
MTR 01W0000103

MITRE TECHNICAL REPORT

Engineering Issues for an Adaptive Defense
Network

June, 2001

Alan Piszcz
Nicholas Orlans
Zachary Eyler-Walker
David Moore

Contract No.: DAAB07-00-C-C201

The views, opinions and/or findings contained in this report
are those of The MITRE Corporation and should not be
construed as an official Government position, policy, or
decision, unless designated by other documentation.

Approved for public release; distribution unlimited.

2001 The MITRE Corporation

Washington C3 Center

McLean, Virginia

i

MITRE Department
Approval:

Eileen M. Boettcher
Department Manager, W033
Distributed Systems and
Technologies

ii

Acknowledgments

This work was sponsored by the MITRE Technology Program.

iii

Table of Contents

Section Page

1. INTRODUCTION 1
1.1 ELEMENTS OF THE EXPERIMENTS 1
1.2 TESTBED ENVIRONMENT 1
1.3 NOTIONAL COOPERATING FIREWALL 2

2. DISTRIBUTED DENIAL OF SERVICE 3

3. RECOMMENDATIONS 4
3.1 MITIGATING ATTACK SOURCE CAPABILITIES 4
3.2 NEXT STEPS IN ADN RESEARCH 4

4. TECHNIQUES AND TOOLS 5
4.1 POLICY ARCHITECTURE AND MANAGEMENT 5

4.1.1 COPS TERMINOLOGY 5
4.1.2 COPS PROVISIONING (PDP INITIATED) 5
4.1.3 COPS OUTSOURCING (PEP INITIATED) 5

4.2 TRUST MANAGEMENT WITH KEYNOTE 6
4.3 SOLARIS BANDWIDTH MANAGER 6

5. THE DDOS THREAT 7
5.1 TRINOO 7
5.2 TFN2K 8

6. DETECTION TOOLS 9
6.1 REMOTE INTRUSION DETECTOR 9
6.2 COVARIANCE EXPERIMENT USING NETSTAT 10

6.2.1 OBSERVATIONS AND DISCUSSION OF RESULTS 11
6.3 CHI-SQUARE DDOS DETECTION WITH ARGUS 11

6.3.1 EXPERIMENT DESCRIPTION 11
6.4 NTOP 12

6.4.1 WEB INTERFACE 13
6.4.2 UDP SQL INTERFACE 13
6.4.3 OBSERVATIONS 13

7. ANTI-DDOS TOOL 13
7.1 ZOMBIE ZAPPER 14

8. ADN CONCEPT EXPERIMENTS 15
8.1 SECURE CHANNEL BANDWIDTH RESERVATION 15
8.2 ADAPTIVE FIREWALL EXPERIMENT #2 15

iv

Executive Summary

Engineering Issues for an Adaptive Defense Network (ADN) examines the ability of network systems to
change behavior dynamically to sustain service in response to attacks. In order to focus the research
problem, Distributed Denial of Service (DDoS) attacks were used as the threat. The primary issue was the
capability to detect and defend against DDoS. Experimentation was performed with a packet filtering
firewall, a network Quality of Service manager, multiple DDoS tools, and traffic generation tools. Related
efforts, recommendations and experiments are covered in this paper.

Adapting to network events in degraded environments is a challenge for applications, services and
systems where conditions are known. As network conditions change due to cyber attacks carried out by
email viruses, application viruses, and denial of service attacks, there is typically instantaneous network
confusion. Network operator reaction and control of these events can take hours to days for determination
and resolution. This effort examines a severe threat, Distributed Denial of Service (DDoS) and potential
techniques for an adaptive, automatic defense which would take place in seconds and represent the first
level of defense until network operations or system administrator personnel can respond. The asymmetric
nature of the DDoS threat allows an individual with minimal resources to disrupt or deny network service
to critical information infrastructures.

Adaptive defense of networks requires automated response to current and future threats. This effort
utilized DDoS threats to motivate adaptive defense behavior and experimentation. The focus of the
following recommendations will address denial-of-service (DoS) issues related to the network node.

In order to provide guidance with respect to DdoS, a number of recommendations have been developed
by information security organizations. Note that the following recommendations protect the packet
producers versus the victim, however, they are applicable to all sites and should be implemented.

• Egress filtering: do not allow packets with invalid source addresses to exit your network. Deny
invalid source addresses that include private, reserved address ranges and any address not defined
in your organization’s network.

• Disable directed broadcast on all systems.
• Employ Unicast Reverse Path Forwarding (RPF). The following is quoted from “Unicast Reverse Path

Forwarding” white paper [CISCORPF2001]. The Unicast RPF feature helps to mitigate problems that
are caused by the introduction of malformed or forged (spoofed) IP source addresses into a network
by discarding IP packets that lack a verifiable IP source address. For example, a number of common
types of denial-of-service (DoS) attacks, including Smurf and Tribe Flood Network (TFN), can take
advantage of forged or rapidly changing source IP addresses to allow attackers to thwart efforts to
locate or filter the attacks. For Internet service providers (ISPs) that provide public access, Unicast
RPF deflects such attacks by forwarding only packets that have source addresses that are valid and
consistent with the IP routing table. This action protects the network of the ISP, its customer, and the
rest of the Internet.”

• Service Level Agreements to reduce payment in cases of DDoS traffic loss.
• Shared ISP alerting among firewalls.
• Layer 2 analysis, using a transparent bridge on the network, monitor layer 2 traffic parameters.

Determine if this approach would simplify the solution and provide adequate detection.
• Develop attack trees for DDoS threat type and relate costs to adaptive defense techniques.
• Perform QoS reservations and attacks using CISCO router and observe network behavior.
• Evaluate DARPA funded and other emerging adaptive firewalls in testbed.
• Develop custom Alert Event rules for ntop.
• Produce a stable and complete ntop data extraction. Probably through an enhanced “dumpdata” or a

direct GDBM database read.
• Develop cross system correlation logic using data extracted from multiple instances of ntop.

1

Engineering Issues for an Adaptive Defense Network
June 2001

Alan Piszcz, Nicholas Orlans, Zachary Eyler-Walker, David Moore
The MITRE Corporation

McLean, VA 22102

e-mail: { apiszcz | norlans| zach | davem }@mitre.org

ABSTRACT

Engineering Issues for an Adaptive Defense Network
(ADN) examines the ability of network systems to change
behavior dynamically to sustain service in response to
attacks. In order to focus the research problem,
Distributed Denial of Service (DDoS) attacks were used
as the threat. The primary issue was the capability to
detect and defend against DDoS. Experimentation was
performed with a packet filtering firewall, a network
Quality of Service manager, multiple DDoS tools, and
traffic generation tools. Related efforts, recommendations
and experiments are covered in this paper.

1 INTRODUCTION

Adapting to network events in degraded environments is
a challenge for applications, services and systems where
conditions are known. As network conditions change due
to cyber attacks carried out by email viruses, application
viruses, and denial of service attacks, there is typically
instantaneous network confusion. Network operator
reaction to and control of these events can take hours to
days for determination and resolution. This effort
examines a severe threat, Distributed Denial of Service
(DDoS), and potential techniques for an adaptive,
automatic defense which would take place in seconds
and represent the first level of defense until network
operations or system administrator personnel can
respond. The asymmetric nature of the DDoS threat
allows an individual with minimal resources to disrupt or
deny network service to critical information
infrastructures.

This effort does not expect to maintain full service
capability, but instead a degraded subset of services until
the problem can be resolved. Information assurance
includes: policy, personnel, secure systems, remote
access, and service providers. Achieving network
defense in the future will involve: coordination between
service providers, intrusion detection, auditing,
automated organizational trust policies, firewall and

quality of service tools. Fusion of these elements is the
basis for adaptive behavior as dictated by the global or
organization policy. This effort examined a range of
capabilities to address defense for network targets
against a Distributed Denial of Service attack.

1.1 ELEMENTS OF THE EXPERIMENTS

This problem encompasses a wide range of devices,
software systems, and networking technology. The ADN
project developed a testbed for experimentation and
exploration of the hypothesis for adaptive defense. The
ADN testbed consisted of two wide area network routers,
several host organizations, a threat platform and
measurement capabilities.

1.2 TESTBED ENVIRONMENT

ADN performed experiments with techniques that reacted
automatically to network attacks. The network attacks
under consideration were Distributed Denial of Service
(DDoS). The ADN testbed consisted of a suite of SUN
workstations and Intel machines running Linux
representing organizations as multi-homed systems with
stateful packet filtering firewalls. An Internet Service
Provider (ISP) was simulated using a router and Solaris
Bandwidth Manager 1.6 (SBM) to emulate router
functions with respect to packet prioritization, channel
capacity reservation, and channel bandwidth. Our
preliminary experiment operated SBM on an Ultra10
300MHZ CPU with a quad 10/100 MBPS network
interface card. This system acted as a five-port router
(using the additional built-in interface) which routes for
five organizations represented by SparcStation 5 or
SparcStation 20 platforms. Organizations one through
five represented the user community of the network. In
the experiment, organization one was the victim, with
control information being directed from organization five.
Organizations two, three, and four were the DoS
agent/zombie/client platforms which transmit packets to
disable or degrade the victim or organization one. Figure

2

1.2-1 shows the configuration used for the initial
experiments and tests. Appendix B provides a network
mapping of services operating on each testbed platform.

Figure 1.2-1 Testbed Environment

1.3 NOTIONAL COOPERATING FIREWALL

Figure 1.3-1 depicts the prerequisite ADN components
for a cooperating firewall. The identified subsystems
represent capabilities necessary to enable a wide area
network defense.

Secure Communication Channel Proxy
This mechanism should provide a secure channel among
cooperating firewalls to communicate policy information,
firewall rules and control information. The channel
requires network bandwidth reservation to guarantee
availability during attacks.

Packet Filtering Firewall
A packet filtering firewall was used to demonstrate policy
enforcement capability in this topology. Other techniques
for network control include modification of kernel
parameters, access control lists, router parameters, and
platform operating system network services.

Decision Aid
Monitors effects of attacks and provides policy for
courses of reaction. A few techniques for this area are
explored later in this paper.

Network Time Reference
The Network Time Protocol (NTP) provides the capability
to synchronize system clocks for time maintenance. In
order to review system logs and events on different
systems over a wide area network it is essential that time
services be active. Greenwich Mean Time or other
standard common reference time zone should be used.

Reactive Firewall Rule Database
Contains the required rule set groups in order to respond
to known network threats, service restrictions and
organization policies. Ideally these rules are self-
contained and described by a unique identifier.
Documentation and comments should also be in the rule
set.

Figure 1.3-1 N OTIONAL COOPERATING FIREWALL

Rule Conflict Verification
This is an open research area being explored with
techniques such as binary decision diagrams. Other
techniques may emerge as this problem increases with
the complexity of incompatible rule sets across vendor
product lines.

Reactive Quality of Service (QoS) Rule Database
Service level agreements (SLA) and expected service
availability information needs to be defined and stored by
a cooperating firewall. In particular many attacks may
require service providers to rate-limit traffic, disable
services and otherwise override SLAs. The rule database
should include approved responses for routers and QoS
providers; additionally it would allow definition of SLA
features for different threat combinations.

ADN State Maintenance
Historical and current network profiles of the cooperating
nodes need to be captured. This information would be
used by the decision aid to develop policy
recommendations.

Policy/Trust Management
Hierarchical authorities are required to communicate and
enforce network policies. Trust management is integral to

Pa cket Filtering
Firewa ll

Secure
Comm

Channel
Proxy

Network
Time

Reference

Policy/ Trust
Management

Decision
Aid

Reactive
FW Rule

Da ta base

Rule
Conflict

Verifica tion

Anoma ly
Event

Detection

Reactive
QoS Rule
Da ta base

ADN
Sta te

Ma intenance

Log
File

Aggrega tor

Pla tform Opera ting System

Visualiza tion

3

executing network policy changes. The Common Open
Policy Server (COPS) addresses this area and is
described later.

Anomaly Event Detection
Attacks such as DDoS should be detectable as
anomalies. Understanding and classifying the type or
severity of anomalies is required. For example,
anomalies from a local hardware malfunction should not
be construed as an attack.

Visualization
Currently management of a single firewall with hundreds
or thousands of rules is a task which one can only grasp
after spending endless hours with the domain, policy
requirements and the service providers involved.
Visualization applied to rule sets is an area in need of
additional research and development.

2 DISTRIBUTED DENIAL OF SERVICE

DDoS attacks represent multi-network, multi-platform
and multi-target network threats. The Computer
Emergency Response Team Coordination Center
(CERT/CC) held a workshop on DDoS tools during
November 1999 to discuss DDoS and approaches for
defense. The workshop output was a white paper titled,
“Results of the Distributed-Systems Intruder Tools
Workshop” [CERT/CC1999].

High profile attacks gained national recognition by media
organizations during 2000. Figure 2-1 illustrates a few of
the DDoS events that were publicized and the duration of
each.

Figure 2-1 Publicized DDoS Attacks

The electronic business attack of February 2000 placed
the DDoS threat as a top priority to the Alliance for
Internet Security and other security aware partners. The
October 2000 issue of Information Security Magazine
[INFOSECMAG2000] contained a prominent
announcement on the threat and urged organizations to
develop counter measures. The YANKEE GROUP, a
financial and strategic consultant, estimated the February
2000 DDoS attack caused a 1.2 billion dollar loss of
revenues for the organizations involved.

During the month of October 2000 Israeli government
websites were corrupted and disabled through denial of
service techniques. News organizations labeled this the
“Middle East cyber war.”

Coincidentally, during that same week in October 2000
the Defense Advanced Research Projects Agency
(DARPA) announced a 6 million dollar research effort for
information security. One of the project goals is research
of an autonomic distributed firewall, capable of reacting
to network based attacks.

Figure 2-2 “Putting a Target Under Siege”
[COMERFORD2001] illustrates a common use of the
internet architecture and its relation to DDoS. In a
distributed attack, an attacker first breaks into net-
attached computers, quietly setting one up as a handler,
or a controller as drones. Later, they bombard the target
with traffic without the attacker’s participation.

Figure 2-2 DDoS Distributed Architecture

Other ISP 1
Customers

Drone 1 Drone 2 Drone X

Handler

Attacker

O O O

O O O

Other ISP 2
Customers

Other ISP X
Customers

Attacked Site

ISP 2ISP 1 ISP X

,QWHUQHW

5RXWHUV

,63 ,QWHUQHW VHUYLFH SURYLGHU

4

There are numerous analyses of DDoS tools available on
the internet, along with the tools themselves in some
instances. Dave Dittrich [DITTRICH2000] is a security
engineer at the University of Washington who has
investigated a number of the DDoS tools. A number of
attack tools exist, and more are in development. This
effort was undertaken to understand the fundamental
principles of DDoS and started with “trinoo,” one of the
first DDoS tools with a master and daemon or
client/server capability. The following are some of the
known tools which are available: fapi, blitznet, Tribe
Flood Network (TFN), mstream, stacheldraht, Trinity,
shaft, TFN2K, TRANK. In a few cases the authors of this
paper have augmented the descriptions of the DDoS
tools contained later in this paper.

3 RECOMMENDATIONS

Adaptive defense of networks requires automated
response to current and future threats. This effort utilized
DDoS threats to motivate adaptive defense behavior and
experimentation. Figure 3-1 illustrates an organization for
denial of service attacks. The focus of the following
recommendations will address DoS issues related to the
network node.

Figure 3-1 DoS Threat Types

3.1 MITIGATING ATTACK SOURCE CAPABILITIES

In order to provide guidance with respect to DdoS, a
number of recommendations have been developed by
information security organizations. Note that the following
recommendations protect the packet producers versus
the victim, however, they are applicable to all sites and
should be implemented.

• Egress filtering: do not allow packets with invalid
source addresses to exit your network. Deny invalid

source addresses that include, private, reserved
address ranges and any address not defined in your
organization’s network.

• Disable directed broadcast on all systems.

• Employ Unicast Reverse Path Forwarding (RPF). The
following is quoted from “Unicast Reverse Path
Forwarding” white paper [CISCORPF2001]. The
Unicast RPF feature helps to mitigate problems that
are caused by the introduction of malformed or forged
(spoofed) IP source addresses into a network by
discarding IP packets that lack a verifiable IP source
address. For example, a number of common types of
denial-of-service (DoS) attacks, including Smurf and
Tribe Flood Network (TFN), can take advantage of
forged or rapidly changing source IP addresses to
allow attackers to thwart efforts to locate or filter the
attacks. For Internet service providers (ISPs) that
provide public access, Unicast RPF deflects such
attacks by forwarding only packets that have source
addresses that are valid and consistent with the IP
routing table. This action protects the network of the
ISP, its customer, and the rest of the Internet.”

• Service Level Agreements to reduce payment in cases
of DDoS traffic loss.

• Shared ISP alerting among firewalls.

3.2 NEXT STEPS IN ADN RESEARCH

• Layer 2 analysis, using a transparent bridge on the
network, monitor layer 2 traffic parameters. Determine
if this approach would simply the solution and provide
adequate detection.

• Develop attack trees for DDoS threat type and relate
costs to adaptive defense techniques.

• Perform QoS reservations and attacks using CISCO
router and observe network behavior.

• Evaluate DARPA funded and other emerging adaptive
firewalls in testbed.

• Develop custom Alert Event rules for ntop.

• Produce a stable and complete ntop data extraction.
Probably through an enhanced “dumpdata” or a direct
GDBM database read.

• Develop cross system correlation logic using data
extracted from multiple instances of ntop.

5

4 TECHNIQUES AND TOOLS

The following sections contain a collection of tools,
detection techniques and observations related to
adaptive network defense. Organization of this material
flows from infrastructure systems, tools, to techniques
and experiments.

4.1 POLICY ARCHITECTURE AND MANAGEMENT

Common Open Policy Service (COPS) was analyzed for
enabling policy coordination among distributed firewalls
in an adaptive defense network. COPS is an emerging
standard track defined by RFC 2748 and the related RFC
2753 (Framework for Policy-based Admission Control).
The proposed messaging standard and associated
terminology results from an industry consortium that
includes Intel, Cisco, and AT&T. COPS defines
message types and outlines an application interface and
typical application sequences for Quality of service (QoS)
programming and other policy based network
applications.

4.1.1 COPS TERMINOLOGY

COPS terminology defines two primary functional
entities, a Policy Decision Points (PDP) and a Policy
Enforcement Point (PEP). PDPs are typically servers and
PEPs are typically cooperating routers or firewalls.

There is no single reference enterprise level architecture,
rather the COPS reference framework for policy-based
admission control provides definitions of how PDPs and
PEPs interact. Details of how system state is stored, how
authentication occurs, and what additional mechanisms
may be necessary for out-of-band communications is left
to the application. Building, deploying, and configuring
such a framework requires sound engineering judgment
based on comprehensive and detailed information of the
enterprise network topology, applications and traffic, and
desired network policies.

COPS describes two primary modes of coordinated
dynamic network responses, provisioning and
outsourcing.

4.1.2 COPS PROVISIONING (PDP INITIATED)

COPS provisioning, as shown below in figure 4.1.2-1, is
initiated by the PDP requesting a configuration change to
one or more PEP. Typically this results from scheduled
QoS provisioning, but could also be dynamically
generated requests. The PEPs must have earlier issued
a Request State message that establishes a passive wait
condition for the PDP Decision message. The Decision
message for each PEP includes client handle information
context and configuration information for that particular
client (device type). The PEP responds with a Report
State message, indicating success or failure in carrying
out each Decision message.

PDP PEP
Decision (norm, remove filters 2, 6, 13)

Named Config

Relevant
Data

Decision (alpha, add filter 3)

Named Config

Relevant
Data

Report State

Report State

Figure 4.1.2-1. COPS Provisioning

4.1.3 COPS OUTSOURCING (PEP INITIATED)

An example of COPS outsourcing is shown below in
figure 4.1.3-1. Outsourcing is initiated by the PEP and
occurs whenever the PEP is unable to make a local
decision. Outsourcing can also result from pre-
programmed decision hierarchies. The PEP sends a
Request message containing identification information
and client specification information (e.g. router
manufacture, model number, operating system,
supported interfaces, and revision). The PDP responds
with a Decision message, including the client handle and
configuration context appropriate for that client. The
exchange is concluded by the PEP returning a Report
State message, reporting on the success or failure of the
decision.

6

PDP PEP
Request

Named Client

Relevant
Data

Decision (delta, install filters 2, 6, and 13)

Named Config

Relevant
Data

Report State

Figure 4.1.3-1. COPS Outsourcing

4.2 TRUST MANAGEMENT WITH KEYNOTE

Trust Management is an essential infrastructure
component for adaptive firewall solutions. All network-
critical message exchanges, such as those outlined
within the COPS framework, depend on clearly defined
trust and authorization relationships. Trust authorization
and management tend to mimic human organizational
hierarchies in terms of delegation and authority, but more
importantly they must be make sense within a target
network topology that includes boundary points and
critical routes for egress and ingress.

Keynote is a trust management engine reviewed by the
ADN team. Keynote provides a C-like assertion language
designed to express and evaluate trust conditions. The
Keynote system was produced by AT&T Research
Laboratories in conjunction with the University of
Pennsylvania [BLAZE2000]. It is available opensource
and defined by RFC 2407 [KEYNNOTE]

The logical predicates used by Keynote for policy
compliance testing are constructed from a flexible, yet
rather abstract, collection of tag/value pairs. Principal
names (hosts, PDPs, or PEPs) can be any nmemonic
string and can also directly represent cryptographic keys.
An important property of Keynote is that of ‘assertion
monotonocity’, meaning compliance values are always
derived from trusted sources and incomplete or missing

assertions cannot result in spurious authorizations
(higher compliance values). The Keynote abstraction
environment requires a coherent nomenclature for
"principals", "licensee", "conditions", and "actions". The
level of granularity and semantics used to describe
situational awareness (e.g. authority, trust conditions,
current traffic states, candidate actions, and so on) must
be defined by the application. Actions and transport
mechanisms also must be provided by the application. A
simple example root policy is shown in listin 4.2-1. The
policy states that an ADN decision point is authorized to
approve/accept somthing (where the something is an
application action) from org1, org2, org3, and org4 if the
state variable ‘infocon’ is set to “delta”.

Keynote version: 2
Authorizer: “POLICY”
This is the root policy
Licensees: “org1”||"org2"||"org3"||"org4"
Conditions: (appDomain == ‘adn’) &&
 (infocon == “delta”)
 -> “Approve”;

Listing 4.2-1 simple Keynote assertion

4.3 SOLARIS BANDWIDTH MANAGER

Solaris Bandwidth Manager (SBM) was experimented
with as the Quality of Service router. In the ADN context
it was used to evaluate channel reservation for the
secure channel, and QoS for organizations that were
routed through it. Experiment #2 later in this describes
the experience with this capability. SUN Microsystems
provides the following product overview.

Solaris[tm] Bandwidth Manager is a software solution
regulating bandwidth usage in LANs and WANs. It
provides high-quality network service by controlling the
bandwidth assigned to applications and users, prioritizing
traffic, and building advanced bandwidth management
policies.

Features include:
Controls incoming as well as outgoing traffic.
Manages any type of IP traffic: classification can be done
on source or destination addresses, application type,
URL address (with wildcards), and IP Type of Service
(ToS).

Interoperates with routers (ToS field marking, NetFlow
data exporting). Provides detailed flow and class based
accounting information, through ASCII output, NetFlow
protocol, and Java and C APIs for interfacing with billing
applications. Java[tm]-based GUI for remote monitoring
and configuration. Customizable: Java configuration APIs

7

and dynamically configurable Policy Agent using Java
Dynamic Management Kit[tm].

5 THE DDOS THREAT

DDoS network attack applications are emerging from
university and individual research efforts. These tools
coordinate various network related abuse as described in
Appendix A to deny service to the target(s). Attack
applications are maturing in sophistication and the
expertise required to launch an attack is decreasing.

The two tools selected for DDoS, trinoo and TFN2K,
represent different levels of capability and threat potential
for ADN attack testing. TFN2K was selected to represent
an advanced DDoS tool. “trinoo” represents one of the
most simple DDoS tools, except perhaps for broadcast
pings.

5.1 TRINOO

In operating and reviewing trinoo, additional details were
discovered that deserve description beyond what was
available to the authors. The overall description of trinoo
from Dittrich is good, but not complete enough to actually
install and operate the software. Nevertheless, the
CERT and Dittrich descriptions of trinoo are required
reading for those interested in trinoo. The Dittrich Trinoo
analysis is at
“http://staff.washington.edu/dittrich/misc/trinoo.analysis”.
To learn more, a internet search will produce other
analysis papers, most of which are similar in content.

For this project the plan was to operate a few DDoS
capabilities on an isolated (network) testbed. The testbed
consists of two router machines and a number of
organizations with dual home machines operating a
firewall. In the first series of experiments the plan is to
have “n” organizations attack one. Two types of
components are to required launch a trinoo attack. “ns”
what Dittrich refers to as the daemon, which can also be
thought of as a zombie or agent. It will be referred to as
the client in this description. This module operates in
conjunction with a “master” process to carry out DoS
attacks on a target. In order to use this application it is
necessary to edit the source code and update the static
array initialization assignment with the IP addresses of
the configuration’s master. The version of ns.c used in
this project is 184 lines (including comments) of C.
“master” is the central control process, or as the authors
prefer, the “server” of the trinoo configuration. The server

Figure 5.1-1. trinoo message sequence

accepts telnet connections to a reserved port and
authenticates the user via a password. It then provides
the user with a command prompt for communication with
the clients. The file master.c contains 450 lines of C with
comments. ‘master’ performs user authentication and
command processing, maintains a list of available clients
and communicates instructions to clients. Figure 5.1-1
illustrates the control message sequence. Commands
are documented in the Dittrich document and are also
available by entering “help.” The trinoo master process
provides timers, attack modes, client health check, client
registry check, client kill command, and the ability to quit.

Note each entity; targets, user, master and clients, will
typically be operating on different networks/hosts. In
operational attack networks there are typically thousands
of clients. The assumption is the client machines have
been compromised by other exploits allowing the master
and client to operate on unauthorized platforms.

Locating trinoo server on a host can be done by
searching for its well-known, hard-coded network service
ports. Ports can be modified to obscure detection. In
cases where the default ports are not modified
identification is possible by detection tools.

Listing 5.1-1 documents the transaction as a result of the
trinoo mping command. “mping” uses the cached
information the master has collected to verify the state of
the clients. “tcpdump” produced the output that shows
the ping request from the source (org5) host to the
destination (org2) host. Org2 responds with a packet

targets user /
attacker

‘master’
“master.c”

client
“ns.c”

Client host
address

Registration
1 UDP packet

(all clients register)
Attacker login
DoS mode

Configuration and
target identi fication

telnet

authentication

commands

initiate DoS
Mode and
attack address

packets
UDP

targetstargets user /
attacker

user /
attacker

‘master’
“master.c”

‘master’
“master.c”

client
“ns.c”
client
“ns.c”

Client host
address

Registration
1 UDP packet

(all clients register)
Attacker login
DoS mode

Configuration and
target identi fication

telnet

authentication

commands

initiate DoS
Mode and
attack address

packets
UDP

8

indicating to the master that the client is active. Org2 is
listening on port 27444 for UDP packets and receives an
11-byte payload. Org2 responds with a 4-byte payload
back to the mping requestor. Listings 5.1-2 and 5.1-3
show the result of a UDP nmap scan using a port range.
The first case shown is with the port range limited to
27400-27600. The second is a scan of all ports. “nmap”
detects and reports the trinoo client as a ‘trinoo_Bcast’
service.

COMMAND: mping trace analysis
 VIEW: tcpdump output

09:03:32.081329 org5.org.1025 > org2.org.27444:
udp 11

09:03:32.098006 org2.org.34714 > org5.org.31335:
udp 4 (DF)

Listing 5.1-1 trinoo mping message exchange

[root@redhat1 bin]# ./nmap -v -v -p'27400-27600' -
sU 40.0.0.1

Starting nmap V. 2.54BETA7 (www.insecure.org/nmap/
)
Host org4.org (40.0.0.1) appears to be up ... good.
Initiating UDP Scan against org4.org (40.0.0.1)
Too many drops ... increasing senddelay to 50000
Too many drops ... increasing senddelay to 100000
Too many drops ... increasing senddelay to 200000
The UDP Scan took 297 seconds to scan 201 ports.
Interesting ports on org4.org (40.0.0.1):
(The 200 ports scanned but not shown below are in
state: closed)
Port State Service

27444/udp open Trinoo_Bcast

Nmap run completed -- 1 IP address (1 host up)
scanned in 297 seconds

Listing 5.1-2 trinoo restricted UDP nmap scan

[root@redhat1 bin]# ./nmap -sU 20.0.0.1

Starting nmap V. 2.54BETA7 (www.insecure.org/nmap/
)
Interesting ports on org2.org (20.0.0.1):
(The 1422 ports scanned but not shown below are in
state: closed)
Port State Service
7/udp open echo
9/udp open discard
13/udp open daytime
19/udp open chargen
37/udp open time
42/udp open nameserver
111/udp open sunrpc
123/udp open ntp
161/udp open snmp
177/udp open xdmcp
512/udp open biff
514/udp open syslog
517/udp open talk
520/udp open route

928/udp open unknown
970/udp open unknown
4045/udp open lockd
27444/udp open Trinoo_Bcast
32771/udp open sometimes-rpc6
32772/udp open sometimes-rpc8
32773/udp open sometimes-rpc10
32774/udp open sometimes-rpc12
32775/udp open sometimes-rpc14
32776/udp open sometimes-rpc16
32777/udp open sometimes-rpc18
32778/udp open sometimes-rpc20
32779/udp open sometimes-rpc22
32787/udp open sometimes-rpc28

Nmap run completed -- 1 IP address (1 host up)
scanned in 1607 seconds

Listing 5.1-3 trinoo full UDP nmap scan

5.2 TFN2K

The following information is from the TFN2K README.

Using distributed client/server functionality, stealth and
encryption techniques and a variety of functions, TFN
can be used to control any number of remote machines
to generate on-demand, anonymous Denial Of Service
attacks and remote shell access. The new and improved
features in this version include:

Functionality additions:
* Remote one-way command execution for distributed
execution control
* Mix attack aimed at weak routers
*Targa3 attack aimed at systems with IP stack
vulnerabilities
* Compatibility to many UNIX systems and Windows NT

Anonymous stealth client/server communication using:
* spoofed source addresses
* strong advanced encryption
* one-way communication protocol
* messaging via random IP protocol
* decoy packets

Technology description

TFN consists of a client and an unlimited number of
servers that are each installed on different hosts. Each
one of these servers is utilized to commence floods with
spoofed source IPs. Communication between client and
server is realized using a randomly chosen protocol,
TCP, UDP or ICMP, with internal values optimized so
that no recognizable pattern can be found in client/server
communication and that the packets easily pass through
most filtering mechanisms. The actual Tribe Protocol (tm)
is contained in the packet payload. It is CAST-256
encrypted and base64 encoded, and is decoded by the
TFN servers in first place. The payload then consists of

9

the header, which is the command ID surrounded by two
equal characters, and followed by the target or option
string. The clients source IP address is generally
spoofed, but a custom IP may be used for purposes like
evasion of RFC2267 ingress/egress filtering, as well as a
custom protocol. Additionally, any amount of decoy
packets can optionally be sent out with every real packet,
in order to obscure the real servers locations, thereby
completely obscuring the client/server communication.

6 DETECTION TOOLS

DDoS detection does not comprehensively attempt to
address the initial system intrusions and set-up stages
preceding actual DDoS attacks. It is assumed that there
is an ample supply of already compromised hosts
(zombies) and that the supply pool of vulnerable hosts is
in fact likely to increase. For the purposes of this
investigation, DDoS detection considers the main traffic
stream of the attack itself, and, to the extent possible, the
control traffic that instigates a given attack.

As is the case with network monitoring and intrusion
detection tools, DDoS detection involves the capture and
classification of current network traffic based on “normal”
profiles or expected operational boundaries.

Several experiments were undertaken to determine the
usefulness of various techniques and tools. Remote
Intrusion Detection (RID), a public domain DoS detection
tool was also investigated. “netstat”, a Unix utility for
displaying network data, was used to feed a covariance
classifier. A technique used for profiling ports on single
hosts on a per connections basis [GOTO1999] was
modified to include network features aggregated at the
interface level and extended to include UDP and ICMP
protocol traffic features common to DDoS attacks.

6.1 REMOTE INTRUSION DETECTOR

The Remote Intrusion Detector (RID) [RID2000] tool is a
configurable packet snooper and generator. It works by
sending out packets defined in the rid.conf file, then
listening for appropriate replies. The ADN effort reviewed
this in effort to understand its maturity and ability in
detecting DDoS framework components. Version 1.11 is
a freely distributed tool that comes with a configuration
file that is setup to detect trinoo, rootshell, stacheldraht
and TFN. It was built for LINUX and Solaris 7 in the ADN
environment and tested against systems operating the
trinoo handler/master and agent/client. It was not
successful in identifying the trinoo master and did locate
the agent. The configuration file defines a send/reply
sequence for a particular DDoS tool signature. The

detection description syntax and example are provided in
listing 6.1-1.

 begin
 send
 recv nmatch =
 end

 PROTOCOL=: TCP | UDP | ICMP
 OPTION =: ICMP_OPTIONS | UDP_OPTIONS |
TCP_OPTIONS
 ICMP_OPTIONS =: seq= | id= | type=
 | code= | data=""
 UDP_OPTIONS =: sport= | dport = | data=""
 | code= | data="string"
 *TCP_OPTIONS=: NOT IMPLEMENTED

Listing 6.1-1 RID detection syntax description

Using RID involves defining detection signature
descriptions, starting the tool with configuration options
and specifying the target host or host range. Listing 6.1.-
2 provides a detection description for the trinoo
Agent/Client and Handler/Master. In each case the send
command outputs a payload to the daemon and specifies
an expected reply. If any of the values were modified for
the trinoo software this pattern would fail. Items that can
be modified in the trinoo source code include port
number, command names, passwords, and response
tokens.

agent signature
start AgentTrinoo
 send udp dport=27444 data="png l44adsl"
 recv udp data="PONG" nmatch=1
end AgentTrinoo

master signature
start HandlerTrinoo
 send tcp dport=27665 data="betaalmostdone"
 recv tcp data="trinoo" nmatch=1
end HandlerTrinoo

Listing 6.1-2 RID detection description example

Sample run output is shown in Listing 6.1-3 and 6.1-4.
The first case is scanning a host with the agent running
and the detection is prefixed with ‘****’. In the second
scan, RID is scanning a host with the Handler running.
The trinoo Handler detects it was being accessed and is
shown in Listing 6.1-5. Listing 6.1-5 shows NMAP
detecting the Handler (last port) on the same host that
RID missed. As noted earlier (listing 5.1-2) the trinoo
agent can also be detected by NMAP. NMAP also has
the advantage of scanning all ports where RID does not
provide that capability. Listing 6.1-6 displays the trinoo
alert during the RID scan.

./rid -v -c rid.conf 20.0.0.1

10

No mask given, assuming host scan (/32)
Kernel filter, protocol ALL, raw packet
socket
1 hosts responded during pingsweep.
Running icmp tests
 Sending HandlerStacheldraht probe ...
 Sending AgentTFN probe ...
 Sending AgentStacheldraht4 probe ...
 Sending AgentStacheldraht probe ...
Running udp tests
 Sending AgentShaft probe ...
 Sending WinTrinoo probe ...
 Sending AgentTrinoo probe ...
Running tcp tests
**** 20.0.0.1 infected with WinTrinoo
**** 20.0.0.1 infected with AgentTrinoo
 Sending HandlerStacheldraht4 probe ...
 Sending HandlerStacheldraht4 probe ...
 Sending HandlerTrinoo probe ...
 Sending rootshell probe ...

Listing 6.1-3 RID trinoo agent scan example

./rid -v -c rid.conf 50.0.0.1
No mask given, assuming host scan (/32)
Kernel filter, protocol ALL, raw packet
socket
1 hosts responded during pingsweep.
Running icmp tests
 Sending HandlerStacheldraht probe ...
 Sending AgentTFN probe ...
 Sending AgentStacheldraht4 probe ...
 Sending AgentStacheldraht probe ...
Running udp tests
 Sending AgentShaft probe ...
 Sending WinTrinoo probe ...
 Sending AgentTrinoo probe ...
Running tcp tests
 Sending HandlerStacheldraht4 probe ...
 Sending HandlerStacheldraht4 probe ...
 Sending HandlerTrinoo probe ...
 Sending rootshell probe ...

Listing 6.1-4 RID trinoo Handler scan example

[root@redhat1 bin]# /disk1/net*/bin/nmap -sT
50.0.0.1

Starting nmap V. 2.54BETA7 (
www.insecure.org/nmap/)
Interesting ports on org5.org (50.0.0.1):
(The 1518 ports scanned but not shown below
are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
25/tcp open smtp
79/tcp open finger
98/tcp open linuxconf
111/tcp open sunrpc
113/tcp open auth
513/tcp open login

514/tcp open shell
515/tcp open printer
961/tcp open unknown

1024/tcp open kdm
1026/tcp open nterm
1032/tcp open iad3
6000/tcp open X11
27665/tcp open Trinoo_Master

Nmap run completed -- 1 IP address (1 host up)
scanned in 3 seconds

Listing 6.1-5 trinoo Handler NMAP detection

telnet localhost 27665
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
betaalmostdone
trinoo v1.07d2+f3+c..[rpm8d/cb4Sx/]

trinoo> Warning: Connection from
44.251.255.191

Listing 6.1-6 trinoo alert message

6.2 COVARIANCE EXPERIMENT USING NETSTAT

“netstat” is a Unix utility that displays various network-
related data structures, state information, routing tables,
and per-protocol statistics. The objective was to
periodically sample summary statistics (netstat –s
output), collect the output samples into a state vector and
then use the samples to define classes of network
conditions. Full netstat statistics contain a rich set of
statistic variables (3 udp, 52 tcp, 29 ip, 33 icmp, and 9
igmp). The listing below in 6.2-1 is the select set used for
as features in the discriminator.

% netstat -s
UDP
udpInDatagrams
udpOutDatagrams

TCP

TcpHalfOpenDrop
tcpInAckBytes
tcpInAckUnsent
tcpInErrs

tcpOutDataBytes

IP
ipInDelivers
ipInReceives
ipInUnknownProtos
ipOutRequests
rawipInOverflows

ICMP
icmpInMsgs
icmpInErrors
icmpInOverflows

11

icmpOutMsgs

Listing 6.2-1 Netstat (select variables)

TCP and UDP traffic generators based on netperf and
mgen were used to produce six classes of network
conditions as shown in listing 6.2-2. “3 to 1” indicates a
ratio of attacks sources to target.

Traffic DDos
Light traffic none
Medium traffic none
Heavy traffic none
Light traffic trinoo (3 to 1)
Medium traffic trinoo (3 to 1)
Heavy traffic trinoo (3 to 1)

Listing 6.2-2 Detection Classes

6.2.1 OBSERVATIONS AND DISCUSSION OF RESULTS

Two runs of the experiment were made, collecting data at
both one-second intervals and five-second intervals.
Successive differences of netstat values were captured
(not the raw absolute values). Initial observations of the
one-second interval data revealed duplicate samples and
low variances. These data required additional processing
to eliminate duplicates and linear dependencies,
accidental or otherwise. The five-second interval data
was slightly less problematic in terms of duplicate
samples. However, for both sample rates certain features
had little or no variance (i.e., were not well chosen
features). In part this is a reflection of the traffic
generators, but also a result of netstat’s internal data
structures. In both cases the covariance matrix was
prone to contain linear dependent rows, making the input
features (netstat capture) unsuitable for this technique.
The expectation that the detection problem does not
have generalized solutions is evident. Further effort with
alternate inputs and feature selection is required to
validate this technique.

6.3 CHI-SQUARE DDOS DETECTION WITH ARGUS

This implementation of the “Goto and Iguchi”
[GOTO1999] method computes the chi-square of two
vectors of equal length, one holding short term
information and one long term. The former might be
updated every second while the latter once an hour or
once a day. At initialization the sampling rate and the
total number of slots in each vector is set. As initialization
continues, the maximum number of UDP packets arriving
in a single sampling period is discovered; each slot in the
vectors is then set to correspond to an equal-sized
subset of the range from 0 to MaxUDP. For example, if

the MaxUDP is 100 packets/sampling period, and there
are 10 slots in each vector, the first would cover the
range from 0 to 10, the second from 10 to 20, and so on,
with the tenth covering from 90 to 100. Once initialized
the implementation watches the UDP packet stream
during each sampling period, and then increments the
appropriate bin of the vector -- if the number of packets is
17, the second bin is incremented; if the number of
packets is 97, the tenth bin is incremented. At each
update, the vector is aged or decayed, so that past
records do not overwhelm current records. As time goes
on, each of the vectors provides a snap shot of the
distribution of the number of packets arriving per
sampling period. After each update, the chi-square value
of the vectors is computed, essentially comparing
corresponding slots between the two vectors. Because
the data in each slot may be sparse, the chi-square value
has no particular statistical validity, but by manually
setting a threshold the chi-square can still be used as an
alarm trigger.

Argus is a UNIX-based network auditing tool developed
at Carnegie Mellon University. Argus captures detailed
information about all IP datagrams on the subnet. Argus
runs as a daemon, reading all packets promiscuously
over a specified interface. A wide variety of information is
kept about each datagram, including both source and
destination addresses, its size in bytes, the IP options in
use, and for UDP/TCP datagrams, the source and
destination port numbers. Bundled with Argus are several
tools for examining the logged data, as well as templates
for building custom tools.

Argus keeps track of the state of TCP connections. This
is useful for the purpose of detecting some kinds of
DDoS attacks. For example, some attacks generate large
numbers of falsified TCP packets, for which no
connection exists. Argus could detect this kind of
anomalous behavior, potentially providing useful
evidence of a DDoS attack. Similarly, Argus attempts to
correlate UDP packets with each other, inferring state
about possible UDP connections by patterns in the
packet stream.

Argus provides two means of accessing the network data
it logs: binary audit log files; and clients, that directly
connect to the Argus daemon, which acts as a server.
Clients receive the data more or less in real time, which
suits the needs of a DDoS detection system.

6.3.1 EXPERIMENT DESCRIPTION

This experiment was designed to explore two issues: a
preliminary method to automatically detect the presence

12

of a trinoo attack and whether Argus is a suitable traffic
sniffer for the desired rapid detection of the attack.

The first step in an automatic response to a DDoS attack
will be the detection of the attack itself. “Goto and Iguchi”
lay out a technique for detecting anomalous activities on
a port by port basis, by comparing a short term profile to
a long term profile and using these to generate a chi-
square value. The technique can be used to examine the
behavior of any number of features of a system, from
packets per second to different ports in use per time
step. “Goto and Iguchi” obtained good results using this
method to watch for relatively low volume changes in
output on each port, and when turned toward the
problem of DDoS detection, there is a far less subtle
pattern to decipher. Traffic will suddenly increase, and
the chi-square values with it.

Using the client template provided with Argus, an
implementation of the “Goto and Iguchi” method was
integrated with the Argus sniffer. Watching specifically
for changes in the number of bytes of UDP traffic being
passed into the target machine, Org1, per time step. All
ports were lumped together for this initial experiment,
and the traffic generation scripts were turned on.

The client system was allowed to reach a baseline
equilibrium before the trinoo attack began. The short-
term profile was updated up to once per second, less
often if no new UDP packets arrived. While in practice
the long-term profile would be updated only once per
day, here, for the sake of time, it was updated once every
one-hundred seconds. When the client had stabilized
with a chi-square value averaging 0.250. A 10 second
trinoo attack was launched from the three slave
machines.

With the Argus server set to not attempt to correlate UDP
packets with each other, it was able to immediately pass
details about incoming packets to the client. Within four
seconds the chi-square value spiked to 240. From there
it steadily rose to over 1000. The values actually
obtained, in the hundreds and thousands, make it clear
beyond that something strange is occurring. It is still
possible that this sort of heavy UDP traffic could have a
legitimate reason, but it would be highly anomalous.

The results of this experiment show that Goto and
Iguchi’s method of detecting strange network behavior is
applicable to DDoS detection. Figure 6.2-1 the chi-
square value computed from the short and long term
UDP traffic data, immediately before and during a brief
trinoo attack. At time 8883, the chi-square increases,
approaching 1000 in a matter of seconds.

Figure 6.2-1 is interesting for two reasons. First, it
illustrates some of the intensity of the attack and the
ease with

Figure 6.2-1 Chi-Square plot of UDP traffic

which it can be detected. Second, the precipitous fall-off
at 8900 seconds displays some of the flexibility of the
Goto and Iguchi method of anomaly detection: At 8900
seconds, the long-term data was updated to include the
beginning of the trinoo attack. By placing an update in
the middle of the attack, it can be seen how easily the
algorithm is able to compensate for any level of baseline
(long-term) traffic, even if it’s quite high. This approach
should prove useful when the network is under heavy
use, because it detects the deviation from the norm
rather than just looking for network traffic overload.

6.4 NTOP

“ntop” is an open source network monitoring application
under continuing development by Luca Deri. Luca began
ntop initially while at the University of Pisa. “ntop” can be
obtained from Luca’s web site http://www.ntop.org/.
“ntop” is based on libpcap and has been written to be
portable. It can be run on most UNIX and WIN32
platforms.

The ntop application captures packets at the Internet
Protocol (IP) level for analysis. These packets are then
categorized based upon type, source, and destination.
Packet data content is not kept, only the resultant
statistics. Traffic analysis is performed upon predefined
cyclic timelines.

“ntop” provides the ability to view network traffic sorted
by protocol, traffic, distribution among protocols, and
source/destination usage. Two fundamental user

0

200

400

600

800

1000

1200

8840 8850 8860 8870 8880 8890 8900 8910

Seconds

C
hi

-S
qu

ar
e

13

interfaces are provided as shown in figure 6.4-1; Web,
and SQL via UDP. In addition, an event alerting
capability is supported based upon packet filtering
criteria.

Capture Packets
•Run Filters
•Generate Events
•Store Traffic Data
•Log Messages

Data Driven Thread

Web Interface

•Administration
•Web Plugins

* DumpData
•Generate Reports

* Produce Chart Graphics
* Generate HTML

User Driven Thread

Update Hosts Traffic
• Store Hosts Data
• Send SQL via UDP

60 Second Thread

Update Throughput

• Store Throughput Data

30 Second Thread

Update Traffic Statistics

• Store TrafficStats

60 Second Thread

S
ha

re
d

M
em

or
y

&
 S

em
ap

ho
re

s

GDBM Databases

arpWatch

event

hostsInfo

icmpWatch

Ntop_pw

dnsCache
logger

LA
N

HTTP

IP

UDP

SQL

Charts
&

Reports

Sniffer

NTOP
Architecture

Figure 6.4-1 NTOP Architecture

6.4.1 WEB INTERFACE

The built-in web server provides formatted statistics and
graphs on-the-fly to any browser. The default port used is
port 3000, but this may be changed at start-up. Lower
level statistics, such as individual machines, may be
selected simply by clicking on selected fields in higher
level overview statistics. Alert events, (if enabled), are
displayed at the individual machine detail level.

The web interface also provides a “dump” request to
allow external analysis of the collected data. This is
provided as an HTML formatted string of a hierarchical
Perl hash declaration. A Perl program was developed to
use this interface and unwrap the hierarchical structure to
produce a flat ASCII delineated file suitable for import
into applications such as Excel. Multiple flat file dumps
over time allow snapshot deltas to be computed from the
NTOP continuous statistics.

6.4.2 UDP SQL INTERFACE

One of the start-up options is to define a UDP target
machine and port for SQL commands. When this
interface is enabled, ntop will generate SQL to create,
delete, and update data table content. Perl and Java
listeners were developed to accept the UDP messages
and interface to MS Access, and MySQL databases.

6.4.3 OBSERVATIONS

“ntop” is a work in progress. The current capabilities are
very useful and informative within its predefined
implementation but the customization features still need
work. This is exacerbated by convoluted code and few
useful comments. The ADN project team forwarded
several code fixes to Luca dealing with erroneous SQL
generation, hash key overlays, and other functional
errors.

Stopping and restarting ntop results in a loss of most
collected statistics. The one exception is alert events.
There is a flag that is supposed to allow maintaining
history over a restarts, but to date we have not been able
to make this work.

The SQL generated does not represent complete data
content. In addition, the SQL commands are based upon
sample deltas to the internal data structure. This means
that ntop restarts invalidate the collected SQL data. It
also requires that the SQL listener be running before the
ntop start-up. Extending this to the concept of a single
SQL database for multiple ntop sources becomes
infeasible due to this approach by ntop.

The Perl dump data interface is more complete than the
SQL. Dump data coincides with the fundamental ntop
approach of maintaining running statistics. At any given
moment it allows a dump of the current state. In addition
to the hash key fixes we provided for the dump data
interface, ntop still needs additional work here as well.
Dump does not include the alert event data at all.
Additionally, there appears to be a buffering problem in
the dump code. Repetitive dump requests randomly
shows some data elements as zero or null. The rate at
which this data error occurs correlates to the dump
repetition cycle.

The ntop data is maintained as a cluster of GDBM
databases. It may be possible to extract data directly
from these databases but we have not yet tried this
approach.

7 ANTI-DDOS TOOL

Tools are emerging to counter-act some DDoS attack
systems and frameworks. This class of tool is aimed at
disabling the DDoS infrastructure. It is analogous to virus
eradicators. A review provides an insight to some
techniques for proactive defense. These tools emulate
components of a DDoS system, therefore their operation
may be confused with actual DDoS events, triggering
Intrusion Detection Systems (IDS).

14

7.1 ZOMBIE ZAPPER

Zombie Zapper (ZZ) [NOMAD2000] is a tool that
operates on UNIX and Windows NT operating systems.
This tool emulates the “master” protocol source providing
a “quit” or “die” command to the clients. This tool is
dependent upon default parameters specified in the
source code of the DDoS. ZZ is less effective where the
clients are sending packets from behind a firewall that
blocks the incoming ports. This tool is not effective in
cases where alternate ports via proxy servers or
tunneling are used. The tool was built and tested on
Solaris 7 and RedHat Linux 6.2 operating systems. The
Solaris version of ZZ did not appear to stop the default
trinoo clients when asserted. Operating from the Linux
platform it did operate as expected. The UNIX version
can select different physical network interfaces for its
messages. Other options include ability to send to a
class C broadcast address, set a timeout for sending,
selecting the UDP send port (for trinoo only). Listing 7.1-
1 is the UNIX command line interface summary of the
tool.

./zz [-a 0-5] [-c class C] [-d dev] [-h] [-m host]
[-s src] [-u udp] [-v]
hosts

 -a antiddos type to kill:
 0 types 1-4 (default)
 1 trinoo
 2 tfn
 3 stacheldraht
 4 trinoo on Windows
 5 shaft (requires you use the -m option)
 -c class C in x.x.x.0 form
 -f time in seconds to send packets (default 1)
 -d grab local IP from dev (default eth0)
 -h this help screen
 -m my host being flooded (used with -a 5 above
 only one host)
 -s spoofed source address (just in case)
 -u UDP source port for trinoo (default 53)
 -v verbose mode (use twice for more verbosity)
 host(s) are target hosts (ignored if using –c)

Listing 7.1-1 ZZ UNIX command line parameters

The sample runs included below provide insight into the
payload statistics, data, and the DDoS target type.

[root@redhat1 zombie-1.2]# ./zz -v 20.0.0.1
Zombie Zapper v1.2 - DDoS killer
Bugs/comments to thegnome@razor.bindview.com
More info and free tools at
http://razor.bindview.com
Copyright (c) 2000 BindView Development

Sending packets to stop these possible
daemons from flooding

 Trinoo, TFN, Stacheldraht, Troj_Trinoo

Building anti-Trinoo packets
 Payload is "d1e l44adsl d1e"
 Data length of 15
 Packet size is 43
 48 packets sent in 1 seconds
Building anti-TFN packets
 Payload is "12345"
 Data length of 5
 Packet size is 33
 50 packets sent in 1 seconds
Building anti-Stacheldraht packets
 Payload is NULL
 Data length of 0
 Packet size is 28
 49 packets sent in 1 seconds
Building anti-Troj_Trinoo packets
 Payload is "d1e []..Ks l44"
 Data length of 14
 Packet size is 42
 48 packets sent in 1 seconds
Complete

Listing 7.1-2 ZZ UNIX example output

The following output sequence displays trinoo mping
output indicating that one of its broadcasts hosts has
been disabled. In many cases the receiving trinoo client
would need to be restarted, as an example this could be
accomplished as a UNIX CRON job every minute.
However it is unlikely one would be able to detect that
the clients had been terminated in any way except
reduction of UDP (in trinoo’s case) packets against the
victim system. In summary there is no formal
acknowledge of client termination.

BEFORE zombie zapper run in listing 7.1-2
trinoo> mping
mping: Sending a PING to every Bcasts.
trinoo> PONG 1 Received from 40.0.0.1
PONG 2 Received from 30.0.0.1
PONG 3 Received from 20.0.0.1

AFTER zombie zapper run in listing 7.1-2
trinoo> mping
mping: Sending a PING to every Bcasts.
trinoo> PONG 1 Received from 40.0.0.1
PONG 2 Received from 30.0.0.1

Figure 7.1-1 is a screen dump of the tool’s graphical user
interface for Windows NT. This version does not allow
selection of different physical network interfaces.

15

Figure 7.1-1 ZZ Graphical User Interface

Zombie zapper offers one early approach for responding
to DDoS attacks. It is conceivable and practical to
automate response with the UNIX version of the tool.
One side effect was noted when operating the network
interface monitor utility “snoop” on Solaris 7. When
sending Zombie Zapper packets to the Solaris 7 target
which was also being monitored with snoop, it caused
snoop to core dump. The network utility tcpdump-3.5.2
operated without error.

8 ADN CONCEPT EXPERIMENTS

These experiments operate on the testbed to validate
and explore techniques for ADN. They represent
fundamental elements to an ADN solution.

8.1 SECURE CHANNEL BANDWIDTH RESERVATION

This experiment focused on performing a test utilizing
Quality of Service classes for channel reservation of
control traffic while under DDoS attack. Solaris
Bandwidth Manager (SBM) allows network traffic types to
be defined into seven priority classes. These classes are

used as filters to provide prioritization and scheduling.
The attributes used for class definition include, IP
addresses (source, destination), IP Protocol type (UDP,
TCP, other), ports for TCP/UDP (source, destination),
Type of Service value (TOS) and URL or URL groups.
SBM was configured to reserve 15% bandwidth
allocation for telnet traffic and Secure Shell (SSH).

SBM was installed and operating on the pseudo internet
service provider platform in the assessment environment
as described in section 1.2. Parameters were also set to
simulate 10 MBPS ISP link rates from Organizations 2, 3,
4 with Organization 1 having a 1.544 MBPS link rate.
SBM includes a Java based management graphical user
interface to configure and control the capabilities of the
tool. During a DDoS attack on organization 1 the routing
platform completely froze or stalled all processing. No
keyboard, or mouse events were processed. Additionally
no packets were able to pass through the router and
SBM.

This behavior continued until the DDoS stopped, and
even a few seconds after the DDoS termination. “trinoo”
was used as the DDoS attack tool and was operated for
20-60 seconds and represents an early and immature
capability compared to currently available tools. The
leverage of bandwidth is relatively light compared to
possible DDoS architectures, where the target system
may see packets from hundreds or thousands of
sources. Testing has also revealed that the SBM product
while under attack will not allow organization 1 to emit
and receive ping responses to organization 5. The same
test was performed without SBM and pings operated
properly between organization 1 and 5.

8.2 ADAPTIVE FIREWALL EXPERIMENT #2

SBM was removed for the following experiment due to
reasons described in the section 8.1. It was tested during
attack and did not allow any outbound connections from
organization 1 to organization 2. A primary focus of this
project is to understand the behavior issues when
dynamically updating rules in firewalls. The very first
experiment was created to explore this using IP Filter as
the stateful packet filtering firewall. This project
developed a set of tools for dynamic modification of
rulesets across the network. This experiment presumes
the firewalls are across a virtual private network that
allows dynamic rule modifications.

Figure 8.2-1 depicts the set of messages to support this
experiment. A set of tests were performed and timed to
provide a response time estimate while background TCP
and UDP traffic generators were operating to load the
network from organizations 2, 3, and 4. Traffic generators

16

Organiza tion 1

A
d

a
p

tiv
e

 F
ire

w
a

ll

Organiza tion 1

A
d

a
p

tiv
e

 F
ire

w
a

ll

Organiza tion 3

A
d

a
p

tiv
e

 F
ire

w
a

ll

Organiza tion 4

A
d

a
p

tiv
e

 F
ire

w
a

ll

Organiza tion 4

A
d

a
p

tiv
e

 F
ire

w
a

ll

Organiza tion 2

A
d

a
p

tiv
e

 F
ire

w
a

ll

Organiza tion 2

A
d

a
p

tiv
e

 F
ire

w
a

llAttack Control
Pla tform

IP Network
ISP(s)

(1) Detection of UDP flood
(2) Send control message with firewall rule

to cooperating firewall(s)
(3) Update network state, (flood

ceased/continues)

1

2

3

were developed and operated to generate profile based
network loads. In this experiment organizations 2, 3, and
4 were generating 3 to 5 megabits per second of
background traffic. The attack traffic was also produced
from organizations 2, 3, and 4 using the remaining
bandwidth. During the test the nominal ping time,
normally 1 millisecond from organization 1 to
organization 5, climbed to 70-150 milliseconds during the
DDoS attack. While this delayed the communication
between organizations it did not stop it, allowing firewall
updates to be made. Table 8.2-1 lists the reaction times
for firewall modification. Figure 8.2-1 and 8.2-2 illustrate
the message sequence as a result of the attack.

Table 8.2-1 Firewall Reaction Times

Insert Block
Rule (seconds)

Remove Block
Rule (seconds)

Traffic load 10 11
Traffic load with
DDoS

14 13

Figure 8.2-1 Dynamic Firewall Rule Message
Sequence

Figure 8.2-2 Overview of Experiment #2

org1 org2

Dynamic RULE inject to
block egressing UDP traffic

Firewall
Rule/State
Change

DDoS Attack Traffic

UDP traffic ceases

Dynamic RULE inject to
allow egressing UDP traffic

Network Operations Verifies
DDoS terminated

org1org1 org2org2

Dynamic RULE inject to
block egressing UDP traffic

Firewall
Rule/State
Change

DDoS Attack Traffic

UDP traffic ceases

Dynamic RULE inject to
allow egressing UDP traffic

Network Operations Verifies
DDoS terminated

17

REFERENCES

[BLAZE2000]
Blaze, Matt, et. al., “The Role of Trust Managment in
Distributed Systems Security,” AT&T Research Labs
and Distibute Sytems Lab, Univ. Penn.

[CERT/CC1999]
CERT/CC et. al., “Results of the Distributed-Systems
Intruder Tools Workshop,” CERT/CC, November
1999.

[CISCORPF2000]
 “Unicast Reverse Path Forwarding,” CISCO, May
2000.

[COMERFORD2001]
Comerford, Richard, “No Longer in Denial,” IEEE
Spectrum, January 2001.

[DITTRICH2000]
Dave Dittrich Denial of Service information site,
http://www.washington.edu/People/dad/

[GOTO1999]
Detecting Malicious Activiites Through Port
Profiling, Goto, Shigeki, and Iguchi, Makoto, IEEE
trans. Information and systems, vol E82-D, NO. 4
April 1999.

[IOANNIDIS2000]
Ioannidis S., Keromytis D., Bellovin S., Smith J.,
“Implementing a Distributed Firewall”, ACM
Converence on Computer Communications Security,
Athens, Greece, November 2000.

[INTERNET2000]
D. Durham, J. Boyle, R. Cohen, S. Herzog, et al
“The Common Open Policy Service Protocol
(Request for Comments: 2748)", January 2000.

[KEYNOTE]
Blaze, Matt, et. al., “The Keynote Trust Management
System,” work in progress. Internet Draft, April 1998,
http://www.cis.upenn.edu/~angelos/draft-angelos-
spki-keynote.txt.gz

[NOMAD2000]
Simple Nomad, Zombie Zapper, RAZOR, BindView
http://razor.bindview.com/tools/ZombieZapper_for
m.shtml

[RID2000]
Remote.Intrusion.Detector, TheoryGroup,
http://www.theorygroup.com/

A-1

APPENDIX A

A-2

Table A-1 describes systems and platforms that were used to generate the results in this
appendix. Firewall rules were set to block all incoming and outgoing packets on the interface.

Table A-1. Platform Overview

Item Reference Type Description
Firewall IP Filter 3.4.14 Open source firewall system

software
Platform S1
192.168.168.8

Redhat 7.0, Pentium III, 533
MHZ/133FSB, 256 MB RAM,
100MBPS NIC

Attack machine for DoS exploits
Source of attacks

Platform FW1
192.168.168.254

Solaris 8, Sparc Classic, 40MHZ
SuperSparc, 96MB RAM,
10MBPS onboard NIC

Host firewall platform, target of all
attacks

Platform FW2
192.168.168.8

Solaris 8, SparcStation 20, Dual
75MHZ SuperSparc, 256MB RAM,
100MBPS NIC

Host firewall platform, used for
comparison in severe DoS
situations.

The other row of information below each event is the firewall block log. The fields that are common
in the log output from the ‘ipmon’ utility are:

Field Description

1 The date of packet receipt. This is suppressed when the message is sent to syslog.

2 The time of packet receipt. This is in the form HH:MM:SS.F, for hours, minutes seconds,
and fractions of a second (which can be several digits long).

3 The name of the interface the packet was processed on, e.g., we1.

4 The group and rule number of the rule, e.g., @0:17. These can be viewed with ipfstat -n.

5 The action: p for passed or b for blocked.

6 The addresses. This is actually three fields: the source address and port (separated by a
comma), the -> symbol, and the destination address and port. E.g.: 209.53.17.22,80 ->
198.73.220.17,1722.

7 PR followed by the protocol name or number, e.g., PR tcp.

8 len followed by the header length and total length of the packet, e.g., len 20 40.

A-3

Table A-2 is an overview of the firewall events examined in the remainder of the appendix A.

Table A-2. Attack/Probe Event Overview

Event Attack/Probe
001 Ping
002 ping flood
003 telnet to a non standard telnet port
004 ftp
005 telnet (connection sequence)
006 ping maximum packet size
007 Flood ping with maximum packet size
008 arnup

[CODE COMMENT]
sends a single UDP datagram with the source and destination address and port set to whatever you want. datagram passed to
kernel: 45002600 00000000 ff110000 c0a8a8fc c0a8a8fc 03e807d0 00120000 31323334 35363738 3930

009 jolt2
[CODE COMMENT]
This is the proof-of-concept code for the Windows denial-of-serice attack described by the Razor team (NTBugtraq, 19-May-00)
(MS00-029). This code causes cpu utilization to go to 100%.

010 kod

[CODE COMMENT]
bluescreens windows users(98/98se) and kills tcp stack windows handles igmp badly and this is the result

011 kox
[CODE COMMENT]
this was a successful attempt to duplicate klepto/defile's kod win98 exploit and add spoofing support to it. affected systems:
windows 98, windows 98 SE, windows 2000 build 2000 results: bluescreen, tcp/ip stack failure, lockup, or instant reboot

012 nestea

[CODE COMMENT]
This exploits the "off by one ip header" bug in the linux ip frag code. Crashes linux 2.0.* and 2.1.* and some windows boxes
this code is a total rip of teardrop - it's messy

013 newtear

[CODE COMMENT]
this is a new version of teardrop. It affects NT 4 and Win95 machines with all current patches and hotfixes. Causes a
bluescreen in both operating systems. Linux appears unaffected, other *NIXes untested. Differences are: Smaller padding data
size (20 bytes instead of 28 in previous teardrop) Faked out UDP total length. (Increased reported UDP length to twice what it
really is)

A-4

014 sesquipedalian
Affects Linux kernels between 2.1.89 and 2.2.3. This sends a series of IP fragments such that a 0 length
fragment is first in the fragment list. This causes a reference count on the cached routing information for
that packet's originator to be incremented one extra time. This makes it impossible for the kernel to
deallocate the destination entry and remove it from the cache.

It is possible for a malicious attacker to send spoofed RPC datagrams to UDP destination port 135 so
that it appears as if one RPC server sent bad data to another RPC server. The second server returns a
REJECT packet and the first server (the spoofed serv er) replies with another REJECT packet creating a
loop that is not broken until a packet is dropped, which could take a few minutes. If this spoofed UDP
packet is sent to multiple computers, a loop could possibly be created, consuming processor resources
and network bandwidth
http://www.linuxgangster.com/dos.htm

015 synk4
Any system providing TCP-based services to the Internet community are potentially vulnerable to this
Denial of Service attack. The Synk4 DoS is considered a Syn Flooding type of attack.
http://www.wwdsi.com/demo/saint_tutorials/synk4.html
[CODE COMMENTS]
Syn Flooder by Zakath * TCP Functions by trurl_ (thanks man). Random IP Spoofing Mode – ultima How To Use: Usage is
simple. srcaddr is the IP the packets will be spoofed from. dstaddr is the target machine you are sending the packets to. low
and high ports are the ports you want to send the packets to. Random IP Spoofing Mode: Instead of typing in a source address,
just use '0'. This will engage the Random IP Spoofing mode, and the source address will be a random IP instead of a fixed ip.

016 targa
[CODE COMMENTS]
targa 1.2 by Mixter usage: ./targa1 <startIP> <endIP> [-t type] [-n repeats] interface to 8 multi-platform remote denial of service
exploits usage: targa1 <startIP> <endIP> [-t type] [-n repeats] startIP - endIP: IP range to send packets to (destination) start
and end must be on the same C class (1.1.1.X) repeats: repeat the whole cycle n times (default is 1) type: kind of remote DoS
to send (default is 0) 1 = bonk ($) 2 = jolt (@) 3 = land (-) 4 = nestea (.) 5 = newtear (#) 6 = syndrop (&) 7 = teardrop (%) 8 =
winnuke (*) 0 = use all remote DoS types at once

017 targa2
[CODE COMMENTS]
targa 2.1 by Mixter usage: ./targa2 <startIP> <endIP> [-t type] [-n repeats] startIP - endIP: IP range to send packets to
(destination) start and end must be on the same C class (1.1.1.X) repeats: repeat the whole cycle n times (default is 1) type:
kind of remote DoS to send (default is 0) 1 = bonk ($) 2 = jolt (@) 3 = land (-) 4 = nestea (.) 5 = newtear (#) 6 = syndrop (&) 7 =
teardrop (%) 8 = winnuke (*) 9 = 1234 (!) 10 = saihyousen (+) 11 = oshare (|) 0 = use all remote DoS types at once

018 targa3
[CODE COMMENTS]
IP stack penetration tool / 'exploit generator' Sends combinations of uncommon IP packets to hosts to generate attacks using
invalid fragmentation, protocol, packet size, header values, options, offsets, tcp segments, routing flags, and other
unknown/unexpected packet values. Useful for testing IP stacks, routers, firewalls, NIDS, etc. for stability and reactions to
unexpected packets. Some of these packets might not pass through routers with filtering enabled - tests with source and
destination host on the same ethernet segment gives best effects.

019 teardrop
Some implementations of the TCP/IP IP fragmentation re-assembly code do not properly handle overlapping IP fragments.
Teardrop is a widely available attack tool that exploits this vulnerability. Exploits the overlapping IP fragment bug present in all
Linux kernels and NT 4.0 / Windows 95 (others?)

A-5

020 tentacle
NOTE: also exists as a virus for Windows 3.1
[CODE COMMENTS]
proof-of-concept DoS against tcp (coded in 10 mins :p) open a huge number of sockets to a server,then terminate the process
without closing the connection on the server side

021 twinge

[CODE COMMENTS]
this cycle through all the possible icmp types and subtypes and send to target host, 1 cycle == 1 run thru all of em twinge.c by
sinkhole@dos.org - licensed for use by the public This is a PoC (Proof of Concept) program for educational uses.
usage: ./twinge <dest> <cycles [0 == continuous]>

022 winnuke
The WinNuke attack sends OOB (Out-of-Band) data to an IP address of a Windows machine connected to a network and/or
Internet. Usually, the WinNuke program connects via port 139, but other ports are vulnerable if they are open. When a
Windows machine receives the out-of-band data, it is unable to handle it and exhibits odd behavior, ranging from a lost Internet
connection to a system crash (resulting in the infamous Blue Screen of Death).
http://www.wwdsi.com/demo/tutorials/winnuke.html

A-6

Table A-3. IP Filter Log ping, telnet, ftp

Event Source / Destination Command Line Command output / Notes
001 S1/FW1 % ping FW1 Standard ping command
03/11/2000 08:07:39.251985 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:07:40.251727 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:07:41.251475 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:07:42.251218 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:08:59.835366 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN

002 S1/FW1 % ping –f FW1 ping with flood option
03/11/2000 08:10:58.101776 99x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:10:59.092619 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:10:59.101565 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:10:59.112290 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN
03/11/2000 08:10:59.121495 99x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 84 icmp 8/0 IN

003 S1/FW1 % telnet FW1 300 telnet to port 300
03/11/2000 08:23:42.565436 le0 @0:2 b 192.168.168.8,33119 -> 192.168.168.252,300 PR tcp len 20 60 -S 3746563564 0 5840 IN
03/11/2000 08:23:45.558101 le0 @0:2 b 192.168.168.8,33119 -> 192.168.168.252,300 PR tcp len 20 60 -S 3746563564 0 5840 IN
03/11/2000 08:23:51.556599 le0 @0:2 b 192.168.168.8,33119 -> 192.168.168.252,300 PR tcp len 20 60 -S 3746563564 0 5840 IN

004 S1/FW1 % ftp FW1 Standard FTP session connection attempt
03/11/2000 08:40:51.182814 le0 @0:2 b 192.168.168.8,33196 -> 192.168.168.252,21 PR tcp len 20 60 -S 555229045 0 5840 IN
03/11/2000 08:40:54.179115 le0 @0:2 b 192.168.168.8,33196 -> 192.168.168.252,21 PR tcp len 20 60 -S 555229045 0 5840 IN
03/11/2000 08:41:00.177608 le0 @0:2 b 192.168.168.8,33196 -> 192.168.168.252,21 PR tcp len 20 60 -S 555229045 0 5840 IN

005 S1/FW1 % telnet FW1 Standard telnet session
Note: the port was opened up and passed the packets so handshake could
be analyzed

03/11/2000 08:49:04.611259 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 48 -S 1630947217 0 24820 IN
03/11/2000 08:49:04.613456 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 40 -A 1630947218 1606348785 24820 IN
03/11/2000 08:49:04.618522 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 64 -AP 1630947218 1606348785 2482 0 IN
03/11/2000 08:49:04.981992 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 40 -A 1630947242 1606348800 24820 IN
03/11/2000 08:49:04.983245 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 55 -AP 1630947242 1606348800 2482 0 IN
03/11/2000 08:49:05.078700 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 40 -A 1630947257 1606348815 24820 IN
03/11/2000 08:49:05.087354 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 57 -AP 1630947257 1606348833 2482 0 IN
03/11/2000 08:49:05.198663 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 40 -A 1630947274 1606348854 24820 IN
03/11/2000 08:49:05.277986 le0 @0:1 p 192.168.168.7,32882 -> 192.168.168.252,23 PR tcp len 20 46 -AP 1630947274 1606348860 2482 0 IN

A-7

Table A-4. IP Filter log, ping, arnup100, jolt2, kod

Event Source / Destination Command Line Command output / Notes
006 S1/FW1 % ping –s 65507 FW1 ping with maximum size packets, note repeat blocks and fragmentation
03/11/2000 09:19:41.143925 44x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (415) frag -395@65120 IN
03/11/2000 09:19:41.198094 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 1500 icmp 8/0 IN
03/11/2000 09:19:42.144331 44x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (415) frag -395@65120 IN
03/11/2000 09:19:42.198499 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 1500 icmp 8/0 IN
03/11/2000 09:19:43.144029 44x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (415) frag -395@65120 IN
03/11/2000 09:19:43.198206 le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 1500 icmp 8/0 IN

007 S1/FW1 % ping –s 65507 FW1 -f ping and flood with maximum size packets, note repeat blocks and
fragmentation

03/11/2000 09:21:10.191229 31x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (1500) frag +-1480@11840 IN
03/11/2000 09:21:10.225882 11x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (1500) frag +-1480@59200 IN
03/11/2000 09:21:10.238569 10x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (1500) frag +-1480@35520 IN
03/11/2000 09:21:10.250136 12x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (1500) frag +-1480@50320 IN
03/11/2000 09:21:10.263012 10x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR icmp len 20 (1500) frag +-1480@63640 IN

008 S1/FW1 % arnup100 FW1 1000 FW1 2000

03/11/2000 16:54:32.456411 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN

009 S1/FW1 % jolt2 –s FW1 –p 2000 FW1 NOTE: 29209 packets. This tool generated approximately 5000
packets/second

03/11/2000 17:02:05.929395 29203x le0 @0:2 b 127.0.0.1 -> 192.168.168.252 PR

010 S1/FW1 % kod FW1 –p 0508 –t 10

03/11/2000 17:09:12.253479 44x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR 2 len 20 (220) frag -200@14800 IN
03/11/2000 17:09:12.484769 66x le0 @0:2 b 192.168.168.8 -> 192.168.168.252 PR 2 len 20 (220) frag -200@14800 IN

A-8

Table A-5. IP Filter log, kox, nestea

Event Source / Destination Command Line Command output / Notes
011 S1/FW1 % kox FW1

03/11/2000 17:14:28.609139 le0 @0:2 b 36.72.20.64 -> 192.168.168.252 PR 2 len 20 (1500) IN
03/11/2000 17:14:29.618277 le0 @0:2 b 36.72.20.64 -> 192.168.168.252 PR 2 len 20 (1500) frag +1480@1480 IN
03/11/2000 17:14:31.625837 le0 @0:2 b 36.72.20.64 -> 192.168.168.252 PR 2 len 20 (1500) frag +1480@2960 IN
03/11/2000 17:14:33.635330 le0 @0:2 b 36.72.20.64 -> 192.168.168.252 PR 2 len 20 (1500) frag +1480@4440 IN

012 S1/FW1 % nestea FW1 FW1 –s 1000 –t 2000 –n 100 NOTE: this is only a portion of the blocks
03/11/2000 17:17:06.189327 le0 @0:2 b 192.168.168.7,138 -> 192.168.168.255,138 PR udp len 20 261 IN
03/11/2000 17:17:26.738900 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN
03/11/2000 17:17:26.739346 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 17:17:26.739799 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 60 284 IN
03/11/2000 17:17:26.750839 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN
03/11/2000 17:17:26.751287 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 17:17:26.751739 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 60 284 IN
03/11/2000 17:17:28.611256 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 60 284 IN
03/11/2000 17:17:28.630433 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN
03/11/2000 17:17:28.630877 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 17:17:28.631331 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 60 284 IN
03/11/2000 17:17:28.650325 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN
03/11/2000 17:17:28.650776 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 17:17:28.651239 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 60 284 IN
03/11/2000 17:17:28.670427 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN
03/11/2000 17:17:28.670877 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 17:17:28.690296 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN
03/11/2000 17:17:28.690746 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 17:17:28.691204 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 60 284 IN
03/11/2000 17:17:28.710325 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 38 IN
03/11/2000 17:17:28.710772 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 17:17:28.711226 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 60 284 IN

A-9

Table A-6. IP Filter log, newtear, sesquipedlian

Event Source / Destination Command Line Command output / Notes
013 S1/FW1 % newtear FW1 FW1 –s 1000 –t 2000 –n 100 NOTE: this is only a portion of the blocks
03/11/2000 18:13:09.648279 10x le0 @0:2 b 20.0.0.0,20 -> 192.168.168.252,12 PR udp len 20 28 IN
03/11/2000 18:13:09.652291 10x le0 @0:2 b 30.0.0.0,30 -> 192.168.168.252,13 PR udp len 20 28 IN
03/11/2000 18:13:09.656091 10x le0 @0:2 b 40.0.0.0,40 -> 192.168.168.252,14 PR udp len 20 28 IN
03/11/2000 18:13:09.659896 8x le0 @0:2 b 50.0.0.0,50 -> 192.168.168.252,15 PR udp len 20 28 IN
03/11/2000 18:13:09.663096 le0 @0:2 b 60.0.0.0,60 -> 192.168.168.252,16 PR udp len 20 28 IN
03/11/2000 18:13:09.663562 2x le0 @0:2 b 70.0.0.0,70 -> 192.168.168.252,17 PR udp len 20 28 IN
03/11/2000 18:13:09.664398 2x le0 @0:2 b 80.0.0.0,80 -> 192.168.168.252,18 PR udp len 20 28 IN

014 S1/FW1 % sesquipedalian -s 1080 -d 1080 -n 100 -u 0 S1 FW1

03/11/2000 18:16:37.135490 le0 @0:2 b 192.168.168.102,1080 -> 192.168.168.252,1080 PR udp len 20 52 IN
03/11/2000 18:16:37.135928 le0 @0:2 b 192.168.168.102,18768 -> 192.168.168.252,19533 PR udp len 20 20 IN
03/11/2000 18:16:37.136359 le0 @0:2 b 192.168.168.102 -> 192.168.168.252 PR udp len 20 (52) frag 32@32 IN
03/11/2000 18:16:37.140463 le0 @0:2 b 192.168.168.103,1080 -> 192.168.168.252,1080 PR udp len 20 52 IN
03/11/2000 18:16:37.140897 le0 @0:2 b 192.168.168.103,18768 -> 192.168.168.252,19533 PR udp len 20 20 IN
03/11/2000 18:16:37.141319 le0 @0:2 b 192.168.168.103 -> 192.168.168.252 PR udp len 20 (52) frag 32@32 IN
03/11/2000 18:16:37.141768 le0 @0:2 b 192.168.168.104,1080 -> 192.168.168.252,1080 PR udp len 20 52 IN
03/11/2000 18:16:37.142204 le0 @0:2 b 192.168.168.104,18768 -> 192.168.168.252,19533 PR udp len 20 20 IN
03/11/2000 18:16:37.142625 le0 @0:2 b 192.168.168.104 -> 192.168.168.252 PR udp len 20 (52) frag 32@32 IN

A-10

Table A-7. IP Filter log, synk4, targa

Event Source / Destination Command Line Command output / Notes
015 S1/FW1 % synk4 S1 FW1 1000 1100 NOTE: this is only a portion of the blocks
03/11/2000 18:19:47.190616 le0 @0:2 b 203.91.108.80,2071 -> 192.168.168.252,1000 PR tcp len 20 40 -S 674719801 0 65535 IN
03/11/2000 18:19:47.201971 le0 @0:2 b 24.156.172.223,2071 -> 192.168.168.252,1001 PR tcp len 20 40 -S 674719801 0 65535 IN
03/11/2000 18:19:47.223785 le0 @0:2 b 244.194.187.221,2071 -> 192.168.168.252,1002 PR tcp len 20 40 -S 674719801 0 65535 IN
03/11/2000 18:19:47.241931 le0 @0:2 b 139.27.63.204,2071 -> 192.168.168.252,1003 PR tcp len 20 40 -S 674719801 0 65535 IN
03/11/2000 18:19:47.261896 le0 @0:2 b 135.102.201.205,2071 -> 192.168.168.252,1004 PR tcp len 20 40 -S 674719801 0 65535 IN
03/11/2000 18:19:47.281878 le0 @0:2 b 69.16.159.24,2071 -> 192.168.168.252,1005 PR tcp len 20 40 -S 674719801 0 65535 IN
03/11/2000 18:19:47.301909 le0 @0:2 b 69.228.153.178,2071 -> 192.168.168.252,1006 PR tcp len 20 40 -S 674719801 0 65535 IN
03/11/2000 18:19:47.321972 le0 @0:2 b 217.202.208.134,2071 -> 192.168.168.252,1007 PR tcp len 20 40 -S 674719801 0 65535 IN

016 S1/FW1 % targa FW1=1 FW1 –t 0 –n 2 NOTE: this is only a portion of the blocks
03/11/2000 18:26:36.640244 le0 @0:2 b 94.145.87.47,53 -> 192.168.168.252,53 PR udp len 20 56 IN
03/11/2000 18:26:36.920775 172x le0 @0:2 b 216.134.171.91 -> 192.168.168.252 PR icmp len 20 (400) frag +380@376 IN
03/11/2000 18:26:36.981740 le0 @0:2 b 93.133.103.8 -> 192.168.168.252 PR icmp len 20 400 icmp 8/0 IN
03/11/2000 18:26:36.982189 116x le0 @0:2 b 93.133.103.8 -> 192.168.168.252 PR icmp len 20 (400) frag +380@376 IN
03/11/2000 18:26:37.023525 17x le0 @0:2 b 30.183.118.113 -> 192.168.168.252 PR icmp len 20 (400) frag +380@1520 IN
03/11/2000 18:26:37.106573 le0 @0:2 b 170.65.67.39,1079 -> 192.168.168.252,50602 PR udp len 20 38 IN
03/11/2000 18:26:37.107017 le0 @0:2 b 170.65.67.39 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 18:26:37.107474 le0 @0:2 b 170.65.67.39,1079 -> 192.168.168.252,50602 PR udp len 60 284 IN
03/11/2000 18:26:37.111230 le0 @0:2 b 170.65.67.39 -> 192.168.168.252 PR udp len 20 (136) frag 116@48 IN
03/11/2000 18:26:37.111681 le0 @0:2 b 170.65.67.39,1079 -> 192.168.168.252,50602 PR udp len 60 284 IN

A-11

Table A-8. IP Filter log, targa2, targa3

Event Source / Destination Command Line Command output / Notes
017 S1/FW1 % targa2 FW1-1 FW1 -t 9 -n 1 NOTE: this is only a portion of the blocks
04/11/2000 08:01:53.187112 le0 @0:2 b 193.169.2.193,2 -> 192.168.168.252,2 PR udp len 20 36 IN
04/11/2000 08:01:53.187595 le0 @0:2 b 194.170.3.194,3 -> 192.168.168.252,3 PR udp len 20 36 IN
04/11/2000 08:01:53.188079 le0 @0:2 b 195.171.4.195,4 -> 192.168.168.252,4 PR udp len 20 36 IN
04/11/2000 08:01:53.188554 le0 @0:2 b 196.172.5.196,5 -> 192.168.168.252,5 PR udp len 20 36 IN
04/11/2000 08:01:53.189031 le0 @0:2 b 197.173.6.197,6 -> 192.168.168.252,6 PR udp len 20 36 IN
04/11/2000 08:01:53.189494 le0 @0:2 b 198.174.7.198,7 -> 192.168.168.252,7 PR udp len 20 36 IN
04/11/2000 08:01:53.190101 le0 @0:2 b 199.175.8.199,8 -> 192.168.168.252,8 PR udp len 20 36 IN

018 S1/FW1 % targa3 FW1 FW1 –c 1 NOTE: this is only a portion of the blocks
04/11/2000 08:07:10.531450 le0 @0:2 b 154.170.84.17 -> 192.168.168.252 PR 255 len 20 (460) frag 440@8 IN
04/11/2000 08:07:10.537001 le0 @0:2 b 125.129.179.43,47582 -> 192.168.168.252,25427 PR tcp len 20 460 -AF 3832265876 215595288
60236 IN
04/11/2000 08:07:10.539239 le0 @0:2 b 152.69.17.101 -> 192.168.168.252 PR udp len 20 (460) frag +440@65528 IN
04/11/2000 08:07:10.544699 le0 @0:2 b 245.33.69.53 -> 192.168.168.252 PR egp len 20 (460) frag 440@8 IN
04/11/2000 08:07:10.546834 le0 @0:2 b 160.65.209.49,38574 -> 192.168.168.252,21645 PR tcp len 20 460 -SF 4113714051 1509308798
50591 IN
04/11/2000 08:07:10.555565 le0 @0:2 b 204.182.213.71 -> 192.168.168.252 PR 2 len 20 (460) frag 440@8 IN
04/11/2000 08:07:10.557705 le0 @0:2 b 65.176.74.29,59947 -> 192.168.168.252,37697 PR udp len 20 460 IN
04/11/2000 08:07:10.566038 le0 @0:2 b 198.35.123.50 -> 192.168.168.252 PR 4 len 20 (460) IN

A-12

Table A-9. IP Filter log, teardrop, tentacle, twinge, winnuke

Event Source / Destination Command Line Command output / Notes
019 S1/FW1 % teardrop FW2 FW1 –s 1000 –t 2000 –n 1
04/11/2000 08:09:12.220497 le0 @0:2 b 192.168.168.252,1000 -> 192.168.168.252,2000 PR udp len 20 56 IN
04/11/2000 08:09:12.220939 le0 @0:2 b 192.168.168.252 -> 192.168.168.252 PR udp len 20 (24) frag 4@24 IN

020 S1/FW1 % tentacle FW1 7777 10

04/11/2000 08:10:57.333015 le0 @0:2 b 192.168.168.8,34580 -> 192.168.168.252,7777 PR tcp len 20 60 -S 3980288427 0 5840 IN
04/11/2000 08:11:00.329956 le0 @0:2 b 192.168.168.8,34580 -> 192.168.168.252,7777 PR tcp len 20 60 -S 3980288427 0 5840 IN

021 S1/FW1 % twinge NOTE: this is only a portion of the blocks
04/11/2000 08:13:46.867779 le0 @0:2 b 65.218.100.63 -> 192.168.168.252 PR icmp len 20 29 icmp 0/0 IN
04/11/2000 08:13:46.868216 le0 @0:2 b 251.68.242.51 -> 192.168.168.252 PR icmp len 20 29 icmp 1/0 IN
04/11/2000 08:13:46.869067 le0 @0:2 b 44.95.203.104 -> 192.168.168.252 PR icmp len 20 29 icmp 2/0 IN
04/11/2000 08:13:46.869527 le0 @0:2 b 153.255.169.29 -> 192.168.168.252 PR icmp len 20 29 icmp 3/0 for 138.0.13.71 - 5.0.0.0 PR ipv6-icmp len 0
(20556) IN
04/11/2000 08:13:46.870149 le0 @0:2 b 153.255.169.29 -> 192.168.168.252 PR icmp len 20 29 icmp 3/1 for 138.0.13.72 - 232.0.0.0 PR ipv6-icmp len 0
(20556) IN
04/11/2000 08:13:46.870632 le0 @0:2 b 153.255.169.29 -> 192.168.168.252 PR icmp len 20 29 icmp 3/2 for 116.32.99.111 - 0.0.0.32 PR hopopt len 0
(29584) frag 29584@17440 IN
04/11/2000 08:13:46.871109 le0 @0:2 b 153.255.169.29 -> 192.168.168.252 PR icmp len 20 29 icmp 3/3 for 138.0.13.76 - 147.0.0.0 PR ipv6-icmp len 0
(20556) IN

021 S1/FW1 % winnuke

04/11/2000 08:18:12.843355 le0 @0:2 b 192.168.168.8,34586 -> 192.168.168.252,139 PR tcp len 20 60 -S 145844525 0 5840 IN
04/11/2000 08:18:15.840448 le0 @0:2 b 192.168.168.8,34586 -> 192.168.168.252,139 PR tcp len 20 60 -S 145844525 0 5840 IN

B-1

APPENDIX B

INITIAL ADN TESTBED NMAP SCAN

B-2

The following tables contain output from NMAP, a network scanning tool. It was used to characterize our
initial testbed environment configuration.

B-3

NMAP BASE SCAN OF ADN TESTBED 12-Dec-2000 COMMAND: nmap –v –O –sS ’10.0.0-1.*’ ’20.0.-1.*’ ’30.0.-1.*’ ’40.0.0-1.*’ ’50.0.0-1.*’
10.x.x.x 10.0.0.254 10.0.1.254 20.0.0.1 20.0.0.254 20.0.1.254

Starting nmap V. 2.54BETA7 (
www.insecure.org/nmap/)
Host (10.0.0.0) seems to be a
subnet broadcast address
(returned 2 extra pings). Skipping
host.
Host (10.0.0.1) appears to be up
... good.
Initiating SYN Stealth Scan
against (10.0.0.1)

Host (10.0.0.254) appears to be
up ... good.
Initiating SYN Stealth Scan
against (10.0.0.254)

Host (10.0.0.255) seems to be a
subnet broadcast address
(returned 2 extra pings). Skipping
host.
Host (10.0.1.0) seems to be a
subnet broadcast address
(returned 1 extra pings). Skipping
host.
Host (10.0.1.254) appears to be
up ... good.
Initiating SYN Stealth Scan
against (10.0.1.254)

Host (10.0.1.255) seems to be a
subnet broadcast address
(returned 1 extra pings).
Skipping host.
Host (20.0.0.0) seems to be a
subnet broadcast address
(returned 2 extra pings). Skipping
host.
Host (20.0.0.1) appears to be up
... good.
Initiating SYN Stealth Scan
against (20.0.0.1)

Host (20.0.0.254) appears to be
up ... good.
Initiating SYN Stealth Scan
against (20.0.0.254)

Host (20.0.0.255) seems to be a
subnet broadcast address
(returned 2 extra pings). Skipping
host.
Host (20.0.1.0) seems to be a
subnet broadcast address
(returned 1 extra pings). Skipping
host.
Host (20.0.1.254) appears to be
up ... good.
Initiating SYN Stealth Scan
against (20.0.1.254)

7/tcp open echo 7/tcp open echo 7/tcp open echo
9/tcp open discard 9/tcp open discard 9/tcp open discard 7/tcp open echo 7/tcp open echo 7/tcp open echo
13/tcp open daytime 13/tcp open daytime 13/tcp open daytime 9/tcp open discard 9/tcp open discard 9/tcp open discard
19/tcp open chargen 19/tcp open chargen 19/tcp open chargen 13/tcp open daytime 13/tcp open daytime 13/tcp open daytime
21/tcp open ftp 21/tcp open ftp 21/tcp open ftp 19/tcp open chargen 19/tcp open chargen 19/tcp open chargen
22/tcp open ssh 22/tcp open ssh 21/tcp open ftp 21/tcp open ftp 21/tcp open ftp
23/tcp open telnet 23/tcp open telnet 23/tcp open telnet 23/tcp open telnet 23/tcp open telnet 23/tcp open telnet
25/tcp open smtp 25/tcp open smtp 25/tcp open smtp 25/tcp open smtp 25/tcp open smtp 25/tcp open smtp
37/tcp open time 37/tcp open time 37/tcp open time 37/tcp open time 37/tcp open time 37/tcp open time
79/tcp open finger 79/tcp open finger 79/tcp open finger 79/tcp open finger 79/tcp open finger 79/tcp open finger
111/tcp open sunrpc 111/tcp open sunrpc 111/tcp open sunrpc 111/tcp open sunrpc 111/tcp open sunrpc 111/tcp open sunrpc
512/tcp open exec 512/tcp open exec 512/tcp open exec 512/tcp open exec 512/tcp open exec 512/tcp open exec
513/tcp open login 513/tcp open login 513/tcp open login 513/tcp open login 513/tcp open login 513/tcp open login
514/tcp open shell 514/tcp open shell 514/tcp open shell 514/tcp open shell 514/tcp open shell 514/tcp open shell
515/tcp open printer 515/tcp open printer 515/tcp open printer 515/tcp open printer 515/tcp open printer 515/tcp open printer
540/tcp open uucp 540/tcp open uucp 540/tcp open uucp 540/tcp open uucp 540/tcp open uucp 540/tcp open uucp
2049/tcp open nfs 2049/tcp open nfs 4045/tcp open lockd 4045/tcp open lockd 4045/tcp open lockd
4045/tcp open lockd 4045/tcp open lockd 4045/tcp open lockd 6000/tcp open X11 6000/tcp open X11 6000/tcp open X11
6000/tcp open X11 6000/tcp open X11 6000/tcp open X11 6112/tcp open dtspc 6112/tcp open dtspc 6112/tcp open dtspc
6112/tcp open dtspc 6112/tcp open dtspc 6112/tcp open dtspc 7100/tcp open font-service 7100/tcp open font-service 7100/tcp open font-service
7100/tcp open font-service 7100/tcp open font-service 7100/tcp open font-service 32771/tcp open sometimes-rpc5 32771/tcp open sometimes-rpc5 32771/tcp open sometimes-rpc5

B-4

32771/tcp open sometimes-rpc5 32771/tcp open sometimes-rpc5 32771/tcp open sometimes-rpc5 32772/tcp open sometimes-rpc7 32772/tcp open sometimes-rpc7 32772/tcp open sometimes-rpc7
32772/tcp open sometimes-rpc7 32772/tcp open sometimes-rpc7 32772/tcp open sometimes-rpc7 32773/tcp open sometimes-rpc9 32773/tcp open sometimes-rpc9 32773/tcp open sometimes-rpc9
32773/tcp open sometimes-rpc9 32773/tcp open sometimes-rpc9 32773/tcp open sometimes-rpc9 32774/tcp open sometimes-rpc11 32774/tcp open sometimes-rpc11 32774/tcp open sometimes-rpc11
32774/tcp open sometimes-rpc11 32774/tcp open sometimes-rpc11 32774/tcp open sometimes-rpc11 32775/tcp open sometimes-rpc13 32775/tcp open sometimes-rpc13 32775/tcp open sometimes-rpc13
32775/tcp open sometimes-rpc13 32775/tcp open sometimes-rpc13 32775/tcp open sometimes-rpc13 32776/tcp open sometimes-rpc15 32776/tcp open sometimes-rpc15 32776/tcp open sometimes-rpc15
32776/tcp open sometimes-rpc15 32776/tcp open sometimes-rpc15 32776/tcp open sometimes-rpc15 32777/tcp open sometimes-rpc17 32777/tcp open sometimes-rpc17 32777/tcp open sometimes-rpc17
32777/tcp open sometimes-rpc17 32777/tcp open sometimes-rpc17 32777/tcp open sometimes-rpc17 32778/tcp open sometimes-rpc19 32778/tcp open sometimes-rpc19 32778/tcp open sometimes-rpc19
32778/tcp open sometimes-rpc19 32778/tcp open sometimes-rpc19 32778/tcp open sometimes-rpc19
32779/tcp open sometimes-rpc21 32779/tcp open sometimes-rpc21

32786/tcp open sometimes-rpc25 32786/tcp open sometimes-rpc25

The SYN Stealth Scan took 4
seconds to scan 1534 ports. For
OSScan assuming that port 7 is
open and port 1 is closed and
neither are firewalled. Interesting
ports on (10.0.0.1):
(The 1504 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive
increments
Difficulty=42629 (Worthy
challenge)
Sequence numbers: C17469DC
C1748DCA C1765B47
C1779B3A C1798010 C17B3A41
Remote operating system guess:
Solaris 2.6 - 2.7

For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (10.0.0.254):
(The 1506 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive
increments
Difficulty=23857 (Worthy
challenge)
Sequence numbers: B63F4698
B63FA5E8 B640A977 B6421AFD
B6435AA1 B64440FC
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 4
seconds to scan 1534 ports.
For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (10.0.1.254):
(The 1504 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive
increments
Difficulty=25506 (Worthy
challenge)
Sequence numbers: C1D82675
C1D93585 C1D95336
C1D9EE1F C1DA16CB
C1DB0946
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 4
seconds to scan 1534 ports.
For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (20.0.0.1):
(The 1507 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive
increments
 Difficulty=23256 (Worthy
challenge)
Sequence numbers: EA52A704
EA53E4C9 EA54BB16
EA563B23 EA57C371 EA5868B2
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 5
seconds to scan 1534 ports.
For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (20.0.0.254):
(The 1506 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive
increments
 Difficulty=37665 (Worthy
challenge)
Sequence numbers: B6A41B4A
B6A46E19 B6A63307
B6A66DCC B6A6BDCB
B6A75A5D
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 4
seconds to scan 1534 ports.
For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (20.0.1.254):
(The 1507 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive
increments
 Difficulty=45395 (Worthy
challenge)
Sequence numbers: EA9FBE52
EAA04445 EAA06BBE
EAA177E2 EAA342DE
EAA53108
Remote operating system guess:
Solaris 2.6 - 2.7

B-5

30.0.0.1 30.0.0.254 30.0.1.254 40.0.0.1 40.0.0.254 40.0.1.254

Host (20.0.1.255) seems to be a
subnet broadcast address (returned 1
extra pings). Skipping host.
Host (30.0.0.0) seems to be a subnet
broadcast address (returned 2 extra
pings). Skipping host.
Host (30.0.0.1) appears to be up ...
good.
Initiating SYN Stealth Scan against
(30.0.0.1)

Host (30.0.0.254) appears to be up
... good.
Initiating SYN Stealth Scan against
(30.0.0.254)

Host (30.0.0.255) seems to be a
subnet broadcast address
(returned 2 extra pings). Skipping
host.
Host (30.0.1.0) seems to be a
subnet broadcast address
(returned 1 extra pings). Skipping
host.
Host (30.0.1.254) appears to be up
... good.
Initiating SYN Stealth Scan against
(30.0.1.254)

Host (30.0.1.255) seems to be a
subnet broadcast address
(returned 1 extra pings). Skipping
host.
Host (40.0.0.0) seems to be a
subnet broadcast address
(returned 2 extra pings). Skipping
host.
Host (40.0.0.1) appears to be up ...
good.
Initiating SYN Stealth Scan against
(40.0.0.1)

Host (40.0.0.254) appears to be up
... good.
Initiating SYN Stealth Scan against
(40.0.0.254)

NOT CONFIGURED
FOR THIS TEST

7/tcp open echo 7/tcp open echo 7/tcp open echo
9/tcp open discard 9/tcp open discard 9/tcp open discard
13/tcp open daytime 13/tcp open daytime 13/tcp open daytime 7/tcp open echo 7/tcp open echo
19/tcp open chargen 19/tcp open chargen 19/tcp open chargen 9/tcp open discard 9/tcp open discard
21/tcp open ftp 21/tcp open ftp 21/tcp open ftp 13/tcp open daytime 13/tcp open daytime
23/tcp open telnet 23/tcp open telnet 23/tcp open telnet 19/tcp open chargen 19/tcp open chargen
25/tcp open smtp 25/tcp open smtp 25/tcp open smtp 21/tcp open ftp 21/tcp open ftp
37/tcp open time 37/tcp open time 37/tcp open time 22/tcp open ssh
79/tcp open finger 79/tcp open finger 79/tcp open finger 23/tcp open telnet 23/tcp open telnet
111/tcp open sunrpc 111/tcp open sunrpc 111/tcp open sunrpc 25/tcp open smtp 25/tcp open smtp
512/tcp open exec 512/tcp open exec 512/tcp open exec 37/tcp open time 37/tcp open time
513/tcp open login 513/tcp open login 513/tcp open login 79/tcp open finger 79/tcp open finger
514/tcp open shell 514/tcp open shell 514/tcp open shell 111/tcp open sunrpc 111/tcp open sunrpc
515/tcp open printer 515/tcp open printer 515/tcp open printer 512/tcp open exec 512/tcp open exec
540/tcp open uucp 540/tcp open uucp 540/tcp open uucp 513/tcp open login 513/tcp open login
4045/tcp open lockd 4045/tcp open lockd 4045/tcp open lockd 514/tcp open shell 514/tcp open shell
6000/tcp open X11 6000/tcp open X11 6000/tcp open X11 515/tcp open printer 515/tcp open printer
6112/tcp open dtspc 6112/tcp open dtspc 6112/tcp open dtspc 540/tcp open uucp 540/tcp open uucp
7100/tcp open font-service 7100/tcp open font-service 7100/tcp open font-service 4045/tcp open lockd 4045/tcp open lockd
32771/tcp open sometimes-rpc5 32771/tcp open sometimes-rpc5 32771/tcp open sometimes-rpc5 6000/tcp open X11 6000/tcp open X11
32772/tcp open sometimes-rpc7 32772/tcp open sometimes-rpc7 32772/tcp open sometimes-rpc7 6112/tcp open dtspc 6112/tcp open dtspc
32773/tcp open sometimes-rpc9 32773/tcp open sometimes-rpc9 32773/tcp open sometimes-rpc9 7100/tcp open font-service 7100/tcp open font-service
32774/tcp open sometimes-rpc11 32774/tcp open sometimes-rpc11 32774/tcp open sometimes-rpc11 32771/tcp open sometimes-rpc5 32771/tcp open sometimes-rpc5
32775/tcp open sometimes-rpc13 32775/tcp open sometimes-rpc13 32775/tcp open sometimes-rpc13 32772/tcp open sometimes-rpc7 32772/tcp open sometimes-rpc7
32776/tcp open sometimes-rpc15 32776/tcp open sometimes-rpc15 32776/tcp open sometimes-rpc15 32773/tcp open sometimes-rpc9 32773/tcp open sometimes-rpc9

32777/tcp open sometimes-rpc17 32774/tcp open sometimes-rpc11 32774/tcp open sometimes-rpc11
32778/tcp open sometimes-rpc19 32775/tcp open sometimes-rpc13 32775/tcp open sometimes-rpc13
32786/tcp open sometimes-rpc25 32776/tcp open sometimes-rpc15 32776/tcp open sometimes-rpc15

B-6

32777/tcp open sometimes-rpc17 32777/tcp open sometimes-rpc17
32778/tcp open sometimes-rpc19 32778/tcp open sometimes-rpc19

32786/tcp open sometimes-rpc25

The SYN Stealth Scan took 5 seconds
to scan 1534 ports.
For OSScan assuming that port 7 is
open and port 1 is closed and neither
are firewalled
Interesting ports on (30.0.0.1):
(The 1509 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive increments
Difficulty=39607 (Worthy challenge)
Sequence numbers: A46B8481
A46D8CB5 A46E73D0 A46EA1A5
A46FDCC7 A470B056
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 4
seconds to scan 1534 ports.
For OSScan assuming that port 7 is
open and port 1 is closed and
neither are firewalled
Interesting ports on (30.0.0.254):
(The 1506 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive increments
 Difficulty=32152 (Worthy
challenge)
Sequence numbers: B70631F2
B7066313 B7069129 B70769B9
B708EBE9 B7099075
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 4
seconds to scan 1534 ports.
For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (30.0.1.254):
(The 1509 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive increments
 Difficulty=33112 (Worthy
challenge)
Sequence numbers: A4B015A7
A4B1841A A4B1994E A4B1E3D1
A4B2125D A4B23BB8
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 3
seconds to scan 1534 ports.
For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (40.0.0.1):
(The 1506 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive increments
 Difficulty=41552 (Worthy
challenge)
Sequence numbers: A28079DF
A280FF0C A2814DA8 A281652C
A2834AD0 A283D5FB
Remote operating system guess:
Solaris 2.6 - 2.7

The SYN Stealth Scan took 4
seconds to scan 1534 ports.
For OSScan assuming that port 7
is open and port 1 is closed and
neither are firewalled
Interesting ports on (40.0.0.254):
(The 1506 ports scanned but not
shown below are in state: closed)
TCP Sequence Prediction:
Class=random positive increments
 Difficulty=26964 (Worthy
challenge)
Sequence numbers: B75B7A7F
B75C96F3 B75D1C4F B75DE425
B75E0D71 B75F5E3C
Remote operating system guess:
Solaris 2.6 - 2.7

B-7

50.0.0.1 50.0.0.254

Host (40.0.0.255) seems to be a subnet
broadcast address (returned 1 extra pings).
Skipping host.
Host (50.0.0.0) seems to be a subnet broadcast
address (returned 1 extra pings). Skipping host.
Host (50.0.0.1) appears to be up ... good.
Initiating SYN Stealth Scan against (50.0.0.1)

Host (50.0.0.254) appears to be up ... good.
Initiating SYN Stealth Scan against (50.0.0.254)

21/tcp open ftp 7/tcp open echo
23/tcp open telnet 9/tcp open discard
25/tcp open smtp 13/tcp open daytime
79/tcp open finger 19/tcp open chargen
98/tcp open linuxconf 21/tcp open ftp
111/tcp open sunrpc 23/tcp open telnet
113/tcp open auth 25/tcp open smtp
513/tcp open login 37/tcp open time
514/tcp open shell 79/tcp open finger
515/tcp open printer 111/tcp open sunrpc
959/tcp open unknown 512/tcp open exec
1024/tcp open kdm 513/tcp open login
1025/tcp open listen 514/tcp open shell
1031/tcp open iad2 515/tcp open printer
6000/tcp open X11 540/tcp open uucp

4045/tcp open lockd
6000/tcp open X11
6112/tcp open dtspc
7100/tcp open font-service
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7

B-8

32773/tcp open sometimes-rpc9
32774/tcp open sometimes-rpc11
32775/tcp open sometimes-rpc13
32776/tcp open sometimes-rpc15
32777/tcp open sometimes-rpc17
32778/tcp open sometimes-rpc19
32786/tcp open sometimes-rpc25

The SYN Stealth Scan took 0 seconds to scan
1534 ports.
For OSScan assuming that port 21 is open and
port 1 is closed and neither are firewalled
Interesting ports on (50.0.0.1):
(The 1519 ports scanned but not shown below
are in state: closed)
TCP Sequence Prediction: Class=random
positive increments
 Difficulty=5852726 (Good luck!)
Sequence numbers: 72044F1D 72044F1D
72E3D46E 72E3D46E 72751B3E 72751B3E
Remote operating system guess: Linux 2.1.122 -
2.2.16

The SYN Stealth Scan took 3 seconds to scan
1534 ports.
For OSScan assuming that port 7 is open and
port 1 is closed and neither are firewalled
Interesting ports on (50.0.0.254):
(The 1506 ports scanned but not shown below
are in state: closed)
TCP Sequence Prediction: Class=random
positive increments
 Difficulty=35177 (Worthy challenge)
Sequence numbers: B792D87F B794C11A
B796A5EA B7976108 B7983AC9 B799134E
Remote operating system guess: Solaris 2.6 - 2.7

FINAL OUTPUT
Host (50.0.0.255) seems to be a subnet broadcast address (returned 1 extra pings). Skipping host.
Nmap run completed -- 2560 IP addresses (13 hosts up) scanned in 143 seconds

