

Integrating the Target Workflow System (TWS) with the Command
and Control Personal Computer (C2PC) System: Proof of Concept

28 August 2003

Edward C. Parks, 21936

Sponsor: PEO(W) Contract No.: DAAB07-98-C-C201
Dept. No.: W407 Project No.: V17A

 This document was prepared for authorized distribution only. It

has not been approved for public release.
©1999 The MITRE Corporation

Washington C3 Center
McLean, Virginia

2

Integrating the Target Workflow System (TWS) with the Command and Control
Personal Computer (C2PC) System: Proof of Concept

ABSTRACT:

Under the sponsorship of OUSD AT&L and various Service1 program managers, Joint Time
Sensitive Target (TST) Simulation Experiments (SIMEXs) over the last two years have provided insight
into how various systems and applications contribute to the TST development process. A fundamental
problem with the targeting process is the manual entry of targeting information as the data is passed
between systems used to prosecute TSTs. In many cases, the target identification/numbering formats are
inconsistent. Developing multiple independent targets with a variety of sensors can exceed Command and
Control (C2) user’s capabilities. The Targeting Workflow System (TWS) architecture was developed to
provide a framework for various targeting systems to create, update, and share target data with one another
without human data entry and with a common numbering scheme.

 As part of the Family of Interoperable Operational Pictures (FIOP) Management Plan2, the FY02 –
FY03 priorities included the development of a tactical Defense Information Infrastructure Common
Operating Environment (DII COE) workstation. The FIOP System Engineering Working Group (SEWG)
identified one of its initial objectives of creating a tactical workstation software baseline from the COE
Common Operational Picture (COP). However, the software was shown to be unworkable for use in a
wide area network environment. An alternate approach was to make the Marines’ C2 Personal Computer
(C2PC) software a COE mission application, establish a Joint Configuration Control Board for the
software, and assign the Marines as Executive Agent over the software baseline and assign DISA
responsibility for distributing the software to the Joint community.3

The goal of this “Proof of Concept” is to integrate TWS functionality with C2PC to provide a
more robust methodology for developing, monitoring, and executing TSTs under a single C2 application
leveraging the messaging and map capabilities.

1 ONR31, NAVAIR PMA281 and SPAWAR PMW157 sponsor technical development and integration in
the Strike Cell Laboratory in MITRE McLean, VA. ESC and AFC2ISRC sponsor similar activities in the
Software Interoperability Facility for Time Critical Targeting at Hanscom AFB.
2 Family of Interoperable Operational Pictures (FIOP) Management Plan FY 2002, 17 December 2001.
3 White Paper Describing FIOP Approach to Systems Engineering under Task 2, Jesse Pirocchi, 26
February 2003

I. Description of TWS

 Multiple paradigms have been developed to depict Time Sensitive Targeting (TST). A targeteer
collects one piece of data about a target from one system, a second piece from another one, etc. Then the
targeteer must “fit together” all the various pieces into a comprehensive picture of a specific target. Only
then can a decision be made to strike the target or not. The key steps of collecting, analyzing, and making
recommendations on a target are required for the target development process. Without accurate and timely
acquisition, organization, and usage of relevant target data, a target strike may come too late or at an
incorrect location. This process (Figure 1) is exasperated by the fact that the various systems involved in
developing a time sensitive target do not communicate in a common format. As human intervention is
required to pass information from one system to the next, errors can degrade or impede the target
development process.

Time Sensitive Targeting -
Target Development Process

Sensor Collection/Tasking
and Control

Distributed Time-Critical
Target Development

Target Data
Dissemination

Mission Execution
and TOT

Target Stationary
or Transiting to OPAREA

and High Priority
T+0

Target Moving and/or
Lower Priority)

T+N

Latency Period (hrs–
minutes)

SIPRNETSIPRNET

Mobile Command
Center

Mission Planning

Figure 1. Target Development Timeline for a TST

 The TWS is both a server and clients designed to support workflow management, single target
referencing ID, and automated data collection. The server will manage and distribute track/object/target
data, as well as ingest Moving Target Indicator (MTI) data via a socket interface to Joint Service Work
Station (JSWS) Sybase databases at each site. Using Structured Query Language (SQL) and messaging via
TCP/IP sockets, TWS clients allow users to create new targets or objects of interest, modify targets,
designate completion of various tasks for particular targets, and identify location of imagery or other
relevant information. Clients provide updated information to the server, which then distributes the updates
via sockets to all connected clients. TWS clients have complete visibility and access to all targets created
with TWS, though ownership of targets can be transferred at will. TWS is designed to provide at glance
information on all targets. Targets may be visually filtered in a variety of ways. The TWS client is a Java
applet accessible via a browser with the appropriate Java plug-in. Upon executing the applet, users logon
and all data managed by the TWS server is broadcast to clients as it becomes available. The TWS
architecture is depicted in Figure 2.

4

TWS CLIENT

MAP TIME BARTRACK

Communication Abstraction Layer (CAL)

RTI MYSQLJMS WEBDAV IRC

KF API ZZ APIKF API TB API TBD

MySQL
DB

WebDav DB
(filesystem)

Apache
WebDAV Module

MySQL Server

MTIX Bridge
IMTDS Bridge
JSWS Bridge
Strike Net Bridge
SMTP (ADOCS)
Low Tech Client

Communication Abstraction Layer (CAL)

RTI MYSQLJMS WEBDAV IRC

KF API ZZ APIKF API TB API TBD

TWS SERVER

Figure 2: Target Workflow System Architecture

 The TWS Server communicates with TWS clients and system interfaces via database SQL,
WebDAV4 or HTTP get/post methods. User event messages and mover/target update information messages
will be shared software applications connected to this network. Current port for the database is 3306 and 80
for HTTP. Typical interfaces are depicted in Figure 3 and the message format is listed in Table 1.

TWS
Server

Database or
HTTP Server

TWS
Clients

Track
Interfaces

(JSWS, MTIX,
MATREX, ORINCON)

Communication
Interfaces

(IMTDS, POP3)

System
Interfaces
(DTMS, ADOCS,

AFATDS, Strikenet/M2M)

Figure 3. TWS Data Flow

4 WebDAV is a standard module in Apache 2.x software. Strike Cell implementation for file locking and
concurrency access is to append a short character string to each message to indicate message/file
termination so that clients or the server will not try to process incomplete messages/files that are still being
written by Apache.

5

Data Format/Structure:

Table 1. Target Update Message

Object Attribute DataType Description
TWS Message rtiid long Unique ID given by RTI

twsid String Unique ID given by TWS, STN
owner Enumeration TST Cell Site currently owning this target.
force Enumeration Force Code of the target
type Enumeration Unit type for the target
latitude double current "perceived" location of the target
longitude double current "perceived" location of the target
altitude double current "perceived" location of the target
heading double current "perceived" direction of the target
speed double current "perceived" speed of travel of the target
description String "Perceived" descriptive note on the target.
status Enumeration current phase in the target development process
sensor Enumeration current sensor system sending data on the target
trackid String local system id for a target
unitcount Integer "Perceived" number of vehicles assoc. with a target
damage Enumeration "Perceived" operational status of the target
alert Enumeration Alert level of a target
istarget Boolean Denotes a target or non-target
istst Boolean Denotes a TST target or non-TST target
tststart long Time when a target became a TST
tstend long "Window of Opportunity" on a TST end time.
mensurationreport String 9-line message results from mensuration
viewable Boolean Denotes COP visibility of the target
mysite Enumeration TST Cell Site currently working this target.
mysystem Enumeration TST Cell System working this target
timestamp long Time of a data update

System Translators:

The system translators accomplish 2 tasks. First, they format a system’s current output into the
data fields that can be translated in the Target Data Structure. Second, they convert the reformatted data and
provide the send/receive functions for sharing with other systems over the communication layer.

Communication Layer:

 The communication layer is the transport mechanism by which the various systems are tied
together and share data with one another. The selection of the communication method will be largely based
on a number of factors including: situation (LAN systems, WAN systems, wireless, other), available
hardware, number of systems to integrate, estimated target set size (few dozen, thousands, etc…).

Data Storage System:

 An online storage system is necessary to maintain near-real-time status on all targets being worked
by the systems and service requests for information on those targets. Since each system only provides one
part of the puzzle, the storage system, possessing the overall view for each target, can share the combined
view of all the data to each client system. Additionally, as clients connect/disconnect for any reason, they
are able to rejoin and not miss any data.

6

II. Description of C2PC5

The C2PC system is comprised of three components: a Global Command and Control System
(GCCS) Unified Build (UB) host machine, the C2PC Client, and the C2PC Gateway. The UB host
machine is the central source that feeds information to the C2PC Gateway and C2PC Client. C2PC requires
a UB host in order to receive automatic updates to the information that it tracks. The UB host also provides
the overlays and operator notes (OPNOTES) that may be imported into C2PC. It receives any quick
reports, OPNOTES, or overlays sent out by C2PC, and it processes them appropriately. This represents the
“Tactical Common Operational Picture”.

The C2PC Gateway component processes track information received from and sent to the UB
host. The Gateway must be up and running for the C2PC Client to receive track updates. The workings of
the Gateway are transparent to the user. The C2PC Client component displays the map window and C2PC
menu structure. Each C2PC workstation must contain a Client to run C2PC. The following figure shows
the use of C2PC in the SIMEX environment that includes the implementation of a TWS client as a C2PC
overlay. TWS would use Atlas for its Graphical User Interface (GUI) to display track icons and map data,
the Tactical Management System (TMS) Application Programming Interface (API) to acquire track data,
and continue to use the TWS Server to develop, maintain, and process TSTs.

EMT Services

TMS Services

JCSP Services

JMTK Services

DII COE (UNIX) C2PC EMT/SOF/TWS Services

Remote LAN

Client to
GW # 2

GW # 2
& Client

Client to
GW # 2

Remote Client
to GW # 1

GW # 1
& Client

Client to
GW # 1

Client to
GW # 1

SOF

EMT

LAN

TWS

SOF C2PC
Playback

SOF

EMT

TWS

SIPRNET

TWS Services

Figure 4. C2PC Data Flow

C2PC sets up a gateway connection for track and general military intelligence (TDMS and MIDB)

for client workstations. Add-on applications can also provide more detailed MIDB data and query
capabilities. The Intel Office client adds Land Track Query, Intel Query Tool, and Intel Filters to the
TrackPlot pulldown. The Special Operations Forces (SOF) client adds SOF sensor reports through the
Tools/Sensor pulldown menu.

5 Command & Control PC (C2PC) User’s Guide, Version 5.9.0.3, 13 December 2002

7

The C2PC window displays whenever you start the program. The C2PC window gives you access
to the C2PC tools and features.

Figure 5. C2PC Window

The C2PC window consists of:
• Title bar
• Menu bar
• Toolbars
• Map window
• Tracks, Overlays, Routes, Units, or Formations List
• Status bar

C2PC has been designed to support application overlays. This allows developers to add
functionality to C2PC by using the API Software Development Kits (SDKs) provided by the C2PC
Program Office. Two of these SDKs are available to registered C2PC developers: C2PC TMS for database
access; and C2PC Atlas for chart and mapping displays. TMS provides database distribution and
management of tactical track data. Atlas services provide a standard interface through which applications
can communicate with DII COE services for mapping, cartographic, geodetic, and imagery visualization.

III. Phase I Integration of TWS/C2PC – TMS

One of the primary goals of integrating TWS with C2PC is to minimize the amount of source code
changes required to merge these two applications. Since TWS was written in Java, the Java Native
Interface (JNI)6 was used to access the TMS database and track data management features.7 JNI allows
Java code to operate with applications and libraries written in other languages, such as C, C++, and
assembly.

6 The Java Tutorial, Sun Microsystems, Inc., 2002.
7 C2PC Tactical Management System (TMS) Programmer’s Guide and Reference Document, Version 3.0,
December 13, 2002 was used for all references to the TMS API.

8

 The C2PC TMS database is made up of approximately 50 tables that support ten types of tracks8
and their associated reports with 159 track and 74 report fields. The API provides interfaces that allow
program access to the track data as described in Table 2.

Table 2. TMS Interfaces

Interface Method Description
IAddTrack
 GetAttribute() Retrieve field based on track type and

enumerated track field name
 SetAttribute() Set field based on track type and enumerated

track field name
 GetReportAttribute() Retrieve field based on track type and

enumerated report field name
 SetReportAttribute() Set field based on track type and enumerated

report field name
 Clear() Reset all the track attributes to default values
 Update() Sends field update to the database
IEditTrack
 GetAttribute() Retrieve field based on track type and

enumerated track field name
 SetAttribute() Set field based on track type and enumerated

track field name
 GetReportAttribute() Retrieve field based on track type and

enumerated report field name
 Update() Sends field update to the database
 GetMultipleAttributes() Retrieve fields based on track type and array

of enumerated track field names
 GetMultipleReportAttributes() Retrieve fields based on track type and array

of enumerated report field names
IGetTrackInfo
 GetAttribute() Retrieve field based on track type and

enumerated track field name
 GetReportAttribute() Retrieve field based on track type and

enumerated report field name
 GetMultipleAttributes() Retrieve fields based on track type and array

of enumerated track field names
 GetMultipleReportAttributes() Retrieve fields based on track type and array

of enumerated report field names
IAddReport
 GetReportAttribute() Retrieve field based on track type and

enumerated report field name
 SetReportAttribute() Set field based on track type and enumerated

report field name
 Update() Sends field update to the database
 Clear() Reset all the report attributes to default

values
 GetMultipleReportAttributes() Retrieve fields based on track type and array

of enumerated report field names
IEnumerateTracks
 Reset() Reset counter to beginning of track list

8 Even though TMS supports ten types of tracks, only five of these can be updated by C2PC: (1) Unit; (2)
Platform; (3) Acoustic; (4) Emitter; and (5) COMINT.

9

 GetCount() Get count of tracks based on track type
 Refresh() Build new track list
 Next() Get next number of tracks on list
 Skip() Skip number of tracks on list
 All() Get all tracks – not limited to track type
General Methods
 DeleteTrack() Deletes track and associated reports from the

database
 GetTrackCount() Returns track count based on track type
 GetUID() Returns Unique ID (UID) based on

Command and Received Track Number
(RTN)

TMS API Server

 The TMS API SDK was installed on a Dell notebook running Windows 2000. Two applications
were provided with the SDK to assist programming personnel with implementing API methods in their
software. The supplied applications were developed in line with the coding examples listed in the
Programming Guide. The test application “APIDriver9” was compiled and used as the model for Java
development. The GUIs for both applications are displayed in Figure 6.

Figure 6. APIDriver Windows

The left window is the GUI from the Java application. The right window is the original C++
APIDriver display. A support program, R2J, which uses the C/C++ “.rc” file, was used to build the Java
GUI10. The supporting “void” Java code was developed to process the user responses and call the

9 Software provided with the TMS SDK was incomplete. Two source files were missing for the APIDriver
application. The second application, TMSNotifierTestClient, had to be built with support from C2PC
programming personnel. Discussions will be limited to APIDriver, since it is a more complete example for
developing Java code using the TMS API SDK
10 R2J was developed to use Java Version 1.2. The current version of Java (1.4.x) uses a slightly different
“LookandFeel” manager. The original line
“UIManager.setLookAndFeel("com.sun.javax.swing.plaf.windows.WindowsLookAndFeel")” was replaced
with “UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName())”.

10

appropriate JNI function. Only four functions were developed in the Java version of APIDriver: (1) Add
Track; (2) Count Track Type; (3) Count All Tracks: and, (4) Does Track Exist.

Before any methods can be used, the TMS API Server object must be instantiated using

CoCreateInstance. The following code example is from the Programming Guide that accomplishes this.

#import <TmsApiServer.tlb>

ITmsAPIEx* m_spModifier; // pointer to the TMS API Server Object

// CoCreate TrackModification object
HRESULT hRes = CoCreateInstance(CLSID_TmsModifier, NULL, CLSCTX_LOCAL_SERVER,
IID_ITmsAPIEx, (void**)(&m_spModifier));

The TMS APIDriver “Add Track” creates a track based on the track type selected with the radio

button in the upper left panel. A track maintains two “keys”. The first key is the Unique ID (UID), which
is assigned at the time of creation. This key can be changed by a GCCS Server, with an update back to the
originator with the new UID. The second key is a combination of the Command Code (CMD) and
Received Track Number (RTN) that are assigned at the time of creation. If the CMD and RTN are NOT
updated at the time of creation, these two fields will remain with system generated default values. The
CMD and RTN will remain with the track until it is deleted. An add track example follows11:

 m_spModifier = NULL;
 CoInitialize(NULL);
 jint result = 0;

HRESULT hRes = CoCreateInstance(CLSID_TmsModifier, NULL, CLSCTX_LOCAL_SERVER,
IID_ITmsAPIEx, (void**)(&m_spModifier));

 if (m_spModifier) {
 try {
 m_spModifier->AddTrack(TrackType, &pUnk);

After the track is created, fields can be set before the “Update12” method is invoked13, as follows:

 if (pUnk) {
 pUnk->QueryInterface(IID_IAddTrack,(void**)&pAddTrack);
 if (pAddTrack) {
 _variant_t vt = track_LAT;
 // Try to set an attribute
 pAddTrack->SetReportAttribute(RPT_LATITUDE, vt);
 vt = track_LON;
 pAddTrack->SetReportAttribute(RPT_LONGITUDE, vt);
 if (SUCCEEDED(pAddTrack->Update())) {
 Sleep(2000); //wait for any threads to finish
 }
 else {
 AfxMessageBox("Error Adding Track");

11 Complete code is not included in the examples. See attachments for completed Java and C++ programs.
12 APIDriver used a display message after the “Update” method. Testing showed that a time delay was
required if a display was not used. Further analysis is required on this problem.
13 During testing of both the Java and C++ APIDriver, it was determined that the SetAttribute method for
“TRK_NAME” and TRK_SHORTNAME” did not function. These two fields could only be modified after
an add/update, then performing an “EditTrack”.

11

 }

JNI Implementation

 Using APIDriver’s “Add, Edit, Delete Track” as a template for data access, a Java to C++
interface was designed using JNI. The basic Java GUI was modified to allow the user to add and query
(“Does Track Exist?”) tracks using selected TWS fields available in TMS, as depicted in the Figure 7.

Figure 7. Java Add/Query Window

TWS uses a TADIL-J message for communicating with the C2 environment14. This allows tracks
to be processed for targeting by tactical air assets. As part of the SIMEXs, each node is allocated a set of
TADIL message codes so that analysts will know where targets were generated. The TADIL target number
is normally maintained in the GCCS “TRK_SHORTNAME” field and displayed as “Shortname”. Since
one of the two primary key sets for TMS are RTN/CMD, the Java/JNI/C++ applications use an RTN and
CMD fields to create tracks. The “Shortname” field should be set to the same value as RTN.

After the user sets values for the entries in the right-most panel and selects a track type (via the

radio buttons), and selects “Add Track”, the following Java code is executed to pass data to the JNI class:

 Interface4.AddTrk(trackType1,
 track_NAME,
 track_SNAME,
 lat1,
 lon1,
 track_RTN,
 track_CMD,
 alt1,
 crs1,
 spd1);

 The JNI code is:

14 Strike Network (STRIKENET) Concept, Kevin M. Forbes, 1 March 2003

12

class Interface4 {
 public static native int AddTrk(
 int trackType1,
 String track_NAME,
 String track_SNAME,
 double lat1,
 double lon1,
 String track_RTN,
 String track_CMD,
 double alt1,
 double crs1,
 double spd1);
}

 After compiling the Java application, an “Interface4.class file will be created. Header files are
then created by executing “javah -jni main_java_program Interface4”, which builds the following
Interface4.h file:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class Interface4 */

#ifndef _Included_Interface4
#define _Included_Interface4
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: Interface4
 * Method: AddTrk
 * Signature: (ILjava/lang/String;Ljava/lang/String;DDLjava/lang/String;Ljava/lang/String;DDD)I
 */
JNIEXPORT jint JNICALL Java_Interface4_AddTrk
 (JNIEnv *, jclass, jint, jstring, jstring, jdouble, jdouble, jstring, jstring, jdouble, jdouble, jdouble);

#ifdef __cplusplus
}
#endif
#endif

 The C++ application requires JNI level code to interface with the original Java application, which
follows:

JNIEXPORT jint JNICALL Java_Interface4_AddTrk (
 JNIEnv *env,
 jclass cls,
 jint trackType,
 jstring track_NAME,
 jstring track_SNAME,
 jdouble track_LAT,
 jdouble track_LON,
 jstring track_RTN,
 jstring track_CMD,
 jdouble track_ALT,
 jdouble track_CRS,

13

 jdouble track_SPD)

 At this time, the C/C++ application is ready to access/update the passed variables. The C/C++
application must be compiled with the following parameters15 to create a “.dll” file.

cl -Ic:\j2sdk1.4.1_01\include -Ic:\j2sdk1.4.1_01\include\win32 -IC:\TWS_Dev\TmsSDK\Debug\bin -LD
ConnTMS.cpp -FeConnTMS.dll

One other step must be performed prior to execution of these applications. The original Java
application must invoke a “load library” for the dll, as follows:

 static {
 System.loadLibrary("ConnTMS");
 }

 Two interfaces were developed for “Does Track Exist?”. The first interface provided single field
retrieval capability and the second provided multi-field retrievals. The following Java code segment
invokes “Interface3.TrackExists” to get individual fields returned from TMS and Interface5.TrackExists
using an array of enumeration values for the “GetMuptipleReportAttributes()” method. The JNI uses
another array for the returned data.

 void jButtonIDC_TRACK_EXISTS_actionPerformed(ActionEvent e) {
 //Need to get Track UID and Track Type to pass to interface
 track_UID = null;
 jTextFieldIDC_EDIT_UID.setText(track_UID);
 trackType1 = Integer.decode(trackType).intValue();
 track_CMD = jTextFieldIDC_EDIT_CMD.getText().toUpperCase();
 track_RTN = jTextFieldIDC_EDIT_RTN.getText().toUpperCase();
 trackHold=Interface3.TrackExists(trackType1,track_RTN,track_CMD,1);//UID
 jTextFieldIDC_EDIT_UID.setText(trackHold);
 trackHold=Interface3.TrackExists(trackType1,track_RTN,track_CMD,2);//SHORTNAME
 jTextFieldIDC_EDIT_SNAME.setText(trackHold);
 trackHold=Interface3.TrackExists(trackType1,track_RTN,track_CMD,3);//NAME
 jTextFieldIDC_EDIT_NAME.setText(trackHold);
 Interface5.TrackExists(trackType1,track_RTN,track_CMD,arrayType, arrayRet);
 trackHold = formatCoords(arrayRet[0],true,0);//LAT
 jTextFieldIDC_EDIT_LAT.setText(trackHold);
 trackHold = formatCoords(arrayRet[1],false,0);//LON
 jTextFieldIDC_EDIT_LON.setText(trackHold);
 alt1 = arrayRet[2];//ALT
 jTextFieldIDC_EDIT_ALT.setText(Double.toString(alt1));
 crs1=arrayRet[3];//CRS
 jTextFieldIDC_EDIT_CRS.setText(Double.toString(crs1));
 spd1=arrayRet[4];//SPD
 jTextFieldIDC_EDIT_SPD.setText(Double.toString(spd1));
 }
 Interface 3 passes a single “fieldType” variable while Interface5 uses an array. Values are based on the
eTrackDataFields enumeration table in C2PCTmsAPIServer.tlh, which was provided with the TMS SDK.

class Interface3 {
 native public static String TrackExists(
 int trackType1,
 String track_RTN,

15 This example is set up for Java SDK Version 1.4.1 and Microsoft C++ Version 6.0

14

 String track_CMD,
 int fieldType);
}

class Interface5 {
 native public static void TrackExists(
 int trackType1,
 String track_RTN,
 String track_CMD,
 long [] arrayType,
 double [] arrayRet);
}

 The following code segment is the C++ method for Interface5. For JNI to access the C++ arrays,
the “Release” statements at the end of the method must be invoked prior to the “return”.

JNIEXPORT void JNICALL Java_Interface5_TrackExists (
 JNIEnv *env,
 jclass cls,
 jint trackType,
 jstring track_RTN,
 jstring track_CMD,
 jlongArray arrayType,
 jdoubleArray jdaRet)
{
CString cs;
CString csMsg;

jfieldID fid;
jstring jstr;
const char *str;
jdouble jHold;

unsigned int num_arrays = env->GetArrayLength(arrayType);
jlong *element = env->GetLongArrayElements(arrayType,0);

unsigned int num_array1 = env->GetArrayLength(jdaRet);
jdouble *arrayRet = env->GetDoubleArrayElements(jdaRet,0);

 const char *csCommand = env->GetStringUTFChars(track_CMD, NULL);
 const char *csRTN = env->GetStringUTFChars(track_RTN, NULL);
 myEnumeration(trackType);
 m_spModifier = NULL;
 CoInitialize(NULL);
 IUnknown* pUnk = NULL;
 jint result = 0;
 jdouble sum;
 CString csCommandRtn;
 CString csUID;
 HRESULT hRes = CoCreateInstance(CLSID_TmsModifier, NULL, CLSCTX_LOCAL_SERVER,
IID_ITmsAPIEx, (void**)(&m_spModifier));
 try {
 if (m_spModifier) {
 csCommandRtn.Format("%s|%s",csCommand, csRTN);
 _bstr_t bstrCommandRtn(csCommandRtn);

15

 hRes = m_spModifier->GetTrackInfo(holdTrackType, bstrCommandRtn, &pUnk);
 if (SUCCEEDED(hRes)) { // Track exists
 if (pUnk) {
 pUnk->QueryInterface(IID_IGetTrack,(void**)&pGetTrack);
 if (pGetTrack) {

 SAFEARRAY *psaRequest;
 SAFEARRAY *psaReturn;

 ///
 // Create and Fill in Request SafeArray
 ///
 SAFEARRAYBOUND rgsabound[1];
 rgsabound[0].lLbound = 0;
 rgsabound[0].cElements = num_arrays;

 psaRequest = SafeArrayCreate(VT_I4, 1, rgsabound);

 long *pFields;
 HRESULT hr = SafeArrayAccessData(psaRequest,(void HUGEP* FAR*)&pFields);
 for (int i = 0; i < num_arrays; i++) {
 pFields[i] = element[i];
 }

 SafeArrayUnaccessData(psaRequest);
 pGetTrack->GetMultipleReportAttributes(psaRequest, &psaReturn);

 VARIANT *pVariant;
 hr = SafeArrayAccessData(psaReturn,(void HUGEP* FAR*)&pVariant);

 _variant_t vt;
 for (i = 0; i < psaReturn->rgsabound[0].cElements; i++) {
 vt = pVariant[i];
 sum = vt;
 arrayRet[i] = sum;
 }

 SafeArrayUnaccessData(psaReturn);

 SafeArrayDestroy(psaRequest);
 SafeArrayDestroy(psaReturn);
 pGetTrack->Release();
 pGetTrack = NULL;
 }
 }
 pUnk->Release();
 pUnk = NULL;
 }
 }
 }
 catch (_com_error &ce) {
 CString msg = "GetMultipleReports Error: ";
 CString errmsg = static_cast<BSTR>(ce.Description());
 if (errmsg.IsEmpty()) {
 msg += ce.ErrorMessage();
 } else {

16

 msg += errmsg;
 }
 if (pGetTrack) {
 pGetTrack->Release();
 pGetTrack = NULL;
 }
 if (pUnk) {
 pUnk->Release();
 pUnk = NULL;
 }
 AfxMessageBox(msg, MB_SETFOREGROUND);
 }
env->ReleaseLongArrayElements(arrayType,element,0);
env->ReleaseDoubleArrayElements(jdaRet,arrayRet,0);
return;
}

c

Examples of the Java and C2PC track lists are shown in the following figure16.

Figure 8. Track Lists

C2PC/JAVA APIDriver Execution

During the testing of the Java/JNI/C++ applications, several problems were noted:

• The same code is used to add tracks, where the “Track Type” parameter is used to designate the
type of track. All five types that can be added by the TMS API were stable.

• With an active C2PC/GCCS interface, trying to add an Acoustic track failed. If C2PC was not
connected to a GCCS Server, Acoustic tracks could be added. After connecting C2PC to a GCCS
Server, the Acoustic tracks would remain.

16 The Java application displays the RTN, while C2PC displays the track shortname, if available, or the
Local Track Number (LTN).

17

• The Programmer’s Guide documentation for the API enumeration tables was not complete.
Several tables were outdated, requiring review of the C++ support files included with the SDK.

IV. TWS / C2PC CONOPs

Initial review and testing of the C2PC SDK TMS API supported the use of JNI for Java application access
to the C2PC database. Several discrepencies were noted with the SDK and reported to the C2PC Program
Office. The implementation of a JNI API for each of the original C++ interfaces would allow Java and
other programming languages to access the C2PC database, even across multiple platforms and operating
systems.

Other C2PC SDKs are available, including the Communications, Atlas (C2PC GUI), and Alerts interfaces.
These SDKs should also be evaluated to verify their interoperability with Java and other programming
languages.

19

