

Chapter α

Engineering Complex Systems

Douglas O. Norman
dnorman@mitre.org

Michael L. Kuras
mlk@mitre.org

The MITRE Corporation

a.1. Introduction
This chapter motivates the need for, and introduces a formal set of processes that
constitute the practice of, “Complex Systems Engineering” (CSE). Our experiences
and observations strongly suggest Enterprise Engineering is best approached using
CSE to engineer and manage the enterprise1.

Using the current instantiation of the Air and Space Operations Center (AOC2), and
the desired evolution of it, the AOC is shown to be best thought of as a complex
system. Complex Systems are alive and constantly changing. They respond and
interact with their environments – each causing impact on (and inspiring change in)
the other. We make the case that a traditional systems engineering (TSE) approach
does not scale to the AOC; consequently, we don’t believe TSE scales to the
“enterprise.”

We introduce a new set of processes which complement – and do not replace – the
processes that constitute traditional systems engineering. The methods for the
engineering of complex systems are based on a view of complex systems as having
the characteristics of an ecosystem, and the use of processes which take advantage of

1 Initially, we appeal to the reader’s intuition for the definition of an enterprise. The picture in one’s mind
should be something like a large collection of independent organizations, loosely associated to achieve
something in common.
2 A special thanks to Col Pete Hoene, USAF, and Col Terry Szanto, USAF, the past and current AOC WS
System Program Office Director, respectively, good friends both, for their continuing professional
engagement in this topic, and their kind reading of this draft along with their helpful comments. Special
thanks also to Col Joe May, USAF (ret) who took the time for healthy debate and discussions both as the
Director of Operations for the Air Force’s C2 and ISR Center, and subsequently. Joe put the operator’s
“stink” on the thoughts.

SBORG
Text Box
Approved for Public Release; Distribution Unlimited
Case #04-0043

Engineering Complex Systems

emergence and which deliberately mimic evolution to accomplish and manage the
engineering outcomes desired.

The chapter is structured in four major sections:

• Why Rethink Systems Engineering?
• Complexity and Complex Systems
• Engineering Complex Systems
• Complex Systems Engineering in Practice

We all must come to grips with the non-deterministic nature of enterprises. We hope
to extend the concepts and methods of Systems Engineering to complex systems, and
to open up the professional dialog so as to codify the engineering and management of
complex systems and enterprises.

a.2 Why Rethink Systems Engineering?
First, we should take stock in everything accomplished. We’ve designed, built,
fielded, and operated two Air and Space Operations Centers (AOC) which provided
the tools used to plan, task, and monitor all air operations in both Operation Enduring
Freedom in Afghanistan and Operation Iraqi Freedom in Iraq as well as the AOC
created for NORAD to manage airspace and combat air patrols in the US after 9/11
(Operation Noble Eagle). Other packagings of the functionality are fielded with
Special Operations units, and with the Navy and Marines.

Yet, we are having trouble building, integrating, and modifying large “systems.” Our
difficulties are legion [e.g., see Bar-Yam 03]. Struggling with these failures, as a
community, we have continued to refine our notions about systems engineering, and
how we define, design, and prepare for systems; but– again, as a community - we
haven’t changed our underlying “mental model” which informs our general (and
specific) philosophy and processes. We continue to view Systems Engineering as
fundamentally about allocating desired, known functionality among specific elements
of a design; all known a priori and stable over time. The users of the functionality
built often accuse us, the developers and acquirers, of being “late to need,”
“unresponsive,” and “too expensive.”

We respond with a lexicon carefully crafted to put the onus back on the users. We say
that the users’ requirements are unknown or poorly stated; that, if the requirements
are known, there is a requirements drift (i.e. modifiying the requirements), or
requirements creep (i.e. adding additional requirements). We suggest that the user
can’t (or won’t) say what they really want, nor how they will use that which is to be
built and delivered. This situation results in processes which focus on detail: detail of
proposed use, detail of environment, detail of design, and detail of planned schedule.
The more detail the better.

2

Engineering Complex Systems

During the last decade as the world has moved from stand-alone automation which
augmented individuals, to networked and shared automation, architectures became the
way to deal with the rising complexity. But the early forays into architectural-based
engineering didn’t seem to pay the dividends anticipated – complaints from users
continued, and the most-valued automation tools were ones not built with the same
careful attention to detail required by the Architecturally-based Systems Engineering
approach practiced. Rather, it seemed much of the architecture-supplied
understanding and simplification was implicit. We saw the technical architectures,
rather than being defined and engineered, were being imposed by the development
tools used; and the need for operational architectures (what will this system do…and
how will it be used) were rendered unnecessary since “experts” were supplying the
operational insight directly to the developers. Further, these user/developer
collaborations were turning products out quickly; and they were valued by the end-
user.

As we attempt to make systems more useful and valued we also start to come face-to-
face with the limitations of our current methodologies. For the Air and Space
Operations Center, there are two clear forces pressing on it and demanding its
evolution: 1) speed of accommodation to new understandings of current missions, or
new missions demanding modification of the current AOCs; and 2) application to new
doctrinal uses or mission types [Albert 99, 01,03]. In all cases, the manner in which
we practice Systems Engineering seems to bog us down; and we’re compelled to
rethink the practice. This analysis leads us to recognize that there are additional
classes of Systems Engineering problems. Each class requires a different qualitative
mindset; and consequently, a different set of tools, techniques, and procedures to
undertake the task of systems engineering successfully.

Systems engineering, at its simplest, attempts to understand a desired outcome from
the interactions among people and things, and is roughly divided into two phases:
Analysis and Design. During analysis the context for the desired outcome is explored
to uncover the initial conditions and resources available which can contribute to the
desired outcome. Then, with this understanding, processes are designed which are
able take the initial conditions and transform them into the desired outcome. As the
designing proceeds, roles and activities are allocated among people, hardware,
software, and organizations. Flowing out from this allocation are the ancillary
activities implied and required by the design. For example, if an activity has been
allocated to a person – and that person is expected to perform in a certain manner –
then the person must understand their role in the system, and must be trained to
perform that role. At all times design boundaries and constraints are examined and
evaluated to ensure they are not violated. For example, if precision must be
maintained, then cumulative error must be watched; or if certain information flows
are required, then there must be connectivity and sufficient bandwidth to satisfy the
design, etc.

3

Engineering Complex Systems

The preceding certainly seems to make sense. And, the more complex or critical the
desired outcome, the more important it would seem to conduct this process with more
rigor, more information, and with more detailed plans; after all, we have to get it
“right.”

So what’s the issue? In a nutshell: the mindset, skills, methods, and processes used to
develop “systems” in this way seem to fail us when we attempt to craft “Systems of
Systems.” And, the AOC is certainly a System of Systems.

a.2.1 Challenges with Engineering the AOC

The AOC is known as a “System of Systems” (SoS). As such, it is envisioned as a
system assembled of other systems so as to offer the capabilities needed to perform
roles assigned to an AOC. Implicit in this is the expectation that the systems from
which the AOC is assembled can be composed into an AOC System of Systems. This
has proven harder than anticipated, and it provides insight into the challenges of
Enterprise Engineering. While still viewed as a “system” by some, the AOC turns out
to be an “enterprise” in the small. As in all enterprises, it is composed of different
pieces representing different fiefdoms and principalities; (or “tribes” as Gen J.
Jumper, AF Chief of Staff likes to say) Listed and discussed below are those
characteristics that have proven to add difficulties to the intended composition of
systems into an AOC SoS.

The AOC today is assembled from over 80 elements. There are infrastructure
elements, communication elements, applications, servers, and databases. The goal is
to compose the desired capabilities from the elements found in, or which can be
brought into, the AOC. For the most part, today’s systems are not composable. The
systems:

• Don’t share a common conceptual basis.
• Aren’t built for the same purpose, or for use within specific (AOC) work

flows, or for use exclusively at AOCs,
• Share an acquisition environment which pushes them to be “stand alone”3,
• Have no common control or management,
• Don’t share common funding which can be directed to “problems” as

required,
• Have many “customers,” of which the AOC is only one,
• Evolve at different rates (as do individual system components) subject to

different (generally uncoordinated) pressures and needs.

Because of the above, ensuring integration and interoperability are unbounded,
unpredictable engineering activities. The following observations clarify this further:

3 The DoD’s acquisition system is built around the concept of a “system” which seeks to separate a given
system from every other. This separation extends from the concept through delivery and sustainment.
Funds executed on behalf of the system acquisition are, by law, separate from all other monies with
Congress carefully monitoring expenditures.

4

Engineering Complex Systems

Observation 1: The AOC SoS is an opportunistic aggregation, not a design.
• Only the AOC System Program Office (SPO), which has the acquisition

responsibility for the AOC SoS, has a strong interest in an overall AOC
design, and has no way to enforce such a design on others who supply the
component systems of the AOC,

• Since the AOC SPO doesn’t spend its money for many of the component
systems of an AOC SoS, the component system-owners have little incentive
to comply with, or respect, an AOC design,

• The SPOs for the component systems in an AOC SoS must remain
responsive to customers and users with interests other than the AOC, and,

• The need for, and the appearance of, a specific new capability at an AOC is
often driven by a new, immediate need not apparent to or felt by the other
customers and users of the component systems in an AOC SoS; and to which
the AOC SPO would be unable to satisfy within the time-of-need.

Observation 2: Integration-enabling technologies (glueware),, are grafted onto the
elements (systems) of the AOC, and integration developments are undertaken, after
delivery of the component systems to their prime customers,

• Each element in the aggregate is designed and built with its own
understanding of the world – around its own set of “conceptual atoms”

o Integration among these elements requires effort (resources) to
understand and bring these potentially disparate “conceptual atoms”
in line so they can be composed,

• Integration is a source of work and revenue – using today’s dominant
business model (employer/contractor) contractors sell engineering hours,

o “Big Integration” is a potential cash-cow for those who perform it
o Little incentive to limit the work, or find ways to be more effective
o Integration of already-developed elements guarantees that the

delivery of an integrated, operational AOC will lag behind the
availability of the individual elements; however, the expectation
from the users is that general availability (when the component
systems become available to the users) and integrated are
synonymous. This leads to customer disappointment; and is further
compounded by the need to expend additional funds to perform the
integration proper.

Observation 3: Funds for integration are limited

• Willingness (and sometimes, the ability) of the user to wait is limited, and
accelerating deliver (if even possible) costs additional money;

• Perceived barriers for building automated functionality (in software) are low,
setting customer expectations that it’s easy, quick, and cheap;

• Integration tends to be built around a defined work flow which implements a
specific concept of operation. Integration “glue” which implements the
concept of operation binds systems into rigid relationships. This is contrary
to achieving “agility” and “netcentricity;” [Alberts 01, 03]

5

Engineering Complex Systems

• The ability to conduct tests has an inverse relation to system size;
o Resources (organizations, staff, time, money) available to conduct

large tests are limited;
o Test coverage plans for large systems becomes unwieldy;
o Likelihood of finding incompatibilities during large test rises (due

to the possibility of uncovering an unexpected transitive affect);
o Understanding of how to proceed once a problem is uncovered is an

open question;
Note: The process of testing of SoS must be rethought; the goals and the uncovering
of problems are good things which must be preserved – just not at system test time;
especially operational test.

Observation 4: “Value” assessment is not by those who use the capabilities

• The “marketplace” serviced by the acquisition system is the selling of
engineering hours through the promise of future assemblies and creations;
and the delivery of these creations; not by the assessment of value or utility
by the AOC staff (these aspects are supposedly contained in the formal
requirements),

• Those who use the creations of the formal system have only an indirect
influence; any direct influence being the result of heroic efforts on the part of
individuals

o This tends to bring into being a “black market” of applications and
functionality – and the hoarding of local “slush funds” which can be
directed by the local commanders to satisfy needs as they arise.

Observation 5: Plans (and Planning) as a primary SoS strategy has problems

• Focuses on the future – but is based in the past
• Tends to fix an early (likely incorrect and incomplete) view
• Activities tend to twist reality (subject to unplanned change) to the plan

(static, based on past beliefs)
• Imposes expectations, and dependencies, on partially-interested participants
• Design implied in the plan is based on today’s understandings. As things

change in the world all the elements to be composed are subject to different
pressures and decisions which likely will not align

• Assumes a success based on promises (staying on-plan) – not achievements

Additionally, there are new operational concepts being considered, developed and
employed. These include over-arching concepts such as Netcentric Warfare (NCW)
[Alberts 99], and technical concepts such as the Global Information Grid4. For the
AOC, new operational ideas such as Dynamic Tasking and Effects-Based Operations
are taking hold. Supporting this growth and change, at an acceptable rate and at an
acceptable cost, is often described as “agile acquisition.” Yet, there are few examples
of how to achieve this “agile acquisition.”

4Global Information Grid Capstone Requirements Document, 5 JROCM 134-01, August 30, 2001

6

Engineering Complex Systems

How can these new operational ideas be cast into capabilities which can then be
integrated in the AOC? What works? There seem to be characteristics which militate
against success, even when carefully practicing Systems Engineering as we know it.
Before these characteristics are introduced and reviewed, and the CSE approaches by
which complex systems may be engineered are discussed, we present a quick
introduction to systems engineering and complexity as it applies to systems (and
systems engineering) .

a.2.2 What is Systems Engineering?

Traditional systems engineering (TSE) has its foundations in Linear System Theory
(LST). Key ideas are proportionality, superpositioning, and the existence of invertible
functions (i.e. x = f-1(f(x)). There is also the assumption of repeatability. These ideas,
coupled to an attention to detail, explain why traditional systems engineering works
as well as illuminating the boundaries of its applicability.

Traditional systems engineering begins with the specification of requirements. Closed
and complete, precise and fully detailed are the ideals. Systems are then implemented
to comply with or to satisfy exactly these requirements.5 The practice of TSE is the
application of a series of linear transformations moving from the statements of the
requirements through to a preliminary design, a final design, the actual development,
then testing and fielding. A hallmark of the process is the ability to justify everything
built in terms of the original requirements. If requirements change it dislodges the
careful scaffolding upon which the system rests. Change ripples through everything;
and; therefore, approaches which isolate the impacts of change are sought. Since “no
change” is the desired (and expected) state of affairs, engineering efforts shift to
development efficiencies.

Decomposition and then integration (or assembly) are the bookends for the
implementation that follows specification, both of which depend upon the
applicability of LST to a given situation. Because of this, there is a strong preference
for hierarchy in both implementation activities as well as in the result.6

Traditional systems engineering relies on the making of and the fulfilling of
predictions. These predictions are more binding for traditional system engineers than
any current realities as is seen (for example) in development of PERTs, and in formal
testing procedures which are made independent of implementation but that are
predicated on the same requirements. As long as predictions and realities diverge, a
preference is given to preserving the predictions. Descriptions of traditional systems

5 Engineering is always an approximation, however. Traditional systems engineering assumes (or asserts)
that the ideal result is “closed” and that it can be completely pre-specified. The appearance of Interface
Control Documents (ICDs), for example, is an exception that illustrates (or preserves) the validity of the
general rule.
6 Refer to the brief discussion of multiscale analysis. This preference for hierarchy is actually a result of the
fact that LST is limited to a uniscale analysis and synthesis of a problem and its solution.

7

Engineering Complex Systems

engineering can be found in many places. A quick “google”7 of the term brings many
hits (millions), including many universities offering systems engineering curricula
and degrees.

Systems Engineering is seen as a professional discipline and, as for other professions,
has developed professional associations where the practice itself is codified and
socialized. Such a professional organization is the International Council on Systems
Engineering (INCOSE – www.incose.org). This (traditional) Systems Engineering
definition is taken from the INCOSE web site [INCOSE 01]:

What’s no
of the acti
to bear to

Fundamen
within the
then treat

Reflect on
a successf
required t
boundary

7URL = ht
systems.

8

“Systems Engineering is an interdisciplinary approach and means to enable the
realization of successful systems. It focuses on defining customer needs and
required functionality early in the development cycle, documenting
requirements, then proceeding with design synthesis and system validation
while considering the complete problem:

• Operations
• Performance
• Test
• Manufacturing
• Cost & Schedule
• Training & Support
• Disposal

Systems Engineering integrates all the disciplines and specialty groups into a
team effort forming a structured development process that proceeds from
concept to production to operation. Systems Engineering considers both the
business and the technical needs of all customers with the goal of providing a
quality product that meets the user needs.”
n
Figure 1 - INCOSE Systems Engineering Definitio
t described in this definition is the process, previously outlined, to which all
vities, areas, and disciplines implied in the INCOSE definition are brought
support.

tally, the practice of TSE seeks to understand the place of an element
 environment, isolate the element under study from the environment, and
the environment as a constant.

 Systems Engineering. Among the characteristics one would require to have
ul, or at least a low risk outcome, there are a few which are absolutely
o ensure success using traditional Systems Engineering. These serve as
conditions for applying TSE:

tp://www.google.com. Note the irony of using a complex system to help describe complex

Engineering Complex Systems

• The specific desired outcome must be known a priori, and it must be clear and
unambiguous (implied in this is that the edges of the system, and thus
responsibility, are clear and known);

• There must be a single, common manager who is able to make decisions about
allocating available resources to ensure completion;

• Change is introduced and managed centrally;
• There must be “fungible” resources (that is money, people, time, etc.) which can

be applied and reallocated as needed.

Failing to have any of the above raises risk dramatically; and it is unlikely that other
mitigation strategies will be possible for the risks introduced. How many of these
boundary conditions are found in an enterprise? Our sense is that there seems to be a
correlation between small projects which build stand-alone, fairly simple
applications/products which are under the complete control and management of a
single party, and the likelihood of having these boundary conditions satisfied.
Unfortunately, when one considers an enterprise every one of the characteristics
mentioned above is violated. This isn’t too surprising as Systems Engineering has
evolved (very successfully) from an industrial, element-manufacturing point of view.

Of note in the INCOSE definition of Systems Engineering is the absence of the
concept of the enterprise. In fact, the aspects discussed and listed above in the
INCOSE definition are appropriate for elements of the enterprise – and their
manufacture- but not the enterprise itself. Any arguments offered wherein one
suggests that one does the same things at a grander scale are wrong; they don’t scale;
they don’t work. Our experience stands in stark contrast to this (sometimes implied)
assertion. Notwithstanding this seeming omission, INCOSE identifies the changes
needed in engineering education and practice to enable engineering on an enterprise
basis. They call out for all engineering curricula to be multi-disciplinary. They hint
that Systems Engineering is the place where the currently balkanized set of
engineering departments can be brought together, and they suggest a difficult
interdisciplinary senior challenge problem and “playground” where the students can
learn their trade. We agree wholeheartedly with these observations and
recommendations. In a real sense, INCOSE is discovering process and
methodological elements which fit Complex Systems Engineering, but has yet to
name and describe it.

a.2.3 Can Traditional Systems Engineering be applied to the AOC?

It is clear that processes must be applied where they fit. If boundary conditions for
applying a process, or a set of processes, are violated the processes are not really
applicable. Is an AOC such a situation?

We can test whether the characteristics we previously argued were required for
successful outcomes using TSE fit an AOC:

9

Engineering Complex Systems

• The specific desired outcome must be known a priori, and it must be clear and
unambiguous (implied in this is that the edges of the system, and thus
responsibility, are clear and known);

o Test Result: Failed.
There are expectations expressed in documents known as Block
Requirements Documents (BRD) which lay out an AOC’s planned
functionality over time. The fly-in-the-ointment is that the plan implies a
convergent set of developments which would deliver the capabilities found
in the AOC BRD. This isn’t the case; and it leads to the next characteristic to
test.

• There must be a single, common manager who is able to make decisions about
allocating available resources to ensure completion;

o Test Result: Failed.
As observed above, there are many component systems which are managed
by many different organizations responding to many constituencies on behalf
of a set of users, of which one user community is found at AOCs.

• Change is introduced and managed centrally;
o Test Result: Failed.
It is certainly the case that senior AF management has (and is) attempting to
apply centralized management to bring AOCs under control. AOCs have
been declared to “Weapon Systems,” The senior acquisition authority has
asserted personal control over the official configuration, and detailed
configuration control processes and measures have been imposed.

To date, these measures have not worked; and we suspect they still won’t.
The only proximal result is a sense of stasis hovering over the AOC formal
definitions. This invites the formation of black markets. Each Combatant
Commander has funds that can be spent on their AOCs (the OIF AOC was
built on Commander’s Initiative funds). Bottom line: they have the means;
and when a need surfaces, they can fix their own problems. And they are
independent of the corporate AF staff.

Besides, stasis of the AOC definition imposes no stasis on the component
systems used to build the AOC, so what does a firm baseline mean in this
case?

• There must be “fungible” resources (that is money, people, time, etc.) which can
be applied and reallocated as needed.

o Test Result: Failed.
As mentioned, few of the total set of resources required to produce an AOC
are controlled by, or in a way, that renders them fungible.

The conclusion is pretty straight forward. TSE doesn’t lend itself to engineering or
managing the engineering of AOCs (and by extension, enterprises). Can one take
organizational or management steps to bring the characteristics which are outside of
the boundary conditions back in line? Perhaps one; but they are all violated. A
reasonable guess is that it is not likely that there are management or organizational
changes which would allow TSE to be applied successfully.

10

Engineering Complex Systems

a.3 Complexity and Complex Systems
To facilitate discussion, terms must be defined. For this discussion there are a few key
terms which require definition. While somewhat pedantic, the concepts offered below
attempt to define the landscape explored. For those who believe they have a good
grasp on the definitions and characteristics of complexity and complex systems, or
who have an immediate interest in answering the next logical question with respect to
an AOC – is the AOC a complex system? – they might jump ahead to section a.3.4,
then return to this point.

 “Complex Systems Engineering” contains three terms:
• Complexity
• Systems
• Engineering
Fundamentally, we’re talking about an engineering activity centered on complex
systems. Yet, to this point the appeal is to a general gut-feel for the concept. But, what
is complexity? What are systems? What are complex systems? What is systems
engineering? What is complex systems engineering?

a.3.1 Complexity

“Complexity” as a concept is actually rather slippery. For understanding the
difficulties “complex systems” present to engineering and management activities, it’s
worthwhile taking a few moments and exploring this term “complexity.” As we
discuss complexity, we will use a “progressive formalism” approach which initially
appeals to intuition, then fills in the intuition with some formal structures. To set
complexity in its proper place, we will also use some forward references – i.e. before
we define a system, we will use the common notion of a system to help understand
“complexity.”

“Complexity” does not mean “difficult to understand” (although it might be the case
that something complex is difficult to understand). Reaching into the American
Heritage Dictionary,

Complex adj.
1.a. Consisting of interconnected or interwoven parts; composite. b.
Composed of two or more units

This particular definition is not too useful, since every system (using the working
definition of system below) is “complex” by this definition. The Oxford Dictionary
states that something is complex if it is “made of closely connected parts.” This
definition also does not distinguish between “simple systems” and “complex system.”
In fact, one could (by simple substitution) quickly create a “simple complex” which
seems like an oxymoron.

Bar-Yam [97] suggests that complexity is strongly related to the number of possible
states of a collection, or its complete description. That takes the concept closer to a

11

Engineering Complex Systems

useful understanding for engineering, and borrows in an attractive way from
Shannon’s Information Theory; but it also seems arbitrary in some ways, as it
suggests that a collection becomes more complex when measured with more
precision. For example, if one calculates all the possible arrangements of papers on
one’s desk, the number of discernible possibilities is different depending on the
precision of the ruler used. But it’s still the same desk and the same set of papers.
Arguably, the complexity should be the same. The complexity should not depend on
the measuring method. The counter argument is that the use of a different ruler is
precisely equivalent to using a different scale; and so finding that the complexity at
different scales is different should not be surprising. Nevertheless, the use of a value
related to both information theory8 and entropy9 remains attractive.

Another aspect to contemplate is the difference between actual number of possibilities
and the number of useful possibilities. Consider a spoken language. Is the complexity
of a sentence in the language of length ‘n’ related to the permutations of the number
of words in the sentence (O(n!))? Or, is it related to the number of ‘useful’
arrangements of the ‘n’ words, which would be significantly less? This is potentially
important as one develops metrics to measure complexity and compare complexity
levels.

Another view of complexity is Turchin’s [Heylighen 95]. He describes complexity in
terms of behavior and emergence. He has crafted a theory known as Metasystem
Transition Theory which describes interactions within and among models of meaning.
The creation of each new level of abstraction and complexity he terms a “quantum of
evolution.”

Whatever model is used to understand complexity, rendering ‘complexity’ into a
useful engineering concept requires metrics. Return to the statement “Complexity”
does not mean “difficult to understand” above. Since it is easy to assume that the
concepts are synonymous, a concept for “difficult to understand” but is not the
concept “complexity” must be found. A candidate term offered is Intricacy

Intricacy.
1. Having many complexly arranged elements; elaborate. 2. Solvable or

comprehensible only with painstaking effort.

An example may help drive the point home. There used to be a board game called
Mousetrap played by children (it may still be played!). In the game, players move
their playing pieces (colored mice) around a board and in doing so build a Rube-
Goldberg mousetrap which one player ends up using to capture the other player’s
mouse, thus winning the game.

The advertising copy reads as follows10:

8 Shannon's 10th Theorem:
9 Second Law of Thermodynamics
10 taken from http://www.areyougame.com

12

Engineering Complex Systems

“Construct a crazy mice-catchin’ contraption piece by piece as you race
your mice around the track! Once it’s built, turn the crank...that kicks the
marble...that rolls down the chute...and sets off a zany chain reaction that
just might trap a pesky mouse!”

It’s clear that the bizarre mouse-catching device is intricate. However, it is not
complex. It has only one possible configuration, and it results in only one behavior.
Each piece is carefully crafted to fit onto the previous structure which sets up the
conditions for the subsequent structure. It also doesn’t interact at all with its
environment. It assembles the same way each time (in fact it must have this
characteristic to be a good toy). It is also clear that the mouse-catching system built is
“solvable or comprehensible only with painstaking effort.” That’s the appeal of the
game. That’s why kids enjoy it. That’s not a characteristic necessarily appropriate for
our military systems.

Measures of complexity and intricacy may serve as good metrics to understand the
relative merits of a system, and may be useful for relative comparisons. Mathematical
properties of complexity and intricacy can be shown to relate to specific mathematical
characteristics which we will treat in a subsequent publication. As a precursor to a
detailed treatment, it appears that intricacy relates to the number of axes of
characterization – i.e. the absolute volume of a hyperspace defined by the axes.
Complexity relates to the volume reachable within this hyperspace. Thinking about
the mousetrap device, it is a device whose hyperspace has many axes; yet it has a
narrow extent along each axis, forming a narrow volume of reachability within this
hyperspace. Other models attempt to describe complexity in terms of variety and
constraints [Heylighen 01], which roughly map to Shannon’s notion of statistical
information entropy and content. Still other formulations of complexity are found in
other disciplines.

Christopher Alexander [79] offers well-known (architectural) pattern models for
considering complexity and emergence in architecture. Emerging from the repeated
application of the principles, Alexander’s speaks about spaces, homes, towns and
cities which are “alive.” His concept of “alive” is a reflection of the interactions
among the components in the environment and the people, and the support the
environment affords to the repeated patterns and events which make up the peoples’
experiences minute-to-minute and day-to-day. He recognizes that there are both
patterns formed at higher levels from bottoms-up application of patterns, and there are
explicit patterns applied at higher levels – and in this he hints at multiscale analysis.
Fundamentally, he is talking about the relations among the entities which interact; and
the result of those relations. His work was adopted and interpreted by those who
practice “pattern”-oriented approaches to systems and software [Gamma 94]. These
approaches certainly seem to have something to say about complexity, and Complex
Systems Engineering.

Alexander’s notion of complexity seems to align with the notion of “order.” The
utility of a definition (of order now) depends on its alignment with the informal

13

Engineering Complex Systems

understanding accorded the term. In the informal sense, order is almost always
associated with organization as well as with the actions or other forms of direction
that lead to this organization (rhyme and reason). Order is not simply a passive thing
like color (i.e. a state property). It is dynamic; it is associated with doing something –
i.e. both form and function. By focusing on the relationships among things, not just
the state of the things as a result of the relationships, we can understand the reasons
for the molar organization and perhaps understand the implications to change – even
infer or deduce state elsewhere which may be out of view.

Formally now, the order (of a system) is a measure. The measure is the set of all of
the specific and instant relationships among the parts of a system.11 In many
circumstances, the order (of a system) can be quantized and summarized by the
cardinality of such a measure-set.12 This approach, that of focusing on the relations,
not merely the state, will likely provide the most useful characterization of
complexity since it characterizes things in an active way.

a.3.2 Systems

Here, the term system denotes a set of parts that have relationships with one another.
This is also the preferred definition for this term. From the American Heritage
Dictionary, first definition:

1. A group of interacting, interrelated, or interdependent elements forming a
complex whole

Not everyone uses this definition, but it is the definition we use. The major stumbling
block some have with this definition is that it requires that the parts have some sort of
relationship to one another to constitute a system. Some speak of “systems” using a
much looser definition. The American Heritage Dictionary supports a looser
definition as well; to wit, definition six:

6. A set of objects or phenomena grouped together for classification or
analysis.

The issue to consider is which definition fits one’s intuitive notion of “system” better.
Number one seems to meet the intuition test: it’s alive and active, while definition six
is a system of academic or conversational convenience. The definition used here
insists that a system has multiple parts, AND that those parts have relationships
among them.

11 A given relationship can vary over time. The “specific and instant” form of a relationship is to be
distinguished from these possibilities. A fuller discussion of the meaning of order would elaborate the
definition of “relationship” offered here. It would offer that relationships are patterns in attributes, where
attributes define the parts of a system (and sets of “values” define attributes). A relationship allows the
inference or deduction of the specific values of an attribute of a part of a system based on other attribute
values because those attribute values collectively form patterns
12 Random is often used to identify the absence of order. If so, random should not be treated as an exact
synonym for stochastic – which actually asserts that there are relationships, but that they are not well
enough understood to dependably deduce or infer knowledge of specific parts. In fact, stochastic is a
telltale for relationships at multiple levels of scale, something that is taken up briefly below.

14

Engineering Complex Systems

INCOSE defines a System [INCOSE 01] in the following way: “...A system can be
broadly defined as an integrated set of elements that accomplish a defined
objective...” They have also been struggling with scaling up, and the implications.
They also note “…It is sometimes confusing as to which elements comprise a
system…” offering an example of a broad network with independent databases fused,
and a desire to print the results.[ibid] Also noted is the presence of multiple “levels”
to a system, and the different roles the same “things” are at different levels13. Clearly,
the limits of the traditional definition of a system are being felt, and it too hints at
Multi-scale analyses (discussed later).

a.3.3 Complex Systems

A Complex System [Bar-Yam 97; Heylighen 95; Holland 95; Kauffman 93] is a
system:

• Whose structure and behavior is not deducible, nor may it be inferred, from
the structure and behavior of its component parts;

• Whose elements can change in response to imposed “pressures” from
neighboring elements (note the reciprocal and transitive implications of this);

• Which has a large number of useful potential arrangements of its elements;
• That continually increases its own complexity given a steady influx of

energy (raw resources);
• Characterized by the presence of independent change agents.

A measure of a complex system (for characterization and comparison) might be based
on the balance of complexity and intricacy. Other corollaries of these measurements
might be a measurement of the rate at which the complex system’s adapts to
required/desired change.

a.3.4 Is the AOC a Complex System?

We can test whether AOCS fit the definition of Complex Systems by comparing the
two:
A complex system is a system:
• Whose structure and behavior is not deducible, nor may it be inferred, from the

structure and behavior of its component parts;
o Result: Marginal Pass
The AOC’s desired molar behavior is reasonably well known; even it’s
desired changes, so this characteristic doesn’t necessarily fit. However, if we
take a broader view of an AOC as an element of C2 (i.e. the enterprise), then
this statement becomes more correct.

• Whose elements can change in response to imposed “pressures” from
neighboring elements (note the reciprocal and transitive implications of this);

o Result: Pass

13 “Aircraft, automobiles, and homes are other examples of systems at one level, which can be considered
elements or subsystems at another level.”; Ibid

15

Engineering Complex Systems

This is certainly the case in the AOC. Independently-introduced applications
(through independent agents) such as (for example) ADOCS and Falcon-
View cause direct “pressure” on those applications which perform similar
roles, or which could potentially act in concert with these introduced
applications. As an example of resolving the introduced pressures, TBMCS
specifically added certain Information Services to interact with ADOCS
without the need to own and control it.

• Which has a large number of useful potential arrangements of its elements;
o Result: Pass
Since the AOC’s workflows are numerous, and are in flux due to new
missions and doctrine, this fits. IT is aso true, though, that it is the people
who supply the flexibility; and they often fight the automation present.

• That continually increases its own complexity given a steady influx of energy
(raw resources);

o Result: Pass
This also seems to be the case. For example, TBMCS re-architected from a
monolith to a set of applications riding on a set of Information Services
precisely to increase the number of possible connections and relations, and to
allow more independence of creation and use of new clients of the services
offered.

• Characterized by the presence of independent change agents.
o Result: Pass
The AOC has upwards of 30 independent agents – in the form of separate
Program Elements (PEs). PEs are, by their definition and nature,
independent agents.

It seems reasonable to conclude that AOCs are Complex Systems; and, since there is
a need to apply a Systems Engineering approach to the AOC which is beyond the
traditional Systems Engineering approach (see the earlier discussion in section a.2.3),
the AOC might benefit from a Complex Systems Engineering approach which
acknowledges the differences between the AOC and other more-traditional
developments to which TSE can be applied.

a.4. Engineering Complex Systems
If TSE doesn’t scale to AOCs or the enterprise, what does? In the introduction we
made the claim that an augmentation of Systems Engineering, to be called Complex
Systems Engineering (CSE), should be used to manage and guide the enterprise. As
discussed above in some detail, a violation of the boundary conditions required for a
favorable application of TSE suggests different tools and approaches are required. In
essence, CSE must serve to bring together independent, disparate organizations and
entities. It must provide them with a sense of “pressure” that they feel, and a set of
processes that can be used to resolve the pressures. CSE must incentivize the
partnerships needed; and must compel the engagement of their respective resources to

16

Engineering Complex Systems

accomplish the integration without resorting to arguments over whose money is being
spent, or whether “interoperability” or “integration” is a “requirement” they have.

It’s clear that Systems Engineering must extend its philosophic and theoretic
foundation to build a consistent (and hopefully complete) framework for the practice
of Systems Engineering in general, and Complex Systems Engineering in particular.
Within this framework, we describe new roles and responsibilities for new “jobs”
which must be performed to do CSE.

Complex Systems Engineering changes the focus from “…here is the solution
designed from the requirements, now go implement it…” to “…here are the selective
pressures acting on the elements present (likely built using TSE), now resolve or
reduce them…”

CSE does this, and this is the key point, through a deliberate and accelerated mimicry
of the processes that drive emergence and natural evolution. Kaufmann [93] noted
that complex adaptable systems require both the emergence of novelty and variety as
well as selective pressures to account for the richness in ecosystems. We find those
characteristics in an AOC. In fact, the AOC (and Command and Control in general)
can be thought of as an Ecosystem. Bar-Yam [03] has explicitly incorporated this
thinking in a recent presentation where he introduces what he calls Enlightened
Evolutionary Engineering. Using the conceptual models suggested above, one can
speculate about niches, selective pressures, competition, adaptation, displacement,
etc. It describes a process constantly at work and in line with our daily experience; a
process which is alive [Holland 92, 95]. While ecology, evolution, and models of
ecology and evolution, are beyond the scope of this paper, an appeal to the reader’s
intuition will help place CSE in context. Those interested in understanding principles
of ecology and evolution are directed to the rich literature available (e.g. Stephen Jay
Gould, Richard Dawkins, E. O. Wilson, George C. Williams, Ricard Sole, etc.).
Future papers will draw the mappings in a more detailed form.

Complex systems engineering is NOT a new or renewed attention to detail; it is an
attention to overall coherence. The two are obviously and will always be related.
However, as the actual order and complexity of a system increases, it becomes
humanly impractical to address both from a single perspective – in particular from the
perspective of ever increasing detail. What complex systems engineering does is to
address overall coherence WITHOUT a direct and immediate attention to detail.14

Complex Systems Engineering acknowledges the presence and action of
“autonomous agents” as important elements of a SoS. These autonomous agents are
precisely the effectors which must be (and are) eliminated to apply TSE. Again, to
apply TSE one needs to eliminate the independent agents, or one needs to augment
the set of tools for dealing with their continued presence.

14 This is what baffles those confined to a linear theoretic and uniscale (or reductionist) viewpoint.

17

Engineering Complex Systems

a.4.1 Comparing Traditional and Complex Systems Engineering

Traditional and complex system engineering can be distinguished by contrasting
either their methods or the outcomes resulting from the application of those methods.
The following briefly contrasts the outcomes that are obtained using traditional and
complex system engineering. The term product is used to identify the outcome of
traditional system engineering; the term enterprise is used to identify the outcome of
complex system engineering.

TSE CSE
Products are reproducible No two enterprises are alike.
Products are realized to meet pre-conceived
specifications

Enterprises continually evolve so as to increase
their own complexity.

Products have well-defined boundaries Enterprises have ambiguous boundaries
Unwanted possibilities are removed during the
realizations of products

New possibilities are constantly assessed for utility
and feasibility in the evolution of an enterprise.

External agents integrate products Enterprises are self-integrating and re-integrating
Development always ends for each instance of
product realization

Enterprise development never ends – enterprises
evolve

Product development ends when unwanted
possibilities are removed and sources of internal
friction (competition for resources, differing
interpretations of the same inputs, etc.) are removed

Enterprises depend on both internal cooperation and
internal competition to stimulate their evolution

Table 1 Comparing TSE and CSE

Traditional and complex system engineering can (and should) be applied concurrently
in the realization and evolution of a complex system. Traditional system engineering
is appropriate for managing the decision making processes of individual autonomous
agents in a complex system. Complex system engineering must be added when
multiple autonomous agents must be a part of any solution and/or when multiscale
analysis becomes essential to a sufficiently complete characterization of an evolving
problem and its solution.

a.4.2 The Regimen of Complex Systems Engineering

Complex systems engineering (CSE) operates a bit differently than TSE in that TSE
is a practice of direct impact and effects, while CSE tends to be indirect. The goal of
CSE is to increase the order of, and the complexity available to, systems. As
discussed earlier, there is a practical upper limit to the degree to which this can be
done successfully through pre-specification followed by implementation, and all of
the other attendant processes of TSE15.

15 Formally, this can be attributed to the increasing dimensionality of the relational multiscale phase-space
that can be used to characterize the actual order and complexity of a system relative to the generally fixed
and finite intellectual capacity of any human individual.

18

Engineering Complex Systems

To engineer a system beyond this limit it is necessary to combine several related
activities into a single continuous “regimen” of engineering and development. This
regimen is intended to transcend the boundaries of TSE which have been outlined
previously. A regimen is distinguished here from a “recipe,” and a recipe here can be
understood as shorthand for the cumulative nature of the processes of TSE. A recipe
is a tightly and precisely scripted sequence of steps intended to yield reproducible
outcomes such as specific kinds of cakes or meat loaves (or cars or planes, or
operating systems). In the ideal, every outcome is exactly the same. A regimen is a
looser formulation of more generalized steps that can be combined in various ways to
yield many different instances of generalized outcomes such as weight loss or
increased stamina (or an Air Operations Center, or a Department of Homeland
Security). Even in the ideal, there can be no insistence on uniformity, only on
acceptability or conformity with broad norms.

The overall regimen of CSE creates and manages an environment16 in which multiple
autonomous agents each address a fraction of the relationships that might be involved
in an overall complex system. Autonomous agents (independent development tracks
in the context of most engineered systems, especially IT-intensive systems) and their
creations both operate in this environment and (continuously) interact to explore the
utility and practicality of new or modified relationships.17 We have some reasonable
hope that establishing such an environment is both practical and doable. Holland [95]
points to its natural occurrence when the basic elements are present18.

In terms of today’s IT-intensive systems, it is useful to recognize that most of the
increases in complexity (or interoperability, or new or expanded relations) are
typically associated with the “run-time” of the system, while most of the collaboration
(or interoperation or interoperability) that yields these new or modified “run time”
relationships occurs among the people who create the “run time” components. This
collaboration is said to occur during the “development time” for the system. As a
consequence, complex systems engineering for IT-intensive systems needs to
establish and manage an environment for “developers” AND for their “run time”
creations. These two aspects (scales) of any IT-intensive complex system are not
ultimately independent, but they can be discussed separately and then combined to
enhance overall understanding.19

16 There are many analogs to the developmental environment of CSE. See for example Hayek’s general
thoughts on monetary and trade-cycle theory. An even more familiar analog is the role of “playgrounds” in
child development.
17 As well as to maintain, to modify, or to discard existing relationships.
18 Holland [95] talks of the basic elements of: aggregation, tagging, nonlinearity, flows, diversity, internal
models, and building blocks.
19 Continued improvement in the engineering of IT-intensive systems will witness the continued
convergence of these “separate” development and run times. This can be colloquially summarized as the
emergence of self-programming systems. The compelling “evolutionary pressure” for this emergence is the
“expense” of human labor in maintaining and expanding IT-intensive systems. Programmers are expensive
relative to their programmed creations.

19

Engineering Complex Systems

a.4.2 The Elements of the Regimen

The following very briefly introduces each of the elements that are combined into the
Regimen of CSE. Their combination is discussed after the elements are introduced.

a.4.2.1 Developmental Environment

An explicit and conscious attention to a developmental environment (including even a
pre-specification of its initial form) is the single most important activity underpinning
the deliberate development of complex systems.

This developmental environment can be understood as either a separate and distinct
environment in which complex systems develop and operate, or – along with that
environment – an overall ecosystem that includes both. As such, this first activity
focuses on the completeness of the ecosystem relative to supporting the more focused
activities that occur within it. Are a sufficient number of the relevant autonomous
agents and their creations present? Can new ones be added? Is the means available for
these autonomous agents to interact if they so choose? Are resources flowing through
the ecosystem? Are the means for supporting both cooperation and competition
among the autonomous agents present? Is the flow of resources modulated by
cooperation and competition, or is that flow entirely pre-specified? 20 Are there
universal signals that can be interpreted locally (and perhaps differently) that are
associated with the whole that cannot be entirely explained by any combination of a
subset of the parts?21

The developmental environment can not be a one-time thing. It must be, nurtured, and
managed so it can evolve itself; even after its initial establishment. Attention to this
environment must be continuous, deliberate, and it must be available to all the
independent agents; this is why it lends itself to being treated as a separate activity.

a.4.2.2 Outcome spaces

Outcome spaces are identified (or defined) at multiple levels of scale, and from
multiple points of view, for a complex system. An outcome space is explicitly
distinguished from the many specific outcomes that comprise it. (When very specific
outcomes are sought and/or are meant to be exactly reproducible, TSE should be used
to achieve them. However, applying TSE becomes increasingly difficult as the
number of autonomous agents increases; ideally, only one is involved. All specific
outcomes in the outcome space must be viewed as acceptable without there being
strong preferences for any of them.22

20 If the flow of resources is entirely pre-specified, then competition cannot operate. The localized decisions
of autonomous agents cannot, by definition, influence the flow of resources – although they can still
influence the effectiveness of that flow. As a result, complex system development can’t occur.
21 Examples of such signals are the pricing mechanism in a market economy or selective pressures in a
biological ecosystem.
22 This does not mean that outcomes can’t be identified as unwanted. Partitioning outcome spaces into
wanted and unwanted sub-spaces is one way to do this. This is why outcome spaces are sometimes referred
to as the targeted outcome spaces.

20

Engineering Complex Systems

When specific outcomes in an outcome space can be realized by individual
autonomous agents (or their creations) by themselves, competition is encouraged.
When specific outcomes in an outcome space can only be achieved by autonomous
agents (or their creations) collectively but not individually, cooperation is
encouraged.23 Network centric operations and Jointness are military domain examples
of the latter [Alberts 99]. Such outcomes are best characterized at a scale in which the
autonomous agents (or their creations) are not immediately or directly accessible.
Complex systems require both competition and cooperation for sustained
development, although competition is almost always more important in the short
term.

It is sometimes possible to characterize outcome spaces at multiple levels of scale
using identical terminology. This often causes confusion and should be avoided. For
example, it may be desired that a complex system achieve a reduced footprint (or
reduced power consumption, etc.) and/or it may be desired that individual
components of that complex system achieve reduced footprint. These are frequently
outcomes at different levels of scale. (It is possible that a complex system could
achieve a reduced footprint even though individual components do not – or even
increase their footprint.) Such outcome spaces should always be explicitly
distinguished (for example, by always and explicitly referring to “component”
footprints and the complex system’s footprint).

The identification of outcome spaces (vice specific, detailed outcomes) focuses
attention on explicitly recognizing sub-spaces and partial volumes in a relational
phase-space (vice specific phase points or trajectories).

a.4.2.3 Rewards

Autonomous agents (independent development tracks in the case of IT-intensive
systems) make the decisions that determine the utility and/or the practicality of
existing and new relationships within the complex system. Rewards are structured to
motivate the autonomous agents to make decisions that cause the complex system to
enter the targeted outcome spaces desired.

Rewards shape the decision making processes employed by autonomous agents. The
rewards should be clear and should not be dependent on specific processes of the
autonomous agents who are subject to rewards. Since one should not assume that
these autonomous agent processes are uniform (or that they should be), rewarding
based on a specific process which could be viewed as too invasive by the autonomous
agents24. Rewards are only one consideration shaping the decisions of the autonomous
agents; and should be viewed as incentives only.

23 There are, of course, many intermediate or blended situations as well in which both cooperation and
competition play a part.
24 Unless the specific outcome space IS a common process. However, insisting on common processes may
well stifle innovation and variety needed for evolution.

21

Engineering Complex Systems

In the most general case, rewards are access to the energy flowing through a complex
system. In the case of IT-intensive system development and within the context of
contemporary acquisition protocols, rewards are almost always associated with access
to the money flowing through the entire system development environment. There are
other forms of rewards (as well as penalties), however, that are neglected only at great
peril to the system engineer. Rewards motivate. As long as people are involved, the
list of possible rewards is as long as the list of factors that motivate people.

To the degree that rewards can be distributed extra-contractually, that offers
motivation to autonomous agents to “keep their eye on” the complex system, even if
they are not engaged in a direct manner. Innovations which these agents can bring to
the complex system which are shown to bring value should be rewarded. This sets up
the potential of new approaches and influences, and avoids stagnation.

a.4.2.4 Developmental precepts

Developmental precepts constitute the “rules of the game,” and by doing so stimulate
contextual discovery and interaction among autonomous agents. They do this by
establishing (for example) certain constraints on how outcomes are achieved by
autonomous agents, or how they interact. It’s easy to confuse these precepts with
rewards, however they are quite different. Like when playing a board game, even if
the next space to promises a great, the rule (developmental precept) says you must
move the number of spaces found on the die you throw, you can’t move that one
space if the number is not “1.”

Developmental precepts do not specify specific outcomes or even outcome spaces. In
contemporary IT-intensive systems in which development time and run time are
treated separately, developmental precepts focus on the interaction of the independent
development tracks more so than on such behavior among their creations. In
contemporary IT-intensive system acquisition and development, these developmental
precepts can be contractually fixed since they can be made as specific as desired.

Developmental precepts are initially difficult for most system engineers to appreciate
since they shape autonomous decision making leading to specific outcomes rather
than the specific outcomes themselves. An example is useful.

In the case of the Air Force, most IT-intensive systems that contribute to Command
and Control (C2) are developed under the supervision of (acquisition) Programs.
Many of these Programs are physically housed at the Electronic Systems Center
(ESC) on Hanscom AFB, Massachusetts. Each of these C2 systems has explicitly
designated military “end users.”(For example, an automated mission planning
system helps a pilot to plan a route to be flown by an aircraft on a military mission.
Pilots are the end users of such an automated system. Pilots do not take delivery of
such a system, however. Instead, a Commander responsible for many pilots is the
notional end user that takes receipt of such a system at a particular Air Force base on

22

Engineering Complex Systems

behalf of the Air Force and of the pilots stationed there.) The completion of the
acquisition process (the delivery and acceptance of the system) is signified by the
signing of a DD-250 form by the end user. The Program uses this signed form to
confirm the successful completion of its own (acquisition) mission. Absent that signed
form, the mission remains incomplete. Careers depend on the completion of missions,
and this is true for the people in Programs as well.

End users (the Commander in this example) take receipt of multiple systems from
ESC – often in the same year. The mission planning system is just one such system.
These systems increasingly must interact with one another to fully accomplish their
respective purposes. Because such interactions do not fully fall within the scope of
any one system, however, the successful realization of such interactions is left to
delivery time and is often partially or wholly left to the end users to accomplish.

This is further aggravated by the periodic replacement of an earlier version of a
system with a newer (and better) version. This almost always involves moving
extensive data bases from the earlier to the newer versions of a system to maintain
operations. This is frequently left to the end users to accomplish even though
improvements in the newer version of a system often involve the reorganization of the
existing information in those data bases.

This is even further aggravated since many improvements to systems impose new or
additional burdens on the infrastructures supporting modern C2 operations (power,
bandwidth, connectivity, etc.). New or improved systems are not responsible for
augmenting such infrastructures since by definition infrastructures are shared. The
end users are however constrained by these infrastructures.

As a result, end users increasingly complain of “drive by” deliveries of systems by
ESC Programs and the failure of ESC to deliver “integrated” solutions to their
operational needs. Although ESC increasingly talks about an “integrated C2
enterprise,” it continues to deliver that enterprise in “kit” form – leaving the hard
“integration” part to the non-acquisition community to accomplish.

The traditional response to this complaint (thereby acknowledging its essential truth)
has been to attempt to formulate master schedules for the delivery of systems to
specific locations and the formulation of detailed integration plans to interconnect the
independent systems prior to deliveries in the traditional system engineering fashion.
This response has failed, been retried and failed again. The specific reasons
explaining each failure is now legion.

Treatment of such overlapping and interdependent deliveries as a complex system
development would involve (in part) the formulation of a developmental precept. This
precept would alter slightly the mechanism already employed to complete the delivery
and acceptance process. It would modify the DD-250 form so that an end user could
only take receipt of multiple (say two in the simplest case) systems from ESC at one

23

Engineering Complex Systems

time. The end user would then have the leverage to compel the acquisition community
to address the interconnection of delivered systems. ESC Programs would respond
accordingly since a system could no longer be completed by itself. The specifics of
which systems to be delivered and how they need to be interconnected, etc. would be
left to the Programs (the autonomous agents) to resolve in their own best interests.
However, the” global” outcome of more integrated systems from ESC would also be
accomplished – even though the specifics of how and when were never explicitly
formulated in advance at any “global” level.

The specification and then the enforcement of such a developmental precept would
serve to stimulate discovery and interaction among ESC Programs without specifying
what the specific outcomes should be. This is the essential characteristic of a
developmental precept.

a.4.2.5 Judging

Judging requires human judgment. Judging associates specific outcomes achieved
with autonomous agents, and assigns rewards to the autonomous agents accordingly.
Rewards are established prior to the realization of desired outcomes. Judging, on the
other hand, is based on actual outcomes achieved, not before.25

Judging for rewards that are associated with outcomes that can be attained directly by
autonomous agents (or their creations) is straightforward. Specific outcomes in the
targeted outcome spaces are seen to actually occur. They are recognized as such and
then the reward is assigned (given) to the autonomous agent(s) responsible.; as
quickly as possible following the judgment

Judging for rewards that are associated with specific outcomes that are in outcome
spaces that can only be associated collectively with autonomous agents (or their
creations) is more demanding. (For example, if a complex system achieves a reduced
footprint by virtue of certain components increasing their footprint and so allowing
others not to be used, or others to decrease their own component footprints so that the
net effect is an overall reduction, then judging requires the identification of the
autonomous agents responsible and the apportionment of the reward. The actual
achievement of network centric operations would be another example.)

25 Judging removes an important risk attendant to contemporary acquisition protocols. Contemporary
contracts are awarded based on what a successful bidder is predicted (in a source selection) to do in the
future. Judging assigns rewards based solely on what actually happens, not on what will happen. This has
implications for the nature (size, etc.) of rewards since the independent development tracks must assume
greater responsibility for the risks attendant in actually achieving desired outcomes. A discussion of such
implications is well beyond the scope of this discussion; but it suggests a wider variety of supported
business relations should be explored.

24

Engineering Complex Systems

a.4.2.6 Continuous Characterization

Outcome spaces, and rewards can (and should) initially be characterized with succinct
(even pithy) “bumper sticker” labels.26 This allows for a maximum role for the
autonomous agents in shaping the evolution of the complex system. Because
autonomous agents do exactly that -- act autonomously – this maximizes the
opportunities for inconsistencies in how these characterizations are interpreted. To the
extent that consistency matters, outcome spaces, rewards and the current condition of
a complex system will benefit from continuous and progressively more detailed and
complete characterizations. The characterization of the current situation is crucial in
this regard because it permits autonomous agents to independently develop metrics to
guide their local decision making in ways that will be broadly similar over time.
(Autonomous agents, although autonomous, are never wholly dissimilar.) In this
regard, the specific outcomes (as distinct from outcome spaces) used as the basis for
judgments should be detailed, as should the rationale supporting those judgments.

[figure 2]
Consistency can never be guaranteed in complex system development (evolution). (It
can be, in theory, with TSE.) As a result, these characterizations can never be made
too detailed.27 Characterization refinement can, however, become less than cost
effective.28 Moreover, consistency in this regard will tend to accelerate complex
system evolution but in narrower and narrower directions (those explicitly identified
and characterized). See the above figure. Therefore, as new outcome spaces become
apparent and/or attractive, unless they are explicitly added to the characterizations
(initially with limited detail), it becomes increasingly unlikely that the new

26 The U.S. Army motivated a tremendous spurt in its evolution with the visionary characterization of a
targeted outcome space with the exceptionally pithy expression, “Own the Night.”
27 If, however, the detailing of specific outcomes is substituted for outcome spaces (as just one example),
the complex system can be caused to collapse even though the complex system appears at first to rapidly
accelerate its evolution.
28 It can even become counter-productive, obscuring with detail rather than further illuminating the
essential coherence desired and achieved.

25

Engineering Complex Systems

possibilities will be explored even though available. In the extreme, this can even
result in stagnation, something that Safety Regulation is used to preclude or at least
impede. See the next section. In any case, deliberately stressing complex system
development in this way (very detailed refinement of outcome spaces, etc.) should be
carefully weighed.

ort, aimed at preserving the developmental environment.
hey are indirect measures.

f such activities is open ended,
ny listing of safety regulations is also open ended.

try to the developmental environment is an example of safety
gulation.

ents’ (admittedly partial)
ehaviors to independent observers with this goal in mind.

retired” components can play as tools themselves in the safety regulation of a system.

a.4.2.7 Safety Regulations

Safety regulations are aimed at preserving the “stability” of a complex system. Their
purpose or focus, is not on the attainment of desirable outcomes but rather on the
continued functioning of the other activities that are intended to do that (defining
outcome spaces and developmental precepts, judging, etc.). Their scope is wider than
that, however. They are, in sh
T

The act of applying safety regulations (or equivalently, safety regulation, and
performed by safety regulators) can be thought of as policing a complex system.
Although this applies to all levels of scale, in contemporary IT-intensive systems,
safety regulation is most important during development time. Safety regulation
applies to all developmental activities. Since a list o
a

Adding autonomous agents (independent development tracks) to a complex system
development is a development-time activity. Vetting such agents (or even preparing
them) prior to en
re

Adding the creations of independent development tracks to the run-time composite of
a complex system is roughly analogous to integration in traditional system
engineering, except that its goal and its many implementation particulars (defining
and refining interfaces, etc.) are the responsibilities of the involved independent
development tracks and not some external integrating agent. However, progressive
steps to regularize this introduction procedure can be formulated and enforced as
safety regulations. For example, such “integration” could first be required to happen
“offline,” and then “online,” and finally “inline.” Each of these phases would be
detailed and enforced by safety regulators. (In this example, offline, online, and inline
represent progressively deeper and fuller participation in the run-time composite of
the complex system.) The overall purpose of such phases would be to protect the
“uninvolved” independent development tracks and their creations from accidental or
deliberate rogue behavior by exposing the new compon
b

Safety regulation can also be made to apply to the retirement of no-longer-used run-
time components in a complex system (when and how this should be done, etc.). This
example is cited because it permits attention to be drawn to a role such “soon-to-be

26

Engineering Complex Systems

In many natural evolutionary complex systems, generations (populations with slightly
different capabilities) overlap. Rather than generational replacement, there is gradual
displacement with the possibility that older generations (or, equivalently, exact copies
of them) can persist. The IT-intensive system analog of this phenomenon is that
“older” components remain “on-line” (and in use) while “newer” components are
brought “in-line” and then “on-line” as a surety against catastrophic complex system
failure. This is illustrative of managed redundancy as a safety regulation in complex
systems.

But safety regulation does not have to be entirely ad hoc. Safety regulation is about
avoiding “collapse” and “stagnation” in overall complex system behavior. These
notions can be given rigorous meaning29 with the use of chaos and catastrophe theory.
This meaning can in turn be translated into the specifics of a given complex system’s
behavior (in terms of its trajectory in its phase-space). These specifics can, in turn, be
translated into thresholds used to monitor and control overall system behavior, but
only in very specific dimensions. In crude terms, this technique has been in use for a
long time in the form of circuit breakers and the like.

Other safety regulations can and should be directed at the detection of the continued
presence of both cooperation and competition since both are always necessary for the
sustained operation of any complex system.

a.4.2.8 Duality

It has already been emphasized that a complex system’s “development time” can
never be fully separated from its “run time.” Complex systems continually change as
a natural part of their own operation. This can only be fully appreciated using
multiscale analysis.

In the context of IT-intensive systems that also utilize people as operators, it is
important to apply multiscale analysis in a fashion suggested in the following figure.
Multiscale analysis must be applied to both distinguish between and to understand the
relationships among these separate scales in a complex system: the IT-components
themselves (application programs, etc.), their developers (groups of people as
independent development tracks), and the human operators of the system.

29 To do so is well beyond the scope of this system engineering focused narrative.

27

Engineering Complex Systems

IT
artifacts

IT
artifacts

Indep. Dev.
Track i

Indep. Dev.
Track j

OPERATORS x OPERATORS y

i j

de
ve

lo
pm

en
t t

im
e

run tim
e

[figure 3]
The IT components in an IT-intensive complex system do not create themselves (yet).
Groups of people do that. These autonomous agent developers interact with one
another as well as with their creations. There is only very limited (and often strongly
inhibited) interaction between such agents and the creations of other such agents.
These interactions are frequently identified as occurring during “development time.”
The IT components of a complex system also interact with one another. Such
interactions can occur during development time, but most of the time such
interactions are thought of as an essential element of the “run time” of a system.
However, these are not the only interactions that are associated with the run time of a
system. In almost every case there is also a strong degree of interaction between these
IT components and their human operators. Moreover, these human operators often
interact with one another directly – without any intermediate interactions involving
the IT components.

To be fully productive in contemporary IT-intensive systems, the definition of
outcome spaces is done (at least) at three distinct scales, two corresponding roughly to
“run time” and one corresponding to “development time.”

Complex system engineering should take all of interactions into account – not just
those involving IT components during run time. This is almost never explicitly
acknowledged today – although the growing attention to fostering “user/developer”
interaction during development is an implicit recognition of this multiscale reality.
Duality is the explicit recognition that development cannot be completely separated
from operation in the case of a complex system.

28

Engineering Complex Systems

a.4.3 Running the Regimen

There is no single way to characterize how the regimen of complex system
engineering unfolds because it is a regimen, not a recipe.

Early on, one should clearly formulate desirable outcome spaces in broad terms
(partial volumes and subspaces in the relational phase space for a system). The actual
phase points and trajectory of a complex system are determined collectively by the
autonomous agents operating within the complex system. In the case of contemporary
IT-intensive systems, this is the primary role of the developers – but not exclusively
so since operators, for example, can play an important role as well. Recognizing
desirable outcomes (actual phase points and trajectories that are in the desired
outcome space) when they occur is a primary role of the complex system engineer. In
this sense, recognition and continuous characterization augments specification as an
engineering activity for complex systems.

Coincident with the identification of outcome spaces must be the publication of
rewards available to autonomous agents. These rewards should be expressed in terms
that are visible to the autonomous agents – even if the outcomes spaces themselves
are not.

Once recognized, desirable outcomes must actually be rewarded. The attainment and
recognition of such outcomes does not make this automatic. Human judgment is still
required. Complex system engineering can inform this judgment but such judgment
must remain the prerogative of those responsible or desirous of the emergent complex
system. Once such judgments are made (and rewards and punishments assigned to
autonomous agents) the rewards must be restated along with the restatements of
desired outcome spaces.

The formulation of desirable outcome spaces should never stop. As new outcomes
occur, the desirable outcome spaces need to be restated – along with attendant
rewards.

The complex system engineer is responsible for managing the overall developmental
(and operational) environment. Key in this regard is formulation of developmental
precepts that serve to influence (but not to specify) the decision making of the
autonomous agents in the complex system. This requires engineering judgment but
judgment that is distinct from the assignment of rewards. These developmental
precepts can and should be made “binding” on all developers in the complex system,
as should the adherence to safety regulations. Enforcing these precepts and safety
regulations are important roles for complex system engineers and are the essential
aspects of specifying and managing a developmental environment.

A complex system operates continuously. The complex system engineer is
responsible for the overall developmental environment that appropriately mixes
operational and developmental contexts. The complex system engineer almost always

29

Engineering Complex Systems

focuses attention on the developmental aspects of this mixed environment. This
includes specifying, operating, maintaining and modifying an infrastructure that
supports interactions among autonomous agents and their creations, specifying and
enforcing developmental precepts intended to stimulate discovery and interaction
among the autonomous agents, and the specification and application of safety
regulations.

A complex system operates continuously. In the process of so doing, it is constantly
changing and becoming more complex (sic). A complex system engineer
continuously characterizes the complex system, emphasizing those aspects that are
associated with the order of the system as that order enters targeted outcome spaces.
Such system and outcome characterizations become the basis for the complex system
engineer’s assignment of responsibility for changes in the complex system’s order.
These assignments become, in turn, the basis for judging – which ultimately assigns
rewards to the appropriate autonomous agents. Final judging is always performed by
the sponsor or other authority responsible for a complex system.

The complex system engineer assists in the judging process, with the initial
formulation of rewards based on targeted outcome spaces, and with their restatements
as desirable outcomes are achieved and rewards are assigned.

a.5 Complex Systems Engineering in Practice
Having presented the motivation and the conceptual basis of CSE in the preceding
sections, what works? How would one start to apply CSE? The example of the AOC
can serve as a template for other analyses, and we welcome and encourage further
description of the edges of TSE and the set of techniques appropriate for CSE and its
application.

While not explicitly known as CSE, most people have practical understanding of CSE
from common experience. Consider how children are raised, or how large
organizations exist and evolve. Even a superficial study of these illustrates how CSE
can work in practice.

Consider how children are raised. Upon their birth, we do not set out a detailed set of
requirements and a schedule for achieving detailed milestones (of course, some
parents try, and end up being rebuffed). Rather, we set out our principles, and help
them learn what we, as parents, value, then apply guidance as they grow and mature.
They come to find their own way in the world. This might be thought of as
engineering through indirection. In that sense, it is a practice of CSE.

30

Engineering Complex Systems

Consider the behavior of organizations. Seldom is it the case that detailed control is
applied top-down through an organization continuously. Leadership tends to exercise
control indirectly by publicizing what their values are, what traits they value in others,
what their goals are for the organization, and how the organization should run
(precepts). They set context and the desired outcome spaces. Periodically
subordinates (autonomous agents) are chosen for promotion (rewards) based on what
they’ve done (outcomes) and how well they fit the valued traits. It is those promoted
subordinates who determine the day-to-day activities in most organizations.

a.5.1 What are some CS-derived strategies which can be employed within the
regimen?

In a real sense, commercial “market places” are complex systems. Commercial
practices might be mined for tactics which lend themselves to CSE. Those with
particular relevance are those which make technical change easier; those which
transmit “selective pressure” easier; those which permit organizations to collaborate;
and those which trim the environment selecting “success” and punishing “failure.”
Table 3 shows a set of strategies harvested from commercial practices which map to
aspects of the principles outlined for running a CS regimen. We explore each in more
detail below.

 Dev

Env

Outcome

spaces

Rewards Dev

precepts

Judging Cont

Char

Safety

Reg

Duality Indpnt

Agents

½-life
Separation

X X X X X

Playgrounds X X X X X X X X X
Collaborative
Environments

X X X X X

Partnerships X
Developers
Networks

X X X X X X

Branding X X X X X
Co-opetition X X
Leveraging
others’
Investments

 X X X X X

Respect
Ricebowls

X X X X

Opportunistic
Approach

X X X X X X

Advertising
and Discovery

X X X X X X X

Value-add
business
models

 X X X X

31

Engineering Complex Systems

Experience for
test

 X X X X X

Table 2 - Commercial Practices Embody CSE Principles

As previously discussed, the essence of CSE is the deliberate modeling of the natural
processes found in evolution and ecologies. Evolution and ecologies require
interaction among entities, and the ability for the entities to change in response to
pressures felt from the environment.

To increase the rate of useful change in the enterprise, entities:
• should be in touch with one another for extended periods of time, and;
• the entities’ “pulse” time should be reduced as much as possible;
• “value” must be assessed correctly, and by appropriate parties,
• assessed value must impose the selective pressure.

Enabling ecological competition and evolution requires that elements can, in practice,
rub against one another and allow respective stresses to be resolved as naturally as
possible – based on real value. This requires the “systems” which compose the (for
example AOC) SoS to build new connections across each other in useful ways.

a.5.1.1 Separation of elements based on anticipated half-life

Architects are very familiar with the concepts of layering systems to separate
concerns. This is a central principle, and is a good approach. Yet, the way today’s
“systems” are tightly-bound into monolithic entities prevents the benefit of this to a
large extent. Even within each system, limiting the “pulse” of evolution to the slowest
changing element causes evolution to move at the slowest pace, rather than at the
natural pace of each of the elements.

Evolution also proceeds at a rate strongly dependent on generation time (spiral time,
pulse time, etc.). To increase the rate of evolution, one must shorten the generation
time. Therefore, in addition to layering based on functionality, one should separate
based on likely rate of change.

a.5.1.2 Playgrounds

How do we come to recognize “goodness,” and how is it introduced? Humans, as
natural pattern recognizers and problem solvers, learn and innovate through
experimentation. We see it everyday among children where they constantly innovate
and learn through interaction. “Games” take on an additional dimension when we
understand they are using play to prepare for life; they are not merely killing time.
“Play” is also a key component of many animals’ development. Again, while
probably “fun” for the participants, it serves a much more important function. The

32

Engineering Complex Systems

author Orson Scott Card [77] reflected on the importance of a playground in his
science fiction classic Ender’s Game.30

Within DoD, “games” are recognized for the powerful tools that they are. They are a
key way leaders and future leaders get to ply their trade. While the word
“playground” can not survive into DoD practice due to its pejorative tone, it serves to
make the point by connecting to a truly common understanding, and it is appropriate
for these discussions.

Where is the “playground” where technology, doctrine, and Tactics, Techniques, and
Procedures (TTPs) can come together? Today, the places where technology, doctrine,
and TTPs come together are large, carefully-scripted events with carefully (centrally)
chosen participants and known answers; they are demonstrations rather than even the
experiments they purport to be. Experiments would be fine, but experiments can
result in a negative finding; and, experiments are done on a playground. These are not
playgrounds. Where playgrounds exist (e.g. C2 Battle Lab), they are somewhat
disconnected from the process that gets new elements into the field where that which
they construct could (potentially) provide a qualitative edge. The Air Force has a
number of labs which investigate technologies and operational needs, but there isn’t a
good connection between them and the formal acquisition process. Where a
connection exists it tends to exist because of the heroic efforts of particular persons.
The reason for the “potential” rather than “actual” edge is that the new thing has
likely been developed assuming all other elements it may impact or influence have
themselves remained static; and it remains to be seen whether the potential is realized.
Further, the organizational process is for the keepers of the “Systems of Record” to
invite an innovator or new-capability provider into the fold. This puts the
identification and valuing of innovation into the hands of the organization least likely
to welcome it since, by definition, innovation’s appearance is disruptive; and the
acquisition community is judged, in part, on the smoothness of delivery.

An important point to remember is that among SoS, no element stands alone. Each
element exists within the context of those elements around it; and it supplies partial
context back to those elements. Thus any change in any element causes a change in
context to all elements which juxtapose the changed element. In this way change
flows to neighbors, and they respond, which causes further change, which flows to
their neighbors, etc. Generally, the effects and pressures brought by any change can’t
be predicted, and it occurs independently of any schedule or any a priori agreements
or expectations, and generally without any insight on how its effects will be felt
[Breen 00]. For the enterprise, “change” is constant, unplanned, and unpredictable in
its complete effect. This is the essence of a Complex System.

Another characteristic of a playground is that “play” tends to be safe. Ideas can be
explored without too much risk. There is a (thankfully) natural reluctance to disturb a

30 Ender’s Game actually is an excellent examination of both the importance of a playground where
innovation may be introduced, and an approach to “complex systems engineering” in general.

33

Engineering Complex Systems

real-world working process (i.e. the operational system); and if one were to let
innovation have free reign within the operational system, the innovation is more
likely than not to disturb or interfere with it. This clearly runs counter to the desire to
introduce innovation. If one is tempted to suggest that the “new, innovative” element
can be developed apart and independently, then introduced into the operational SoS,
review the previous paragraph.

A playground is an example of a stigmergic environment [Van Parunak 03] which
supports innovation. We’re unaware of any explicit description of an innovation
process appropriate to our domain, so we thought we’d supply one which can serve as
a point of departure for additional discussion.

On the playground, innovation seems to follow four distinct phases:
• Discovery
• Game (compete)
• Codify
• Practice

Discovery. By whatever means it occurs, something new is found and its potential
value is envisioned. We CAN NOT predict where the new killer idea will emerge.
Our goal is to capture the idea, not predetermine or restrict the places where the ideas
we accept may gestate. What triggers innovation? This question deserves (and has
had) many books of its own. Kuhn has written on this topic extensively describing the
sociology surrounding scientific paradigm shifts. [Kuhn 96] Innovation and discovery
receive much attention in the scientific world, including labs setup to study it
explicitly31, and the literature dates back to Bacon, Descartes, Leibniz, etc., and
continues today. Our use of the paradigm shift concept is not so grandiose. From time
to time a connection will be made by someone new to the AOC, or by someone
finding a new solution to a problem previously constraining their performance.

Game. The idea/insight is reduced to a form which can be gamed against others
which also occupy the same, or close, space. Within an environment where these
ideas can be judged against each other, they compete. The new idea might be found to
be a qualitative improvement, it might be refined, or it may be rejected. Alternatively,
the old idea might be modified and achieve the benefit of “grinding” against the new
idea. This must be done in a non-threatening way; and, we can’t only celebrate
success32. Like a playground, consequences which differentiate must exist, and some
must fail, but a failure can not devastate the failed; it must just remove it/them from
the game.

31 See, for example, Smithsonian Institute’s Lemelson Center for the study of Invention and Innovation
32 In the commercial world, Venture Capitalists recognize that the one “killer app” often comes after a
number of promised, but failed, attempts. Their payback is judged on their portfolio, not on each member
of the portfolio.

34

Engineering Complex Systems

Codify. During the gaming, the idea/insight is come to be understood better; as is the
area it supposedly improves upon. With this understanding, the insight is reduced to a
repeatable process or technique. This allows others to learn and use the innovation.

Practice. Once an innovation is reduced to practice and codified into a TTP, it can be
taught and practiced.

To the degree there exists a place to play and innovate, the environment will support
evolution at a rate faster than would occur otherwise. If there existed a process for
guiding and managing the evolution, then the enterprise can move forward based on
demonstrated value rather than future promises of value. The development of
capabilities in this manner – through discovery - doesn’t require the level of detail and
a priori planning that a pure engineering approach requires.

a.5.1.3 Collaborative environments

The ability to work with others is not an altruistic need. It is purely self-serving if
done correctly and effectively. And, it’s this self-service that sustains useful
collaborations. It may be the case that others may have need for that which I produce.
Alternatively, I may be able to use that produced by others, allowing me to
concentrate on what I do best (and how I add value) rather than expending resources
on incidental aspects which don’t discriminate my offering from others.

Additionally, to the degree that what I produce must fit into a bigger whole, if I’m
able to easily collaborate with others in that bigger whole, my risk of integration is
reduced.

a.5.1.4 Partnerships

The ability to form and sustain partnerships helps to increase the utility of that which
the partners produce and offer. Development risk is spread, and understanding of true
need is improved. Successful partnerships seek to reduce overlap, and come to rely on
each other to play necessary roles. Partnerships rely on effective collaborations.

a.5.1.5 Developers networks – creating opportunities for others

As discussed above, to speed up evolution, one must shorten generation time. Among
systems, and with regard to systems engineering, this suggests shortening the
feedback cycle, and lowering the amount of code which must be written, by allowing
interaction among developers; thereby allowing reuse of useful code and connecting
better to the run-time context. This is best embodied in the common understanding
found in the software marketplace where developers’ networks are a common ploy to
getting developers to use a specific platform. A short anecdote illustrates the point.

35

Engineering Complex Systems

In 2000 at a meeting of industry with the Air Force acquisition leadership, Paul
Maritz33 was asked his opinion about how it is that Microsoft has achieved such an
apparently unassailable presence on desktops. His answer came immediately. It was
due, he stated, to their commitment to developers34. He said Microsoft’s strategy was
to create opportunities for others; and use the fact of the opportunities created as a
force to ensure that small mom-and-pop developer houses would recommend
Microsoft products to their clients. Microsoft even extended their development
environment (Visual Basic) down into the Microsoft Office suite, about which Maritiz
stated that:

Microsoft really supplied word processing, spreadsheet, and presentation
graphics, etc. functionality, which, while bundled as useful office
applications, were also available as functional primitives with which
developers could provide customized value-added functionality to their
customers.

He also noted that Microsoft felt it was necessary to lower the knowledge barriers to
developing sophisticated applications.

Maritz’ recognition that enabling integration and interoperability required many
developers loyal to the Microsoft platform; and winning their loyalty required
developer tools and environments which were attractive and compelling. The
mechanism for exchange was (and is) Microsoft’s Developers Network (MSDN).

This fits the CSE template in that Microsoft was not building, or attempting to build,
all the functionality themselves, nor were they trying to make a killing on developer
tools per se. Nor were they trying to get a piece of the action for all the functionality
developed using their tools. Instead, they sowed the seeds with their tools, and took
advantage of the multitude of applications built on top of their Windowstm platform.
They rode the “need” identified by all the thousands of developers who were
satisfying their own clients. The developer technical needs also were fed-back to the
developer tools developers at Microsoft.

This is not a unique story; it was learned and implemented by others also. For
example, Sun Microsystems practiced a similar approach as it brought Java along.

a.5.1.6 Branding

Branding is an interesting concept that we may be able to apply to bring pressure to
coalesce. It is best told with an imaginary example. Suppose a potential supplier
shows a General a new capability which is especially attractive. The General
acknowledges the potential value of this new capability and then asks “… have you

33 Paul Maritz was a Group Vice President of the Platforms Strategy and Developer Group at Microsoft at
the time of his retirement in 2000. He held many different positions there, and was one of Bill Gates trusted
advisors.
34 This was in an unguarded personal conversation between author Norman and Maritz at Lt Gen Kenney’s
(then Commander of the USAF Electronic Systems Center) first “Presidents Forum” meeting which
Norman had defined and helped her put on.

36

Engineering Complex Systems

got the ‘Ready for the AOC’ sticker yet?...”. The potential supplier responses “no”
and the General then sighs his disappointment, and states that, had the potential
supplier qualified for the brand, the capability offered could be moved into
consideration for the AOC immediately. Without it, the capability must be subjected
to a long process of evaluation and likely rework to ensure it will be able to integrate;
and then is integrated. The General, as a proponent of a capability not carrying the
‘Ready for the AOC’ brand, would need to advocate for funds to integrate and sustain
the capability for its anticipated lifetime.

Brands can be powerful; and they can influence indirectly.

a.5.1.7 “Co-opetition”35

This term was coined by Adam Brandenburger of the Harvard Business School and
Barry Nalebuff of the Yale School of Management. It described their observation that
connectivity among businesses and people require a new way to thin about the
business environment. Below is an explanation taken from the preface of their book
of the same name:

Co-opetition offers a theory of value. It’s a book about creating value and
capturing value. There’s a fundamental duality here: whereas creating value
is an inherently cooperative process, capturing value is inherently
competitive. To create value, people can’t act in isolation. They have to
recognize their interdependence. To create value, a business needs to align
itself with customers, suppliers, employees, and many others. That’s the way
to develop new markets and expand existing ones.

But along with creating a pie, there’s the issue of dividing it up. This is
competition. Just as businesses compete with one another for market share,
customers and suppliers are also looking out for their slice of the pie.

Cooperation and competition is well studied. Axelrod [84] wrote about the evolution
of cooperation, and showed how it can provide joint benefits. Poundstone [92] also
describes mutually-beneficial approaches among autonomous agents.

Co-opetition allows independent parties to cooperate on those elements and aspects
which transcend their individual ability to control, while preserving their ability to
compete on demonstrated value in their space.

For C2, various persons from traditional DoD contractors, commercial entities, and
DoD officials have envisioned a marketplace where firms may specialize and come to
dominate a niche. They maintain their dominance in their niche due to their
continuing delivery of valuable and valued goods and services, rather than through
contractual dictates.

35 Co-opetition http://mayet.som.yale.edu/coopetition/index2.html (Adam Brandenburger of the Harvard
Business School and Barry Nalebuff of the Yale School of Management)

37

Engineering Complex Systems

As currently structured, this is difficult to achieve as there doesn’t exist an
environment for co-opetition. Consortia are often used as a vehicle for broad
cooperation, and these options should be examined for achieving a co-opetive
environment.

a.5.1.8 Leveraging other investments

Partnerships, collaborations, and other instances of cooperation all attempt to use the
investments others have made for one’s own benefit. An example (besides the
obvious ones of using Commercial Off-the-Shelf technologies) is found in the Family
of Interoperable Operational Pictures (FIOP) program. The FIOP program was the
first to fund TBMCS’s desire to build Information Services – which represented a
new way for them to build and deploy functionality. FIOP used a relatively small
amount of money to leverage the larger development budget TBMCS had.
Essentially, FIOP paid for good behavior on TBMCS’s part. Both benefited. And,
others (who invested nothing) were able to use the Information Services built by
TBMCS.

a.5.1.9 Technical approaches which respect “ricebowls”

There is no doubt that people come to place great value in that which they are
personally involved in and responsible for. These apparently parochial interests are
often described as “rice bowls.” A great source of resistance to cooperation among
independent agents is the thought or impression that others will impose themselves on
the independent agents in ways and manners which they view are inappropriate. After
all, each organization has conducted itself according to its needs, and has made
decisions according to its assessment of how best to meet the needs. Additionally,
there is often fear that one’s activity will be subsumed under another’s, and one’s
contributions will be devalued and possibly ignored.

It’s clear that cooperation has great value; and those aspects which interfere with
cooperation cause “innovation drag.” Technical approaches which tend to respect
“ricebowls” remove some of the hesitations for forming cooperative partnerships.
Examples of technical approaches which respect ricebowls include current
developments in Web Services. This technology exposes functionality with the
minimum requirements for homogeneity. It presents a “virtual homogeneity” within a
heterogeneous world. In this way it offers the potentiality for independent agents to
offer their services to others; and thereby permits new associations and relations to be
exploited – supporting innovation. It also supports the rise of technical structures and
approaches which permit the agility needed. Assembly moves out towards the end-
users further blurring the difference between development and runtime.

a.5.1.10 Opportunistic approach

An aspect of the usual way in which we do business is to restrict ourselves to a
complete capability before fielding. As mentioned earlier this restricts fielding to

38

Engineering Complex Systems

apparent “complete” sets at a fairly slow rate. If one treated logical sets of users as a
unit, and involved them in managing the identification and introduction of
functionality and change, then one might be able to be more responsive.

a.5.1.11 Advertising and Discovery

As currently structured, finding useful capabilities and functionality offered by third-
parties is not trivial. Potentially useful functionality is not advertised, and there is no
well-known place to go looking. Both for the development and the operational
environments, achieving transparency for effective advertising and discovery is
critical.

A key enabler for evolving and integrating the enterprise is to create opportunities for
small world phenomena [Barabasi 02; Watts 03] to emerge. The power of loose
connections is clear and convincing. New relations possible are likely discovered in
areas not previously explored. This will emerge with in both shared information
spaces and with shared behavior. Advertising and discovery technologies are key to
enable these results.

a.5.1.12 Permitting “value-add” business models

A continuing complaint from users in the field is that they don’t get “a vote” in what
is built for them. This is primarily due to the business models employed in acquisition
today. As mentioned earlier, the dominant business model used is
employer/contractor. In this model, the employer produces a requirements document,
and then various potential contractors propose how they will produce the functionality
desired. The market place is contract engineering; the selling and buying of
engineering hours (perhaps laced with certain processes which can be argued reduce
risk). Those who have successful proposals are those who can tell the story of how
they are going to produce a requirements-compliant product for the least risk. It is a
promise well told, not a demonstration of specific achievement. Success is measured
based on compliance with the requirements, and the maintenance of the cost and
schedule negotiated. Success is not directly related to the usefulness of that which is
produces. The Government’s money is spent for the engineering hours used for
development. This is the basis for the complaints.

Assume a by-use payment model. Assume further that there is no a priori assumption
of the undesirability of redundant functionality36. Under such a model money flows to
those who produce demonstrated utility to the user. The market now shifts to
understanding and satisfying real needs rather than the sale of engineering hours. The
acquisition organization’s role, under this model, shifts to verifying compliance with
a set of rules under which functionality is built. Under this model the Government’s
money pays for demonstrated value.

36 Ashby’s Law of Requisite Variety [Ashby 56] can be interpreted as explicitly supporting variety as a
technique for attempting to supply sufficient potentiality to allow adequate response to selective pressures.

39

Engineering Complex Systems

There are additional aspects to such a model: the emphasis shifts from cost to price.
Suppliers (as opposed to contractors) attempt to manage their margins; and they may
apply their best and brightest (assuming they can control their intellectual property)
and be innovative.

a.5.1.13 Analysis, simulation and collecting experiences replace full-coverage
testing

How does one test a complex adaptable system? Rather than relying on traditional
approaches (which attempt to come as close to full-coverage testing as possible), we
might collect and catalog things when they go wrong in the field; analyzing these for
insight into subtle transitive effects. We also need to employ better testing approaches
to develop some sense of belief about the systems we field before fielding. Phadke’s37
Robust Testing™ approach may provide tools for picking better and smaller test
cases.

Additionally, the infrastructure should be tested to failure so we know the boundary.
Then it should be monitored in the field to shed light on if and when we approach
these limits. This permits time to intervene prior to, not after, problems emerge.

a.6 Summary & Conclusions
The challenge is moving from “things” to “integrated collections of things” which are
governed and managed independently. Although we presented the problem as an issue
for AOCs, it is not confined to the AF, or to joint forces, or to DoD, or the US
Government, or to the US. The observation that one must use methods which respect
the characteristics of the enterprise; and which don’t require complete control, or
complete knowledge in one place.

Our summary would be incomplete if we didn’t consider the insights offered by other
professions who have faced similar challenges. Architecture has. Christopher
Alexander (of architectural fame) talks about the illusion of control; and he observes
that attempts to assert control generally has the opposite affect from what is desired;
things tend to get worse, more out of control. He notes that the tendency “…to gain
‘total design’ control of the environment…makes things still worse…”[Alexander 79,
pg 238] He points to the need to construct towns and cities using “patterns” which
preserved the correct “nature,” and became “alive” in their own right. He calls this the
“quality without a name.” He’s talking about complexity and adaptability.

37 See Phadke Associates’ Robust Testing™ at www.phadkeassociates.com/ser/rt.htm

40

Engineering Complex Systems

Traditional Systems Engineering has always attempted to understand and deal with
complexity; but the nature of that which was being engineered tended to be stand-
alone with well-defined edges. Simple rules could tell what was “in the system” or
“out of the system;” and the engineering activities started with, or required that, the
requirements were well known, understood, and stable. As systems engineering came
to deal with collections and aggregations of elements which were to be integrated into
definite, well-understood (and understandable) forms-and-function which were to be
stable over time. As we scale this approach up to the enterprise and find ourselves
dealing with complex systems, we fall directly into the trap outlined by Alexander:
things become worse.

Our traditional systems engineering has been concerned with finding those well-
bounded subordinate elements, then (in essence) isolating them so they may be
“engineered.” From this point one proceeds as if the element is isolated and unmoved
by other juxtaposed elements. It’s this desire to “divide and conquer” which
characterizes our tradition approaches. Is this wrong? No! But it’s not always correct;
nor is it complete.

Consider the richness now possible due to the potential interconnectivity now
available, and the interdependence among elements implied. The forms an ecosystem
where each element responds to its context through some accommodation -
potentially evolving to respond (those elements which are “alive” respond and
change). Consider further that each element’s context is set by the elements which
juxtapose it in almost countless ways (forming a hyperspace of pressure). This is
certainly an intricate, hard to understand-and-appreciate situation; and in that way, it
may be thought of (in the usual vernacular) as complex. Using our traditional divide-
and-conquer systems engineering (TSE) we would likely measure the external world,
then make an assumption of constancy with respect to this external surround.
Engineering would proceed on the element from this point of view.

But, the realization that the element under study also forms part of the context for
every element which juxtaposes it starts to hint at the limit of the simplifying
assumption made to perform the TSE: It imposes a pressure (an influence) on its
surround in addition to feeling the pressure of the surround.

Note the implications of the transitive nature of these influences. This is what is
referred to as complexity as opposed to intricacy or difficult to understand. One could
imagine waves and ripples of change flowing through this system of system. Likely,
patterns will emerge when viewed from a higher level of abstraction. This is likely
where we find ourselves with respect to C2 in a joint and coalition world, and where
independent agents can introduce change according to their own agenda and timing.
The big questions: can such an aggregation be engineered at all? Can it even be
understood? Will useful patterns present themselves? Should we even bother? We can
say that we’ve failed many times in the past because we’ve made the simplifying
assumptions I mentioned earlier.

41

Engineering Complex Systems

One of the principles that pops out right away from taking this complexity point of
view is the need to have tight control over all (or as many) characteristics of a system
to be engineered as possible if one wants to apply TSE. Especially the ability to direct
resources to problem areas as they arise. Is this insight new? No; but maybe, where it
is impossible to meet that control and authority boundary conditions, there might be
other approaches which can be brought to bear. And we believe the codifying of CSE
is a step in the right direction.

Understanding complexity, and engineering complex systems is the next step.
Systems Engineering is taking the next step. It is maturing past the point where a one-
size-fits-all process is what’s thought of as “correct.” It is finding a new language
with which to understand that which it attempts to engineer. This is maturity, and this
is its future.

42

Engineering Complex Systems

References
Albert, D., Garstka, J., Stein, F.; 1999; Network Centric Warfare; CCRP
Alberts, D., Garstka, J., Hayes, R., Signori, D.; 2001; Understanding Information Age

Warfare.; CCRP
Alberts, David S., Hayes, Richard E.; 2003; Power to the Edge;. CCRP
Alexander, Christopher; 1979; The Timeless Way of Building; Oxford University Press
Ashby, W.R.; 1956; Introduction to Cybernetics; Chapman & Hall
Axelrod, R.; 1984; The Evolution of Cooperation; Basic Books.
Barabasi, L-S.; 2002; Linked: the New Science of Networks; Perseus.
Bar-Yam, Y.; 1997; Dynamics of Complex Systems; Perseus;.
Bar-Yam, Y., 2003; When Systems Engineering Fails---Toward Complex Systems

Engineering; 2003 IEEE International Conference on Systems, Man & Cybernetics, October
5–8 Washington, D.C., USA

Bonabeau, E.;2003; Swarming Intelligence; Swarming Network Enabled C4ISR Conference
13-14 January; McLean, VA

Breen, P., Case, R., Kazura, A., Norman, D.; 2000; DSE – A Decision Support Enviroment;
2000 Command and Control Research and Technology Symposium, Naval Postgraduate
School, Monterey, CA, June 26-28, 2000

Card, O. 1977. Ender’s Game; Tor.
Gamma, E., R. Helm R. Johnson, J, Vlissides; 1994; Design Patterns; Addison-Wesley
Heylighen F., Joslyn C. & Turchin V. (eds.); 1995; The Quantum of Evolution. Toward a

theory of metasystem transitions, ; Gordon and Breach Science Publishers, New York
Heylighen, F., C. Joslyn; 2001; “Entropy and Information,” Principia Cybernetica Web, Sep 3,;

pespmc1.vub.ac.be/entrinfo.html
Holland, J.H.; 1992; Adaptation in Natural and Artificial Systems; MIT Press
Holland, J.H.; 1995; Hidden Order: How Adaptation Builds Complexity.; Reading: Addison-

Wesley.
INCOSE; 2001; Systems Engineering Handbook, v2;
Kauffman S.A; 1993; The Origins of Order: Self-Organization and Selection in Evolution,

Oxford University Press, New York,
Krygiel, Annette J.;1999; Behind the Wizard’s Curtain: An Integration Environment for a

System of Systems; CCRP;
Kuhn, T.S.; 1996; Structure of Scientific Revolutions, , University of Chicago Press,
Moffat, J.; 2003; Complexity Theory and Network Centric Warfare;. CCRP
Poundstone, w.; 1992; Prisoner’s Dilemma; Anchor Books.
Van Dyke P.; 1997; “Go to the Ant”: Engineering Principles from Natural Multi-Agent

Systems; Annals of Operations Research 75, pp. 69-101;.
Van Parunak, A; 2003.; Making Swarming Happen; Swarming Network Enabled C4ISR

Conference 13-14 January, McLean, VA
Watts, D.; 2003; Six Degrees: The Science of a Connected Age; Norton.

Douglas O. Norman is the Chief Technologist for USAF Battle Management Capabilities (HQ ESC/AC),
and is MITRE Section Leader for Battle Management and C2. Previously, he was the Chief Engineer of the
Theater Battle Management Core Systems (TBMCS). He also holds the position of Senior Technical
Advisor to the AOC Weapon System Acquisition Group Commander.

Michael L. Kuras is a Principal Systems Engineer in MITRE’s USAF Systems Engineering Division with
significant interest and experience discovering, defining and applying Complex Systems Engineering
principles.

43

Engineering Complex Systems

Appendices

A.1 Phase-spaces for systems

A physical ensemble of N parts (an ensemble is something more general than a
system) can be characterized by first identifying in three dimensional space where
each part is (x, y, z), and then what the momentum of that part is (px, py, pz) at that
point. A 6N dimensional hyper-cube can be constructed and a point (called the phase
point) identified in this hyper-cube (which is called the phase-space). Such a point
specifies the position and momentum of every part in the ensemble which is also
called the state of the ensemble. The notion of momentum in this original classical
model can be generalized to be the “internal” state of the part, and the location can
also be made more general. The resulting hyper-cube can then have a substantially
higher dimensionality than 6N. Regardless of dimensionality, in the classical
approach, the state of the ensemble is represented by the phase point in phase-space
which is understood to determine (or to be determined by) the states of the individual
parts. In this approach, the state of the ensemble is frequently equated to the order of
the ensemble. This is not the definition of order used here.

Another approach is to identify the Nr relationships present in a system, and to use
these to construct another “hyper-cube,” each dimension corresponding to a
relationship in the system. If desired, the individual relationships (functions) can be
resolved into partial functions over the fields of the attributes used to characterize the
parts of the system (position, color, shape, momentum, etc.). In general, the
dimensionality of the relational “hyper-cube” for a system is denoted as δ. Since a
metric for these relational dimensions is not necessary, the image of a “hyper-cube” is
merely suggestive.

The phase-point (or phase trajectory) in the δ-dimensional hyper-cube corresponds to
the order of the system. It specifies (or is specified by) which relationships actually
apply to the system and the instant and coincident attribute values of the various parts
of the system that are bound together by the relationships.

Not every relationship that might apply to the N parts of a system need be present in a
given system (just as not every part need be included in any given system). The
(relational) “super” phase-space for a system (as a hyper-cube) would include all such
real and possible relationships as the dimensions of the hyper-cube.

a.2 Multiscale analysis

The single most powerful tool in traditional system engineering is the process of
decomposition – and its complement of integration.38 Both of these rely on the

38 This is inclusive of abstraction, layering, etc. 38 Modular decomposition (at one level of scale) is possible
if all of the relationships (including interactions) between the components in a set A with the components in
the complement set Ā can be completely restated as the relationships between a single component element
a* and the components in Ā.

44

Engineering Complex Systems

assumptions of “linearity” in the “uniscale” analysis or synthesis of a system. To
understand the limits of traditional system engineering it is necessary to recognize the
circumstances in which either or both of these assumptions are no longer valid.39

“Linearity” asserts that relationships are proportional, can be superimposed, and are
reversible. Such relationships can be either static or dynamic.

“Scale” is an attribute of the human visualization of a thing. A simple model of
visualization is <FoV, Pd> where FoV is field of view and Pd is “pixel” density. A
pixel is a point in a visualization. It is a cellular automaton; it has state. A pixel has no
extent (in the FoV) or internal structure (its cellular program is unknown). A pattern
in the pixels is what is associated with “understanding.” Scale is a point in <FoV, Pd>.
It is important not to confuse a scale point with a pixel.40

• Scale is an attribute of a
specific human visualization of
a thing.

• A simple model of scale in
visualization is:
– A visualization is <FoV, Pd>

where
• FoV is field of view.
• Pd is “pixel” density.

– A “pixel” is a point in a
visualization. It is a cellular
automaton; it has state. It has
no extent (in FoV) or internal
structure (its cellular program
is invisible).

• Patterns in the pixels is what
we associate with
“understanding.”

– Scale is a point in <FoV, Pd>.
• Not to be confused with a

pixel!

Underlying reality

Human visualization
of reality

Fo
V

Pd

inaccessible to
human visualization

Human visualization
“sweet spot”

A point here…

characterizes this
entire visualization

[figure 4]
As suggested in the graphic, reality is distinct from human visualizations of it.
“Breadth” and “depth” are terms that can be used to reference the attributes of the
underlying reality that are made to correspond to FoV and pixel density in a
visualization of that reality.

39 The theoretical limits imposed by these assumptions may themselves be beyond reach for practical
reasons such as constraints on the time available, or the resources available, for analysis or synthesis.
40 A slightly richer model of visualization is <FoV, Pd, Pv> where Pv is the state-space of the pixel. The
purpose here is to expose the notion of multiscale analysis and the simpler model will do.

45

Engineering Complex Systems

A portion of visualization space is inaccessible due to the finite capacity of the human
brain. The underlying reality need not be. Rescaling is a way to compensate for this
human visualization limitation when attempting to understand all of underlying
reality. Re-scaling (e.g., for decomposition or for integration) is not simply about
moving from point to point in the visualization space <FoV, Pd>. Rescaling is about
changing the association between <FoV, Pd> and breadth and depth in order to access
initially inaccessible aspects of the underlying reality. The following graphic suggests
one simple example of how this works.

Re-scaling: a simple example

• Trading “depth” for “breadth.”
– Depth and breadth are attributes of the underlying reality, not the

visualization.
• Re-scaling here is the expansion of FoV to take in more

breadth by reducing the depth (detail in the underlying
reality) associated with one pixel.

[figure 5]

In this example, FoV is expanded in order to take in more of the breadth of the
underlying reality while pixel density is reduced (thereby accessing less of the depth
in the underlying reality).41

In this example, rescaling can be understood as combining many “small” pixels into
“larger” ones over and over again simultaneously over the entire FoV. This
understanding, however, exposes the limitations and potential pitfalls of rescaling.

41 As long as the association of either FoV or Pd to breadth and depth remain fixed (even while FoV or Pd
may be changed), the analysis a visualization supports remains uniscale.

46

Engineering Complex Systems

Re-scaling: a simple example (cont.)

• Why is this important?
• Understanding is linked to recognizing patterns

in visualizations.
• What to do when there is MORE than one pattern to

be constructed during re-scaling?

3

3

3

3

3

3 3

3 3 3

3

2

2

22

22 2

21

0

00

0

0

a

• What should the average be?
• Arithmetic? (2) Modal? (3) Etc.

• Something else?

[figure 6]

Even assuming that the sets of “smaller” pixels are all disjoint and cover contiguous
underlying reality, and that all “smaller” pixels are combined into “larger” ones in the
same way,42 there can still be more than one way to perform such combinations. If
more than one such way is valid (corresponding in some way to the underlying reality
by preserving access to existing patterns), a dilemma exists: which ONE way to
perform the combining? This is the dilemma of “uniscale” analysis underpinning
traditional system engineering. There is, in general, more than one valid way to do the
rescaling, but only one way to actually record it. The way out of this dilemma is to
acknowledge the validity of “multiscale” analysis.

Multiscale analysis asserts that concurrent and valid rescalings are sometimes
necessary in order to preserve or expose all of the patterns necessary for a full
understanding of any underlying reality, but that human visualization imposes a limit
of one. As a result, the same underlying reality must be visualized (differently)
multiple times without there being any way to directly visualize a combination of
such visualizations.

Humans have the ability “to walk and to chew gum” at the same time; the human
intellect can concurrently maintain to some extent multiple visualizations of reality.

42 There is, of course, no reason to believe that such assumptions are generally valid.

47

Engineering Complex Systems

This ability is extremely limited; moreover, it is poorly understood at present. It is
beyond the scope here to explore when multiscale analysis becomes necessary, or
how to concurrently apply multiple visualizations to the same underlying reality.
What is crucial to understand is that there is NO WAY to “average” or otherwise
algorithmically combine multiple human visualizations of reality in a linear theoretic
fashion without losing access to some portion of the underlying reality.

48

