AN APPROACH FOR TOTALLY DYNAMIC FORMS
PROCESSING IN WEB-BASED APPLICATIONS

Daniel J. Helm, Bruce W. Thompson
The MITRE Corporation, 1820 Dolley Madison Blvd, McLean, VA 22102, USA
Email: dhelm@mitre.org, bthompso@mitre.org

Keywords:

Abstract:

web-based computing, database applications, forms processing, dynamic pages

This paper presents an approach for dynamically generating and processing user input form variants from

metadata stored in a database. Many web-based applications utilize a series of similar looking input forms
as a basis for capturing information from users, such as for surveys, cataloging, etc. Typical approaches for
form generation utilize static HTML pages or dynamic pages generated programmatically via scripts. Our
approach generates totally dynamic forms (including page controls, presentation layout, etc.) using only
metadata that has been previously defined in relational tables. This significantly reduces the amount of
custom software that typically needs to be developed to generate and process form variants.

1. INTRODUCTION

Many database-oriented applications provide
user interfaces that often times are comprised of
large numbers of input forms. There are two general
approaches for creating user input forms in these
kinds of applications:

1. Creating static forms made up of text,
images, and HTML formatting tags

2 . Developing software that generates
dynamic forms using data stored in
databases

The static form approach typically requires much
manual labor to craft the HTML pages by hand.
When large numbers of page variations are required
in an application, this approach can become very
error prone and a maintenance nightmare. The
dynamic form approach, on the other hand, utilizes
software such as CGl-scripts [1], Cold Fusion [2], or
Active Server Pages [3] to programmatically
generate much of the form content using data read
from a database. Dynamic forms generated in
typical applications are generally comprised of both
static and dynamic content. The basic layout and
presentation of the form such as the controls (text
fields, list boxes, etc.) and their positioning logic are
statically defined in the form processing scripts. The
dynamic portion of the form consists of the

information read from a database that supplies the
data element values for the different page controls.
Although better than the totally static method, this
approach can involve considerable software
development to define the many scripts needed to
generate and process the form variants.

Our approach, however, utilizes a framework
that supports completely dynamic forms (including
page controls and layout) created from metadata
stored in a series of relational tables. This simplifies
the coding required to generate large numbers of
forms for certain application types. We applied the
concept on a prototype system developed for a
customer project that is used to collect large
quantities of information on complex information
systems as a basis for determining system-to-system
interoperability requirements and estimations.
Because of the large number of “questionnaires”
needed to support very detailed information
collection and resolution, we greatly benefited from
this totally dynamic form processing technique that
reduced the amount of custom software we had to
develop.

2. DYNAMIC FORMS CONCEPT

The basic concept is to represent a form via
metadata that defines a basic two-dimensional
layout. Figure 1 provides an example of our user

interface. The left frame provides a listing of
various functions that can be performed, such as
requesting a form or generating a report. The right
frame is used to display the output of a selected

function. The example shows a fragment of a user
input form used to collect information about a
system’s capabilities. A form is comprised of a

7 Access Data - Microsoft Internet Explorer H=E3
Fle Edt View Favoites Tools Help ‘
w2 @ Q G B | B 9 & . =
Back Fanward Stop Refresh Home Search Favortes Histary Frint Edit Discuzs
Addiess I@ Ehscratchidccess Data him j o Go H Links >
CASP [WebFmt] World Wide Web: What kinds of web browser data formats can be imported (read) or produced (write) by the 1]
10 temn being registered?
ST ;hfmf él:m‘r feq |Reg Tpe Deseription
Lsensca § ped | Chatput (B | Out
@I 110 O |0 0 |ActveX Microsoft Activell i
F— 2l - C 0| html Hyper Text Markup Language i
|H‘Q”W9ht Off 30 |0 0 Javabpplets Tava Applets i
Ch -
anges 4l C 0 O | 0| 0 (Java(Dynamic) Drynarnic Java i J
[Registration 51 C |0 0 | JavaScript Tava Script Language i
— [O |sgml Standard Graphics Markup Language i
Relationships I |00 |WVRML WE. Markup Language i
Attributes 3l C O |0 |aml eXtended Markup Language i
Frocedures - T T | Other I i
fpplications
% [AVEFmt] Audio/Video Data Formats: What audio and video data formats can be read or written?
—
Categories ‘;;:ii g:;:if f:q giz Format Description Stardard
Questions oo, oo |a Audio Sound File !_
Reporis 2l O || |JPEG 2000 JPEG 2000 JTA V30 i
TSCGAs Is)
3\ O OO0 MOov MOV i
40 O | O |0 MPEG-1 Motion Picture Expert Group - 1 ITA i
22214%6
I — | — PP ——— = P |
& | [=S My Computer Mired]

Figure 1. User Interface

series of questions, question options (numbered
rows), and option choices (HTML controls). These
questions and options can be shared across many
forms to support different (overlapping)
questionnaires. The user can request a form that is
associated with a particular topical area. There are a
number of overlapping form categories that can be
selected, so it was important to dynamically generate
all form content to avoid developing redundant
pages and software. Figure 2 shows a data model of
the relationships between forms, questions, options,
and choices. In addition to defining the relationships
between the various form elements, the database
schema also supports common HTML control types
(checkbox, text field, label, list box, text area, etc.)
for choices. This information is stored in the
“choice” table. Each major object type
(survey/form, question, option, choice) is associated
with a particular relational table. Along with the
metadata-oriented tables, we also have a table that
stores information collected via the forms. This

“data store” table has as its primary key, the system
identifier and choice identifier associated with a
specific element answered by a user. When forms
are displayed in edit mode, this table is also
consulted to pre-fill the element values. Since
choices (via their options) can be shared across
different questions and forms, all forms referencing
the same option/choice will be “given credit” for the
values entered.

3. PROTOTYPE SYSTEM

We developed a web-based prototype system
that is used to collect large amounts of information
on complex information systems as a basis for
evaluating potential system-to-system
interoperability capabilities and limitations. The
prototype system was developed in the Cold Fusion
language and can interface with any ODBC-

compliant database (e.g., MS Access, SQL Server,
Oracle, etc). The system is comprised of three major

-
Survey/Eorms DB

Form)

Form (2

Quv Qg Qe Qw Qo

Optl Opt2 (0)JN Opt4 Opt5

Option Pool

Cen Cae2 C3 Option Choices

* Questions are composed from a set of potential options
« Options may be shared between questions
Questions may be shared between surveys and forms

Figure 2. Data Model

modules: administrative, information collection, and
report generation. The administrative module is
used to populate and maintain metadata in various
relational tables. This metadata includes various
topics and categories specific to the application as
well as the data that defines the survey
questionnaires (questions, options, choices). The
information collection module (shown in Figure 1)
provides the basic end-user interface supporting data
collection. The report generation module generates
various reports used to evaluate system-to-system
interoperability capabilities of the systems for which
information has been collected. Although the
application was developed in Cold Fusion, the
dynamic form concept can be instantiated in other
common programming languages such as ASP and
Perl (CGl-script). The prototype system has been
used for two years and the dynamic form concept
has paid off in terms of significantly reducing the
software development and cost required to maintain
the application, in particular when form
requirements and content has changed over time.
Figure 3 shows pseudo code that describes the
basic algorithm used to dynamically generate a
form. In most cases, places where SQL calls are
made are left abstract and are preceded by a “=—=" in
the code. Program variables are delimited by #’s.
When a user requests a particular form, a single
Cold Fusion script is invoked to generate the page.
The script will first query the “data store” table to
pull back the previously entered values for any

choices on the form to be displayed. These values
are stored into dynamically created variables, whose
names are encoded using the corresponding choice
identifier. The metadata tables are then consulted to
retrieve the question, option, and choice related
information needed to build the form.

1: ==>select previously entered values from "data store" table
2: Loop over returned choice values

3: // create dynamic variable to hold next value

4: "variable #choice id#" = #choice value#

5: End Loop over returned choice values

6: ==> select questions associated with form category

7: Loop over returned questions

8: write question “prompt” text

9: ==> select column header metadata for next question
10: Loop over returned column headers

11: write next column header

12: End Loop over returned column headers

13: // get metadata for next question to be rendered

14: ==> Select *

15: From question_option_table qot, option_table ot, choice_table ct
16: Where qot.question_id = #next_question_id#

17: AND qot.option_id = ot.option_id

18: AND ot.option_id = ct.option_id

19: Order By qot.option_question_order, ct.choice_order
20:

21: Loop over returned question metadata

22: If new option Then

23: start next option (row number)

24: End If

25: // ' Write next control element (choice) for option;
26: /I Set if value previously stored in dynamic variable above;
27: // Encode control name as "var_#choice id# #choice type#"
28: Switch #choice_type#

29: case "radio button":

30: write radio button control

31: break

32: case "checkbox":

33: write checkbox control

34: break

35: case "select":

36: write select list control

37: break

38: case "text":

39: write text field control

40: break

41: case "text area":

42: write text area control

43: break

44: case "label":

45: write label (static text) control

46: break

47: End Switch

48: End Loop over returned question metadata

49: End Loop over returned questions

Figure 3. Form Generation Pseudo Code

==> Delete previously submitted elements from “data store” table
Loop over controls submitted on form
If (#next_value# = Evaluate(#next_control#)) <> “”” Then
==> insert next choice control value in "data store" table
End If
End Loop over controls submitted on form

o I R S

Figure 4. Form Database Store Pseudo
Code

As the form is being dynamically built, the
previously entered choice values (stored in dynamic
variables) are used (when defined) to pre-set the
HTML control values being rendered. After a user
fills/modifies the values on a form, a “submit”
button can then be clicked to store the answers. A
small module in the same script that rendered the
form will then be invoked to store the entered values
in the “data store” table (see Figure 4). The module
first deletes any data that had been previously
submitted on the form. This deletion operation
simplifies form updates and in particular the
processing of checkbox controls which are not
transmitted unless they are checked. The module
then loops through the passed form elements and
will store one record per element in the “data store”
table. The HTML element names were encoded
with the corresponding choice identifier and choice
type, so this simplifies any special processing
needed to format specific element values during
storage processing.

To be able to delete existing choice values and
insert new values into the “data store” table, the
module needs to know the form element names that
were submitted. These form element names can be
determined in a number of ways. One technique is
to pass a hidden field that contains a comma
delimited list of form element names. This hidden
field can be built during the form generation logic.
Another option is to pull/parse the names from the
standard CGI variable called “QUERY_STRING”
that is typically available to an invoked script.
Finally, in the case of Cold Fusion, one can access
the “fieldnames” variable that contains the list of
names submitted from a form.

4. CONCLUSION

This paper briefly discussed a totally dynamic
form generation concept that has been successfully
used in a complex data collection system. Many
database centric applications utilize a series of
similar forms as a basis for collecting information
from a group of users. Providing a means to reduce
the amount of software development time and
maintenance required to generate and process such
forms can have very high payoff in many enterprise-
wide web-based applications.

REFERENCES

Gundavaram, S., 1996. CGI Programming on the World
Wide Web. O’Reilly.

Forta, B., 1998. The Cold Fusion Web Application
Construction Kit, Second Edition. Que Corporation.
Plourde, W., Slater, B., Slater, W.F., Bass, C., 2001. ASP

3.0: The Complete Reference. Osborne.

