
A Suggested Improvement to SSHv2

Jonathan Herzog
The MITRE Corporation

WN99B000041

December 10, 1999

The SSH (Secure SHell) protocol has become one of many de-facto Inter-
net standards for secure log-on and other network services across an insecure
connection. It is commonly used to secure connections such as telnet or rsh,
for secure file transfers (via the scp command), as a secure tunnel for other
connections such as http or X, or as a VPN component.

A second version of the protocol ([3, 4, 1, 2]) has been formulated by an
IETF working group, and is being currently being considered for RFC status.
This version of the protocol was the subject of investigation by the MITRE
Corporation, whose analysis identified an area of concern. In this note, we
present a brief overview of the SSHv2 protocol, explain the area of concern, and
suggest a solution.

SSH is a client-server protocol. In its second incarnation, the SSH protocol
is actually composed of three sub-protocols, layered upon each other:

• The Transport layer, which is the focus of this note, contains two ex-
changes and provides two services:

– At the beginning of a connection, the two parties negotiate the cryp-
tographic algorithms to be used.

– The client and server engage in “key exchange,” which includes server
authentication as well as key exchange. The exact mechanism used
is negotiated as part of the exchange above.

Both the algorithm negotiation and the key exchange/server authentica-
tion are required at the beginning of a connection, but can re-occur at any
time (as desired by the participants).

The Transport layer also:

– Breaks streams of data from higher protocols into packets for trans-
mission, and combines incoming packets back into streams of data,
and

– Provides cryptographic services such as integrity and confidentiality,
and non-cryptographic services such as compression. The algorithms
used for these services are negotiated as above.

1



• The Authentication layer relies on the secure tunnel established at the
Transport layer, and provides mechanisms for client authentication. Typ-
ically, these mechanisms will be based on a name-password pair (traveling
within the secure tunnel) but may rely on more secure methods.

• The Connection layer multiplexes many connections through the mutually-
authenticated tunnel established by the Authentication layer.

The protocol is designed to be modular, in that the client and server can
negotiate acceptable settings and algorithms for each service separately. The
algorithms for confidentiality can be negotiated separately from those for in-
tegrity, for example, and the algorithms for client-to-server communication can
be different than those for server-to-client. For interoperability reasons, the
specification contains a set of algorithms which must be supported by all imple-
mentations.

Of concern here is the key exchange algorithm diffie-hellman-group1-sha1,
which is the only key exchange algorithm defined by the standard. This ex-
change proceeds as follows:

1. The client chooses a random number x, and sends to the server the value
gx mod p, where p is a large prime number and p, g are given in the
specification.

2. The server chooses its own random number y, and sends to the client

• gy mod p,

• its certificate, and

• a signed hash of all previous messages (and the secret key gxy mod p).

The area of concern focuses upon the fact that the specification fixes the
values of p and g. The key exchange scheme described above is called Diffie-
Hellman (where the certificate and signed hash have been added to prevent man-
in-the-middle attacks), and it relies upon the difficulty of the discrete logarithm
for its security. Under some conditions, the discrete log is easy to compute, and
for this reason the value of p must be chosen carefully. For example, it is easy
to compute the discrete logarithm when p− 1 has only small prime factors, and
hence p is usually chosen so that (p − 1)/2 is itself prime. Likewise, some care
must be given to the choice of g so that the subgroup generated by g is relatively
large, but this is usually an easier choice to make than the choice of p.

Because a poor choice of p or g has potential pitfalls, it is not inherently a
bad decision to re-use the same values in many runs of Diffie-Hellman. Indeed,
it may actually be desirable for interoperability reasons.1 In the case of SSH,
however, there is no performance considerations that would benefit from the
use of a standard p value. Indeed, prudent design considerations might actually
indicate the opposite.

1For example, if one were to create certificates containing Diffie-Hellman values, one might
insist on the use of global values, so that any two certificates can be used together.

2



The best known algorithms for generalized discrete logarithms are still quite
slow, but the majority of time is actually consumed in easily parallelizable pre-
computations about the group (choice of p and g) in general. Once these pre-
computations are finished, then any discrete logarithm in that group is easily
found. Given that most SSH connections will be created using the only key
exchange algorithm defined in the specification, the time and expense required
to break the majority of SSH connections is therefore only slightly greater that
the time and expense required to perform the aforementioned precomputations
for the group specified in the standard.

One time-honored rule for security design is that the value of the data being
protected should be less than the expense required to break the security system.
Given that SSH is a popular choice of security protocol for remote login and
VPN applications, the value of all data protected by SSH might indeed exceed
the expense of the precomputations required above.

For this reason, we believe that it should be recommended to the SSH IETF
working group that the current key exchange algorithm, diffie-hellman-group1-
sha1, be supplemented by another standard key exchange algorithm that allows
the p and g values to be negotiated. Although it might be advisable to pro-
vide a list of recommended strong values in the specification (or elsewhere), the
recommended algorithm should allow the client and server to negotiate a pair
of mutually acceptable values independent of said list. Just as the connection
terminates if no mutually acceptable encryption scheme can be found, the con-
nection should terminate if no mutually acceptable set of Diffie-Hellman values
can be found.

The specific details of this algorithm can be left open, to be decided upon
by the members of the SSH IETF working group.

References

[1] T. Ylonen, T. Kivinen, and M. Saarinen. SSH authentication prototcol.
Internet draft, November 1997. Also named draft-ietf-secsh-userauth-01.txt.

[2] T. Ylonen, T. Kivinen, and M. Saarinen. SSH connection prototcol. Internet
draft, November 1997. Also named draft-ietf-secsh-connect-03.txt.

[3] T. Ylonen, T. Kivinen, and M. Saarinen. SSH prototcol architecture. Inter-
net draft, November 1997. Also named draft-ietf-secsh-architecture-01.txt.

[4] T. Ylonen, T. Kivinen, and M. Saarinen. SSH transport layer prototcol.
Internet draft, November 1997. Also named draft-ietf-secsh-transport-01.txt.

3


