not include disclosing it in
public.

1These are akin to the correspondence properties of Woo and Lam [27].
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More stringent notions of secrecy are also possible, as
for instance the information flow security properties, and
may be fruitfully applied to security protocols [8].

3 The Penetrator

The penetrator’s powers are characterized by two ingre-
dients, namely a set of keys known initially to the penetrator
and a set of penetrator strands that allow the penetrator to
generate new messages from messages he intercepts.

A penetrator set consists of a set of keys KP . It con-
tains the keys initially known to the penetrator. Typically it
would contain: all public keys; all private keys of penetra-
tors; and all symmetric keys Kpx;Kxp initially shared be-
tween the penetrator and principals playing by the protocol
rules. It may also contain “lost keys” that became known
to the penetrator, either because a principal was careless, or
else because the penetrator succeeded in some cryptanaly-
sis.

3.1 Penetrator Strands

The atomic actions available to the penetrator are en-
coded in a set of penetrator traces. They summarize his
ability to discard messages, generate well known messages,
piece messages together, and apply cryptographic opera-
tions using keys that become available to him. A protocol
attack typically requires hooking together several of these
atomic actions.

Definition 3.1 A penetrator trace is one of the following:

M. Text message: h+ti where t 2 T

F. Flushing: h�gi

T. Tee: h�g; +g; +gi

C. Concatenation: h�g; �h; +g hi

S. Separation into components: h�g h; +g; +hi

K. Key: h+Ki where K 2 KP .

E. Encryption: h�K; �h; +fhgKi.

D. Decryption: h�K�1; �fhgK ; +hi.

This set of penetrator traces gives the penetrator powers
similar to those in other approaches, e.g. [13, 21]. They
ensure that the values that may be emitted by the penetrator
are closed under joining, encryption, and the relevant “in-
verses.”

It is also possible to extend the set of penetrator traces
given here if it is desired to model some special ability of the
penetrator. That requires no essential change to our overall

framework, although the proofs in this paper would then
need to be modified to take account of the additional pen-
etrator traces. Our theorems characterize a penetrator with
just the powers we have described; a penetrator with addi-
tional computational or cryptanalytic abilities may not be
subject to the same limitations.

Definition 3.2 An infiltrated strand space is a pair (�;P)

with � a strand space and P � � such that tr(p) is a pene-
trator trace for all p 2 P .

A strand s 2 � is a penetrator strand if it belongs to
P , and a node is a penetrator node if the strand it lies on
is a penetrator strand. Otherwise we will call it a non-
penetrator or regular strand or node.

A node n is a M, F, etc. node if n lies on a penetrator
strand with a trace of kind M, F, etc.

We would not expect an infiltrated strand space to real-
ize all of the penetrator traces of type M. In that case, the
space could not model unguessable nonces. The more use-
ful spaces � lack M-strands for many text values, which the
legitimate participants can use as fresh nonces.

3.2 A Bound on the Penetrator

Because the powers of the penetrator are defined by the
penetrator keys and the penetrator strands, they are inde-
pendent of the choice of a particular protocol to be proved
correct. We can accordingly prove general facts about the
penetrator’s powers, re-using them whenever we become in-
terested in a new protocol. In [25], we develop several pow-
erful theorems about the penetrator, which are of use in all
three of the protocols studied there. Here, we will prove a
simple theorem that is useful in the example we will turn to
next, namely the Needham-Schroeder-Lowe protocol.

The proof of this theorem is typical of how we use
Lemma 2.6. By “S n T ” we mean the set difference of S
and T .

Proposition 3.3 Let C be a bundle, and let K 2 K nKP .
If K never originates on a regular node, then K 6@

term(p) for any penetrator node p 2 C.

PROOF. Consider the set S = fn 2 C : K @ term(n)g.
Suppose (to derive a contradiction) that S is non-empty.
Then S has members that are minimal relative to �C

(Lemma 2.6). By Lemma 2.8, any�C-minimal members of
S are originating occurrences of K. Hence, by the assump-
tion, they are all penetrator nodes. By Lemma 2.7, they are
all positive nodes. We will now examine the possible cases
for positive penetrator nodes.

M. The strand has the form h+ti where t 2 T, but K 6@ t.

F. The strand has the form h�gi, and thus lacks any positive
nodes.

5



T. The strand has the form h�g; +g; +gi, so no value
originates on the positive nodes.

C. The strand has the form h�g; �h; +g hi, so no value
originates on the positive node.

S. The strand has the form h�g h; +g; +hi, so no value
originates on the positive nodes.

K. The strand has the form h+K0i where K0 2 KP . But
K @ K0 iff K = K0, contrary to the assumption that
K 2 K nKP .

E. The strand has the form h�K0; �h; +fhgK0
i. By the

definition of @, a @ fhgK0
iff a @ h or a = fhgK0

.
Hence, no key can occur in the positive node without
having occurred in a previous node.

D. The strand has the form h�K
�1

0
; �fhgK0

; +hi. By
the definition of @, a @ h only if a @ fhgK0

, so
no key can occur in the positive node without having
occurred in a previous node.

Hence S is in fact empty. But if S is empty, then K 6@

term(n) for any n 2 C, hence certainly K 6@ term(p) for
penetrator nodes p 2 C. �

This proof method is characteristic: it successively con-
siders the minimal elements in a set, considers whether
they are regular nodes or penetrator nodes, and finally takes
cases on the different forms of penetrator strands.

4 The Needham-Schroeder-Lowe Protocol

This protocol was proposed by Gavin Lowe [12] as a way
to fix the public-key protocol proposed by Needham and
Schroeder [17], which he had discovered to be flawed [11].
In the form Lowe considers, the protocol assumes that each
participant has somehow discovered the other’s public key.

1. A �! B: fNaAgKB

2. B �! A: fNaNbBgKA

3. A �! B: fNbgKB

The intended result of this protocol is that the two partic-
ipants should come to share access to the values Na and
Nb, each associating these values with the other participant,
and no other party should be in possession of them. The
protocol might be used in a context where the two values
are hashed together to yield a shared symmetric key for an
encrypted session, for instance. This protocol differs from
the original Needham-Schroeder public key protocol only
in message 2; in the original protocol, B’s name is not in-
cluded.

In [12], Lowe proves the correctness of the revised pro-
tocol, showing that any attack against the revised protocol

could be realized using just two runs of the protocol. The
FDR model checker discloses that no attack exists on such
a small system; this result is confirmed by examining the
possible forms of an attack. In this section we will give a
different proof using the strand space approach.

We specialize the term algebra somewhat, equipping it
with:

� A set of namesTname � T. We will use variables such
as A, B to range overTname.

� A mapping K : Tname ! K. This is the mapping
that associates a public key with each principal. We
will follow tradition by writing K(A) in the form KA.
We will assume that this function is injective, so that
if KA = KB , then A = B. The protocol does not
achieve its authentication goals unless the mapping K
is injective.

4.1 NSL Strand Spaces

Definition 4.1 An infiltrated strand space �;P is an NSL
space if � is the union of three kinds of strands:

1. Penetrator strands s 2 P;

2. “Initiator strands” with trace Init[A;B;Na; Nb], de-
fined to be:

h+fNaAgKB ; �fNaNbBgKA ; +fNbgKB i

where A;B 2 Tname, Na; Nb 2 T but Na 62 Tname.

3. Complementary “responder strands” with trace
Resp[A;B;Na; Nb], defined to be:

h�fNaAgKB ; +fNaNbBgKA ; �fNbgKB i

where A;B 2 Tname, Na; Nb 2 T but Nb 62 Tname.

If s is a regular strand with trace Init[A;B;Na; Nb] or
Resp[A;B;Na; Nb], then we refer to A and B as the initia-
tor and the responder of s (respectively), and to Na and Nb

as the initiator’s value and responder’s value (respectively).
The intention is that these values should be nonces, in the
sense of texts uniquely originating in �. Note that given
any strand s in �, we can uniquely classify it as a penetra-
tor strand, an initiator’s strand, or a respondent’s strand just
by the form of its trace. In particular, given an NSL space
�, we can read off which strands are penetrator strands, so
that (�;P) is uniquely determined. Hence we can omit P
safely.
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4.2 Agreement: The Responder’s Guarantee

Proposition 4.2 Suppose:

1. � is an NSL space and C is a bundle containing a re-
sponder’s strand s with trace Resp[A;B;Na; Nb];

2. K�1

A
62 KP ; and

3. Na 6= Nb and Nb is uniquely originating in �.

Then C contains an initiator’s strand t with trace
Init[A;B;Na; Nb].

We will prove this using a sequence of lemmas. Throughout
the remainder of this section, we will fix an arbitrary �, C,
s, A, B, Na, and Nb satisfying the hypotheses of Proposi-
tion 4.2. The node hs; 2i outputs the value fNaNbBgKA ;
for convenience we will refer to this node as n0, and to its
term as v0. The node hs; 3i receives the value fNbgKB ; we
will refer to this node as n3 and its term as v3. We will iden-
tify two additional nodes n1 and n2 during the course of the
proof, such that n0 � n1 � n2 � n3.

Lemma 4.3 Nb originates at n0.

PROOF. By the assumptions, Nb @ v0, and the sign of
n0 is positive. Thus, we need only check that Nb 6@ n0,
where n0 is the node hs; 1i preceding n0 on the same strand.
Since term(n0) = fNaAgKB , we need to check that Nb 6=

Na, which is a hypothesis, and Nb 6= A, which follows
from the stipulation—in Definition 4.1 Clause 3—that the
responder’s value not be in Tname. �

Next comes the main lemma, which establishes that the
crucial step is taken by a regular strand and not a penetrator
strand. As usual, it considers the �-minimal members of
a set of nodes. The content of the lemma is represented in
Figure 1.

Lemma 4.4 The set S = fn 2 C : Nb @ term(n) ^ v0 6@

term(n)g has a�-minimal node n2. The node n2 is regular,
and the sign of n2 is positive.

PROOF. Because n3 2 C, and n3 contains Nb but not as
a subterm of v0, S is non-empty. Hence S has (at least) a
�-minimal element n2 by Lemma 2.6. The sign of n2 is
positive by Lemma 2.7.

Can n2 lie on a penetrator strand p? Let us examine the
possible cases for positive penetrator nodes, according to
the form of the trace of p. We will consider case S last.

M. The trace tr(p) has the form h+ti where t 2 T; so
we must have t = Nb. In this case Nb originates on
this strand. But that is impossible, as Nb originates
uniquely on n0 (Lemma 4.3).

F. The trace tr(p) has the form h�gi, and thus lacks any
positive nodes.

fNaAgKB
- hs; 1i

�

fNaNbAgKA
n0

�

w
w
w
w
w
w
w
w
w

n2
: : : Nb : : :

-

fNbgKB
- n3

�

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

Figure 1. Regular Node n2: Minimal in S

T. The trace tr(p) has the form h�g; +g; +gi, so the pos-
itive nodes are not minimal occurrences.

C. The trace tr(p) has the form h�g; �h; +g hi, so the
positive node is not a minimal occurrence.

K. The trace tr(p) has the form h+K0i where K0 2 KP .
But Nb 6@ K0, so this case does not apply.

E. The trace tr(p) has the form h�K0; �h; +fhgK0
i.

Suppose Nb @ fhgK0
^ v0 6@ fhgK0

. Since Nb 6=

fhgK0
, Nb @ h. Moreover, v0 6@ h, so the positive

node is not minimal in S.

D. The trace tr(p) has the form h�K
�1

0
; �fhgK0

; +hi.
If the positive node is minimal in S, then v0 6@ h but
v0 @ fhgK0

. Hence (using the assumption of free
encryption) h = NaNbB and K0 = KA. Thus,
there exists a node m (the first on this strand) with
term(m) = K

�1

A
. Since by assumption, K�1

A
62 KP ,

we may apply Proposition 3.3 to infer that K�1

A
orig-

inates on a regular node. However, no initiator strand
or responder strand originates K�1

A
.

S. The trace tr(p) has the form h�g h; +g; +hi. Assume
term(n2) = g; there is a symmetrical case if term(n2) = h.
Because n2 2 S, Nb @ g and v0 6@ g. (Note: by the
minimality of n2, we must have v0 @ g h, so v0 @ h, as v0
is an encrypted value, not a concatenated value.)

Let T = fm 2 C : m � n2 ^ g h @ term(m)g. Every
member of T is a penetrator node, because no regular node
contains a subterm g h where h contains any encrypted sub-
term.

T is non-empty because hp; 1i 2 T . Hence T has a min-
imal member m by Lemma 2.6, which is of positive sign by
Lemma 2.7. Let us consider what kind of strand m can lie
on.
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M, F, T, K. Clearly a minimal member of T cannot lie on
these strands.

S. If g h @ term(m), where m is a positive node on a
strand p0 of kind S, then g h @ term(hp0; 1i). More-
over, hp0; 1i � m, contradicting the minimality of m
in T .

E. If g h @ term(m), where m is a positive node on a
strand p0 of kind E, then g h @ term(hp0; 2i). More-
over, hp0; 2i � m, contradicting the minimality of m
in T .

D. If g h @ term(m), where m is a positive node on a
strand p0 of kind D, then g h @ term(hp0; 2i). More-
over, hp0; 2i � m, contradicting the minimality of m
in T .

C. Suppose g h @ term(m), where m is a positive node on
a strand p0 of kind C, and m is minimal in T . Then
g h = term(m), and p0 has trace h�g; �h; +g hi.
Hence, term(hp0; 1i) = term(n2) and hp0; 1i � n2,
contradicting the minimality of n2 in S.

Therefore n2 does not lie on a penetrator strand, but must
lie on a regular strand instead. �

Definition 4.5 Let n2 be�-minimal in S = fn 2 C : Nb @

term(n)^v0 6@ term(n)g, and therefore regular and of pos-
itive sign.

We show next that the strand containing n2 also has a node
in which v0 (= fNaNbBgKA) occurs. This lemma is il-
lustrated in Figure 2.

Lemma 4.6 A node n1 precedes n2 on the same regular
strand t, and term(n1) = fNaNbBgKA .

PROOF. Nb originates at n0 (Lemma 4.3), and originates
uniquely in � (Assumption 3). Moreover, n2 6= n0, be-
cause v0 @ term(n0) while v0 6@ term(n2). Hence,Nb does
not originate at n2. So there is a node n1 preceding n2 on
the same strand such that Nb @ term(n1). By the minimal-
ity property of n2, fNaNbBgKA @ term(n1). However,
as no regular node contains an encrypted term as a proper
subterm, fNaNbBgKA = term(n1). �

Lemma 4.7 The regular strand t containing n1 and n2 is
an initiator strand, and is contained in C.

PROOF. Node n2 is a positive regular node and comes after
a node (namely n1) of the form fx y zgK . Hence t is an ini-
tiator strand; if it were a responder strand, it would contain
only a negative node after one of that form. Thus, n1 and
n2 are the second and third nodes of t respectively. Since
the last node of t is contained in C, all previous nodes are
also. �

fNaAgKB
- hs; 1i

�

fNaNbAgKA
n0

�

w
w
w
w
w
w
w
w
w

n1 �
fNaNbAgKA

...

�

w
w
w
w
w
w
w

n2

�

w
w
w
w
w
w
w
w
w

: : : Nb : : :
-

fNbgKB
- n3

�

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

Figure 2. Node n1 Contains v0

PROOF OF PROPOSITION 4.2. Proposition 4.2 now fol-
lows immediately from Lemmas 4.6 and 4.7. �

We have now proved the non-injective agreement prop-
erty for the NSL responder. Injectivity follows easily on the
assumption that the initiator chooses his value Na so that it
uniquely originates. If Na is not uniquely originating, then
the injectivity property is clearly false.

Proposition 4.8 If � is an NSL space, C is a bundle, and
Na is uniquely originating in �, then there is at most one
strand t with trace Init[A;B;Na; Nb] for anyA, B, andNb.

PROOF. If any strand t has trace Init[A;B;Na; Nb] for any
A, B, and Nb, then ht; 1i is positive, Na @ termht; 1i, and
Na cannot possibly occur earlier on t. So Na originates at
node ht; 1i. Hence, if Na originates uniquely in �, there
can be at most one such t. �

The requirement thatNa and Nb be distinct is a peculiar-
ity of our approach. Without this assumption, the theorem
is false. The responder strand

h�fNaAgKB ; +fNaNaBgKA ; �fNagKBi

can be embedded in a bundle C in whichNa andA originate
on M-nodes, and the final term fNagKB is generated by the
penetrator on the “off chance” that B will reuse the given
nonce Na. The responder’s nonce Nb (= Na) does origi-
nate uniquely then; however, not on the responder’s strand,
but on an M-strand.
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In a probabilistic model, we would assume that the
choice of Nb is independent of the value of Na. In this
case, the penetrator’s strategy will succeed sometimes, but
no more frequently than randomly generating the bits to en-
crypt to make up the last message. Hence, this strategy may
be safely ignored.

Thus, our strand space model can be more stringent than
a faithful probabilistic model. An implementor can jus-
tify “cutting corners,” for instance by not programming the
check for Nb = Na, by showing in the probabilistic model
that an exploitation strategy has negligible probability of
success, despite existing in the strand space model.

4.3 The Original Needham-Schroeder Protocol

This analysis also sheds light on why the original
Needham-Schroeder protocol would be vulnerable. The
analysis is exactly parallel except that the Lemma corre-
sponding to Lemma 4.6 would read:

Lemma 4.9 In the original Needham-Schroeder protocol,
a node n1 precedes n2 on the same regular strand t, and
term(n1) = fNaNbgKA .

With this weaker information, we can not conclude that
t has a trace of the form Init[A;B;Na; Nb], because
the responder’s identity is not determined by the term
fNaNbgKA , which is all that we know s and t agree on. We
can only infer that t has trace Init[A;C;Na; Nb] for someC.
This is exactly the weakness that Lowe’s attack exploits.

4.4 Secrecy: The Responder’s Nonce

We may use the same methods to show that the respon-
der’s nonce Nb remains secret in the protocol. For this re-
sult, we also need to assume that the responder’s private key
is not compromised. If it were, the penetrator could readNb

directly from the last message of the exchange.

Proposition 4.10 Suppose:

1. � is an NSL space, and C is a bundle containing a
responder’s strand s with trace Resp[A;B;Na; Nb];

2. K�1

A
62 KP and K�1

B
62 KP ; and

3. Na 6= Nb and Nb is uniquely originating in �.

Then for all nodes m 2 C such that Nb @ term(m), either
fNaNbBgKA @ term(m) or fNbgKB @ term(m). In
particular, Nb 6= term(m).

PROOF. Let �, C, s, A, B, Na, and Nb satisfy the hypothe-
ses, and, as in Proposition 4.2, we will again refer to hs; 2i
as n0, and to its term fNaNbBgKA as v0. The node hs; 3i

receives the value fNbgKB ; we will refer to this node as n3
and its term as v3. Consider the set:

S = fn 2 C : Nb @ term(n)

^ v0 6@ term(n) ^ v3 6@ term(n)g

If S is non-empty, then it has at least one �-minimal ele-
ment. We show first (Lemma 4.11) that such nodes are not
regular. We next show (Lemma 4.12) that they are not pen-
etrator nodes. Therefore S is empty, and the theorem holds.

Lemma 4.11 No minimal member of S is a regular node.

PROOF. Suppose instead that m 2 S is minimal and a reg-
ular node. The sign of m is positive by Lemma 2.7.

Node m cannot lie on s: Only n0 is positive, and v0 =

term(n0), so n0 is not in S.
Nor can m lie on a responder’s strand s0 6= s. In that

case, m = hs0; 2i, so term(m) = fN;N 0; CgKD . Since
Nb @ term(m), either Nb = N or Nb = N 0.

� If Nb = N , Nb @ term(hs0; 1i), because the first node
hs0; 1i is fN;DgKC = fNb; DgKC . Moreover, v0 6@
fNb; DgKC and v3 6@ fNb; DgKC . Hence hs0; 1i 2 S.
Since hs0; 1i � m, this contradicts the minimality of
m.

� If Nb 6= N and Nb = N 0, then Nb originates at
m, contradicting the assumption that Nb originates
uniquely on n0.

Suppose next that m lies on an initiator strand s0. It must
be either the first or third node.

� If m = hs0; 1i, then since Nb @ term(m), Nb origi-
nates at m, contradicting the assumption that Nb orig-
inates uniquely on n0.

� If m = hs0; 3i, then term(m) = fNbgKC . So the sec-
ond node hs0; 2i is of the form fxNbCgK . However,
C 6= B, because otherwise v3 = term(m). Hence
hs0; 2i � m is in S, contradicting the minimality of m.
�

Lemma 4.12 No minimal member of S is a penetrator
node.

PROOF SKETCH. The proof is almost identical to the proof
of Lemma 4.4. The only significant difference is that when
the penetrator strand is of type D, we must consider two
cases. In one case, h = NaNbB and K0 = KA, which
are the plaintext and key that produce v0. In the other case,
h = Nb and K0 = KB, which are the plaintext and key that
produce v3. Hence, we must apply Proposition 3.3 to each
of the two private keys, which explains the need to assume
both uncompromised. �
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4.5 The Initiator’s Guarantees: Secrecy and
Agreement

The proof of the secrecy of the initiator’s nonce Na is
very similar to the proof we have just given.

Proposition 4.13 Suppose:

1. � is an NSL space, and C is a bundle containing an
initiator’s strand s with trace Init[A;B;Na; Nb];

2. K�1

A
62 KP and K�1

B
62 KP ; and

3. Na is uniquely originating in �.

Then for all nodes m 2 C such that Na @ term(m), either
fNaAgKB @ term(m) or fNaNbBgKA @ term(m). In
particular, Na 6= term(m).

By contrast, the initiator’s guarantee of agreement is es-
sentially different. In particular, it requires a stronger hy-
pothesis than Proposition 4.2, namely that both private keys
K

�1

A
and K

�1

B
are uncompromised. Not surprisingly, if

K
�1

B
2 KP , then the penetrator can complete the entire

exchange with no activity on B’s part.
Somewhat more surprising is this: If K�1

A
2 KP , then

the penetrator can read B’s reply fNaNbBgKA , substitut-
ing a different reply fNaN

0BgKA . This attack prevents
us from proving agreement for the initiator assuming only
that the responder’s private key is uncompromised. Indeed,
a proof approach based on an analogy with Proposition 4.2
fails.

However, we can prove an agreement theorem using the
secrecy of Na as a lemma.

Proposition 4.14 Suppose:

1. � is an NSL space and C is a bundle containing an
initiator’s strand s with trace Init[A;B;Na; Nb];

2. K�1

A
62 KP and K�1

B
62 KP ; and

3. Na is uniquely originating in �.

Then C contains the first two nodes of a responder’s strand
t with trace Resp[A;B;Na; Nb].

PROOF SKETCH. Consider the set fm 2 C :

fNaNbBgKA @ term(m)g. It is non-empty because it
contains hs; 2i. So it contains a minimal member m0. If m0

lies on a regular strand t, then t can be shown to have trace
Resp[A;B;Na; Nb], and to have two nodes (at least) in C.

If instead m0 lies on a penetrator strand t, then t can be
shown to be an E-strand with trace

h�KA; �NaNbB; +fNaNbBgKAi

But this contradicts Proposition 4.13, which implies thatNa

does not appear in the form shown in node ht; 2i.

5 Discussion

In this paper, we have developed a new framework for
proving the correctness of cryptographic protocols, and we
have applied it to the Needham-Schroeder-Lowe protocol.

The framework allows us to use mathematically straight-
forward methods to justify protocols. These methods pri-
marily exploit two partial orderings, namely the subterm re-
lation @ between terms and the � relation between nodes.
Inductive characteristics of the � ordering are proved via a
least element principle. Inductive characteristics of the @
relation can also be exploited [25, 26].

Proofs carried out in the strand space framework turn on
detailed protocol behavior, and therefore appear more reli-
able than more “conceptual” proofs such as proofs in belief
logics [3, 9]. Moreover, the proofs are intuitive enough that
mere mortals can carry them out correctly without the need
for mechanized support.

In each of the examples we have studied, as documented
in [25], we have discovered new information about the con-
ditions under which the protocol is correct. We have found
that:

� The responder’s agreement guarantee in the Needham-
Schroeder-Lowe protocol holds even if the responder’s
private key has been compromised. By contrast, the
initiator’s agreement guarantee presupposes that nei-
ther the initiator nor the responder has had his private
key compromised (Section 4.5).

� In the Otway-Rees protocol, even if both the responder
and the initiator receive keys, they may receive differ-
ent keys. This is essentially due to Otway-Rees estab-
lishing a non-injective sort of agreement between each
principal and the server.

� In the Yahalom protocol, if there are multiple trusted
servers, participants may play the role of a server as
well as the role of an ordinary participant, so long as a
particular symmetry is avoided. Otherwise attacks are
possible.

Thus, the strand space approach leads to a precise charac-
terization of the validity of the protocols.

Our work is closely related to Paulson’s inductive ap-
proach [21, 20, 22]. Paulson models a protocol as a set
of rules for extending a sequence of events; some of these
rules represent actions by legitimate participants, while oth-
ers represent actions by the penetrator. A sequence of events
generated by these rules corresponds roughly to a bundle.
Paulson expresses authentication goals and secrecy goals as
properties of these sequences, which he can then prove by
induction on the way that the sequence is generated. The
general-purpose theorem-proving system Isabelle [19] pro-
vides mechanical support for the reasoning.
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By contrast, our approach uses a partially ordered struc-
ture, the bundle. As we mentioned, Lemma 2.6 is in effect
an induction principle on the partial order �C . The nodes
in the bundle are organized into strands. Naturally, every
bundle may be linearized into an event sequence in at least
one way, while any event sequence determines a bundle.

However, we think there are two advantages to our ap-
proach. First, the bundle contains exactly the causally rel-
evant information. There is no ordering relation between
two nodes unless the causality determined by the basic re-
lations ! and ) requires one, and this simplifies inductive
arguments. Second, the strand captures a great deal of in-
formation. A particular strand may be known to have nodes
in a bundle (e.g. because a value originates uniquely on it).
From this we can identify the whole sequence of relevant
actions for that participant, which aids in isolating the exact
agreement properties the protocol satisfies. We believe this
is why our results are somewhat sharper than others in the
literature.

The strand space framework can also be used in other
ways, apart from being used simply to prove a protocol cor-
rect. For instance, it could be used to give an alternate se-
mantics for belief logics, whether applied to cryptographic
protocols [3, 2] or distributed systems more broadly [10], in
contrast to the more usual semantical approaches based on
sequences of events or states. The localization that the no-
tion of strand offers should help to refine and sharpen such
models. Alternatively, results about authentication proto-
cols proved in a strand space context can be imported into
the more usual linear models by linearizing the bundles.
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