NAVCo: Negotiation-based Adaptive View Coordination

Prasanta Bose
George Mason University
bose@isse.gmu.edu

Abstract

In mission critical applications of distributed information
systems, autonomous information resources are
coordinated to meet the information demands of client
specific decision-support views. The current approach to
view coordination relies on design-time trade-offs to
select a static view coordination policy from a set of
available policies. This approach is not robust and does
not respond well in a dynamic environment with shared
infrastructure, and dynamically changing missions,
priorities, preferences, and constraints. This paper
introduces, NAVCo, a negotiation-based adaptive view
coordination approach that allows view coordination
policies to be dynamically negotiated and adapted at run-
time in response to dynamically changing conditions.

1 Introduction

In distributed decision-support database systems,
autonomous information resources are coordinated to
meet the information demands of client specific views. A
major challenge is handling dynamic changes in quality of
service (QoS) properties and constraints of the clients,
resources, and shared infrastructure. Current view
coordination approaches are static in nature and cannot be
dynamically changed to meet changing demands.

Consider the foilowing scenario where a decision-
support view for inventory management is based on
multiple autonomous information resources within a
supply-chain. Customer order information from customer
sites, product assembly information from manufacturer
sites, and parts inventories from parts supplier sites are
configured to support an order-fulfillment view used by
inventory managers of the suppliers and consumers. As
orders, product assembly requirements, and parts
inventories constantly change, changes in the view must
be coordinated to achieve consistency and to support
management decisions.

There are multiple view change coordination policies
available to maintain distributed decision-support
database views. These policies provide tradeoffs between
consistency, communications costs, and processing costs.
Currently, the view coordination policy is selected from a
set of available policies at design-time and can not be

327

0-7695-0415-9/99 $10.00 © 1999 IEEE

Mark G. Matthews
The MITRE Corporation
mmatthew@mitre.org

dynamically adapted during run-time. The current
approach is inflexible and fails to support a dynamic
environment that relies on a shared infrastructure with
inherently conflicting requirements. Suppose the view is
maintained through a high-cost complete consistency
policy while several users are simultaneously executing
resource intensive queries. The queries are competing
with the executing coordination policy for resources.
Most likely, both the queries and the view maintenance
will suffer from poor performance. Short of shutting
down, reconfiguring, and restarting the system, current
approaches have no way of responding to dynamically
changing missions, priorities, preferences, and constraints.

This paper introduces a negotiation-based adaptive
view coordination (NAVCo) approach that allows view
coordination policies to be dynamically adapted to
support a dynamic run-time environment. NAVCo
incorporates the following key ideas: a) a negotiation
model for adapting view maintenance policies to meet
changes in QoS needs and constraints; b) a dynamic
software architecture of the collaborating information
resources supporting the client task of maintaining a
specific view; and ¢} adaptive mechanisms in the
architecture that realize negotiated changes in the
coordination policies for view maintenance.

2 Multi-Resource View Coordination

View coordination objects (VCOs) are algorithmic
objects that correspond to different policies for view
maintenance. These view maintenance algorithms focus
on maintaining the materialized view at the client in the
presence of concurrent updates to the data resources.

The performance of VCOs can be compared based on
the communications and processing costs required to
maintain a certain level of consistency. Communications
costs can be measured with respect to the number and size
of messages required per update. Processing costs can be
measured with respect to the processing burden that the
algorithm places on both the client and the data sources.

Table 1 compares the communications and query
processing cost of four existing VCOs. The Strobe and
Nested SWEEP algorithms provide strong consistency
while the C-Strobe and SWEEP algorithms provide
complete consistency. A complete description of these

algorithms can be found in {1, 8]. The cost of the
algorithms is dependent on the number of data sources, n.
The costs of the C-Strobe and Nested SWEEP algorithms
are highly dependent on a workload characterization
factor, & where 0<a<l, which reflects the rate of updates
received, If updates arrive infrequently a=0 and if updates
arrive continuously a=t. The client processing cost of a
delete update in the Strobe and C-Strebe algorithms is
highly dependent on the number of pending updates, p.
Table 1 — VCO Cost Comparison

Strobe algorithm. This frees up valuable shared
communications resources for more critical applications.
Example 2 shows that client processing cost can be
minimized by implementing the Nested SWEEP
algorithm during periods ! and 3, and the Strobe
algorithm during period 2, This results in savings of over
1000 queries over a static implementation of the Strobe
algorithm. This frees up valuable resources for
processing-intensive analysis queries and results in a
significant performance improvement for analysis users.

As illustrated in table 1, the cost of the algorithms is
highly sensitive to the volume and types of updates. To
illustrate, consider a supply-chain view maintenance
application with four data resources, one client view, and
the following dynamic workload:

Period 1 -high volume, high insert workload, 100

inserts and 0 deletes over X seconds

Period 2 - low volume, balanced workload, 50 inserts

and 50 deletes over 3X seconds

Period 3 - medium volume, high delete workload, 0

inserts and 100 deletes over 2X seconds

The cost of each algorithm over these periods can be
calculated using the formulas in table 1. The value of the
parameter p is assumed to be 0 for low traffic, 10 for
medium traffic, and 100 for high traffic. The value of the
parameter & is assumed to be 0 for low traffic, 1/3 for
medium traffic, and 1 for high traffic. The cost of the four
algorithms over Periods 1-3 is illustrated in table 2.

Currently a single algorithm is selected at design time
and can not be changed without shutting down and
reconfiguring the system. Design-time tradeoffs must be
made with respect to consistency versus client, server, and
communications costs, The design-time decision can have
a profound effect on the processing and communications
requirements to support the view. If, however, the
algorithm can be dynamically changed at run-time, these
tradeoffs can be made continuously as preferences and
constraints change. As illustrated in the two examples at
the bottom of table 2, the ability to dynamicaily switch
algorithms can result in significant cost savings and
improved performance in a constrained environment.

Example 1 shows that communications cost can be
minimized by initially implementing the Nested SWEEP
algorithm and then dynamically switching to the Strobe
algorithm between periods 1 and 2. This results in savings
of 450 messages over a static implementation of the

328

Algorithm Update Type [Comm Cost [Client Cost [Server Table 2 —Cost in Supply-Chain Scenario
Cost Algorithm Comm Cost |Client Cost |Server Cost

Strobe delete ! i+p 0 Strobe 1200 1750 150

insert an-1 ORI CStrobe 2400 7350 350
C-Strobe delete | 1+p 0 SWEEP 3700 1200 300

msert 2{n-1)+ (n-1)+ 1+a(n-2)!

AT asi Nested SWEEP 1250 775 158

SWEEP delete/insert [2n-1 (n-1)+1 1 Example 1 750 1525 75
Nested SWEEP |delete/insert |2(1-a)(n-1)}+1 {1-a}{n-1)+1 |(1-a) Example 2 950 625 108

3 The NAVCo Approach

The NAVCo approach to adapting view coordination
policies is based on negotiation reasoning between the
client and resource objects. The approach introduces
negotiation reasoning models and adaptive policy
reconfiguration mechanisms to the existing view
coordination application architecture. The WNAVCo
architecture, shown in figure I as a UML class diagram,
introduces a negotiation layer to perform dynamic
negotiation-based selection of coordination policies.
Additional software mechanisms are introduced to bring
about the dynamic switching of the coordination objects.

<<Atgon1nn0b;ud>>
vCo ;
,,,,,‘;;\\
RMA RCA RMA
S HEES
b
{<<Resource>= | RoleMor
i Database | RRM
i : o
1 - s 1
< <RolaNagati <<NegotistionF ad ; -
RNA NFA RNA

Figure 1 — The NAVCo Architecture

The NAVCo architecture contains models and
reasoning support for model-based coordination
negotiation via role negotiation agents (RNA), and
negotiation facilitation agents (NFA) that communicate
via a shared coerdination negotiation space (CNspace).
The architecture also contains models and support for
switching based on automated negotiated switching
decisions. The application and negotiation layers are
integrated via the shared data space whereby the

negotiation facilitation agent communicates with the team
level coordination agent via the CNspace. The role
coordination agent (RCA) and role mediator agents
(RMA) aid in coordinating the dynamic switching.

3.1 Negotiation Reasoning

The model for negotiation reasoning is an extension of
the WinWin [2] model used in requirements negotiation.
The participating agents collaboratively and
asynchronously explore the WinWin decision space that is
represented by four main conceptual artifacts: 1)
WinCondition - capturing the preferences and constraints
of a participant. 2) Issue - capturing a conflict between
WmConditions or associated risks and uncertainties. 3)
Option - capturing a decision choice for resolving an
issue. 4) Agreement - capturing the agreed upon set of
conditions which satisfy stakeholder WinConditions
and/or agreed options for resolving issues.

NAVCo considers three types of negotiation reasoning
schemes that extend WinWin to incorpotate a reactive
negotiation model. The first method, used during the
initial establishment of the task and negotiation of the
initial policy, takes a task-driven approach and is
triggered when a new WinCondition of a client is
submitted. In this scheme, the client initiates the task
through the submission of a WinCondition containing the
task parameters and any client preferences and
constraints.

The second method, used for run-time dynamic
renegotiation of policies, is conflict driven and is
triggered by changes in preferences and constraints. In
this scheme any team participant may submit a revised
WinCondition based on changing component preferences
and constraints. The protocol for this method is contained
in figure 2.

1. Resource or client RNA posts a change in preference, priority, or
constraint as a WinCondition revision

2. NFA anatyzes the revision in the context of agreed
WinConditions to generate issues resulting from pairwise
conflicting interaction

3. NFA generales options for issues

4. I there is no change in option then NFA marks the issue as
resolved and process STOPs
Else Resource and client RNAs evaluate the option and post
option evaluations

5. If evaluation accepts option and all issues resolved then STOP
Else RNA revises WinCondition and go 1o step 2

Figure 2 —Conflict Driven Negotiation Protocol

The third method is priority-driven and is used when
an acceptable policy can not be negotiated among all team
participants in a predetermined amount of time. In this
scheme, team participants are assigned a priority based on
inputs from the task owner. The option with the highest
overall utility, based on global and team member
priorities, is selected.

329

Given the above reasoning methods three major
technical challenges are generating issues, generating
options, and evaluating options. The NAVCo approach
exploits the view coordination problem domain to address
these challenges as follows.

Issue Generaticn: Given one or more WinConditions,
issue generation involves formulating a query to identify
VCO specifications that satisfy the WinConditions. Here
the issue is formalized as a query object.

Option Generation: Given the formulation of the issue,
option generation involves evaluation of the query to
retrieve piausible VCO specifications and refinements.

Option Evaluation: Given options, option evaluation
involves checking for consistency of an option against a
database of committed WinConditions.

3.2 Models for Negotiated VCO Selection

In order to support the reasoning approach outlined
above, NAVCo requires a) declarative models of
preferences and constraints at the clients and resources as
a database of facts, and b) rules for issue generation,
option generation and evaluation. We briefly describe
below the RNA and NFA data models, and several of the
rules that have been formulated and prototyped.

The RNA data model articulates the WinCondition as
consisting of two parts: a) task part ~ articulates the role to
be played, prioritization of tasks, task preferences, and
update volume and distribution submitted to the team in
support of the task. b) QoS constraint part - articulates the
constraints imposed on the task. The QoS schema
specifies the component workload to support the task and
the component QoS constraints based on the status of
component resources captured as QoS metrics. The data
model also specifies global integrity constraints.

The NFA data model captures VCO specifications and
their associated costs. The data model also contains
models of the WinConditions, issues and options that get
posted or generated by the NFA. Some of the impottant
data elements are a) identification, characteristics, and
costs of available coordination policies, b) task-specific
meta-data, and c¢) overall team-leve] workload
characterization, preferences, and constraints.

The rules for issue and option generation, and option
evaluation are modeled as database trigger rules that
analyze WinCondition updates and create associated
issues, options, and option evaluations. The NFA issue
generation trigger rule is triggered by an update to the
NFA WinCondition relation and creates an issue, whose
semantics are that of a query assertion to select a VCO
meeting relevant preferences and constraints imposed by
task specific WinConditions. The NFA option generation
trigger rule is triggered by an issue entry in the NFA issue
relation and executes the query assertion to identify
options to insert into the NFA options relation,

3.3 Mechanisms for Dynamic VCO Switching

NAVCo contains adaptive software mechanisms to
allow VCOs to be dynamically switched in response to
the negotiated selection of a VCQ. The NFA propagates
negotiation results to the application view by writing a
dynamic switching plan (DSP) object into the CNspace.
The DSP identifies the VCO that has been negotiated and
includes detailed executable instructions for dynamically
switching between VCOs. Each RMA and NFA reads the
DSP from the CNspace and executes the instructions that
pertain to them. The basic approach is to create a new
VCO of type identified in the DSP, transfer the workload
1o the negotiated VCO, and finally to destroy the outdated
VCO. Dynamic bindings between RMAs and VCOs are
handled through the use of the Jini Lookup Service.

4 Prototype

RMA, RNA, NFA, and RCA prototypes have been
developed. Each prototype agent consists of a Java
application and a Microsoft Access database. All agent-
to-agent coordination is accomplished through the
CNspace, which is implemented as a JavaSpace.
WinConditions, options, dynamic switching plans and
other objects are written as entries into the CNspace. The
CNspace notify and read methods are utilized to route the
entries to the appropriate agents. The prototype agents
currently use input and output text files to simulate
interactions with clients and resources, Negotiated
reasoning and dynamic switching experiments have been
conducted. Initial resuits show that the NAVCo reactive
reasoning methods work well within the JavaSpaces
environment.

5 Related Work

There has been a significant amount of work
conducted in the area of view maintenance resulting in a
spectrum of solutions ranging from a fully virtual
approach where no data is materialized at one extreme to
a fully replicated approach where full base relations are
copied at the other extreme. The Strobe [8] and SWEEP
algorithms [1] are a hybrid of these two extremes and are
designed to provide incremental view maintenance over
multiple, distributed resources.

NAVCo builds on research using the intelligent agent
approach to automated negotiation. The agent approach
focuses on computational agents that negotiate to resolve
conflict [3], to distribute tasks [5, 7], to share resources
[9], and to change goals so as to optimize multi-attribute
utility functions [6]. The WinWin [2] model used in
NAVCo_ considers negotiation between multiple agents
driven by both global and independent local utility
functions.

330

NAVCo is similar in spirit to work on architecture-
based run-time evolution [4]. NAVCo differs from [4] in
terms of the nature of automation. While [4] focuses on
providing a support environment where the analysis for
dynamic change and consequent adaptation can be
performed, NAVCo is motivated by automated switching
based on negotiation reasoning.

6 Summary

This paper presents a negotiation-based adaptive view
coordination (NAVCo) approach that ailows view
coordination policies to be dynamically coordinated and
adapted to support a dynamic run-time environment. This
approach supperts dynamically changing missions,
priorities, preferences, and constraints. The approach
supports the optimal allocation of shared infrastructure
among competing applications and tasks. The paper
presents the key ideas and models developed and
prototyped in our initial experiments with the approach.

7 References

[17 D. Agrawal, A. El Abbadi, A Singh, and T. Yurek, “Efficient
View Maintenance at Data Warchouses”, Proceedings of ACM
SIGMOD ‘97, 1997, pp. 417-427.

[2] B. Boehm, P. Bose, E. Horowitz and M..J. Lee, “Software
Requirements Negotiation and Renegotiation Aids: A Theory-W
Based Spiral Approach”, Proceedings of 17th ICSE, 1995.

[3] E.H. Durfee, V.R. Lesser, and D.D. Corkill, “Cooperation
Through Communication in a Distributed Problem Solving
Network”, M.N. Huhns ed., Distributed Artificial Intelligence,
Academic Press/Morgan Kaufmann, 1989, pp. 29-58.

4] P. Oreizy, N. Medvidovic, and R.N. Taylor, “Architecture-
based Runtime Evolution™, Proceedings of ICSE 1998.

[51 RG. Smith, “The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem Solver™,
{EEE Trans. on Computers, Vol. 29, 1980, pp. 1104-1113.

[6] K.P. Sycara, “Resolving Goal Conflicts Via Negotiation™,
Proceedings of AAAI-88, 1988, pp. 245-250.

{71 M.P. Wellman, “A General Equilibrium Approach to
Distributed Transportation Planning”, Proceedings of AAAI-92,
San Jose, CA 1992.

[8]1 Y. Zhuge, H. Garcia-Melina, and J. Wiener, “The Strobe
Algorithms for Multi-Source Warehouse Consistency™,
Proceedings of International Conference on Parallel and
Distributed Information Systems, December 1996,

[91 G. Zlotkin, and J.S. Rosenschein, “Mechanism Design for
Automated Negotiation and its Application to Task Oriented
Domains”, Artificial Intelligence, Vol. 86, 1996, pp. 195-244,

