
Administering Propagated Metadata in Large, Multi-Layer
Database Systems1

1 appeared at IEEE Workshop on Knowledge and Data Exchange, 1999., P. Scheuermann (ed.)

Arnon Rosenthal
The MITRE Corporation
arnie@mitre.org

Edward Sciore
Boston College and MITRE
sciore@bc.edu

Abstract

 Enterprise databases are comprised of multiple local
databases that exchange information. The component
databases will rarely have the same native form, so one
must map between the native interfaces of the data
suppliers and the recipients. An SQL view is a
convenient and powerful way to define this map,
because it provides not just an evaluation mechanism,
but also query, and (to some degree) update and trigger
capabilities. However, SQL views do not map the
critical metadata (e.g., security, source attribution, and
quality information) between data suppliers and their
recipients.
 This paper examines the research problems arising
from the creation of a metadata propagation framework:
a theory for inferring and reconciling metadata on views,
rules for each property type and data derivation operator,
efficient implementation, and ways to coordinate
metadata administration across multiple schemas.

1. Introduction

1.1. The Problem

 A large database system is likely to involve large
amounts of metadata (e.g., data quality measures,
integrity constraints, security information, or schema
documentation). Metadata helps users understand the
data, and helps administrators plan improvements and
schema changes. Metadata is costly to obtain and
maintain. Administrators must determine which
metadata to solicit, and then convince data providers to
supply that metadata with their data. It is vital to
minimize the maintenance burden.
 A large database system is also likely to be multi-
layer – that is, composed of several different schemas,
with physical (source) schemas at the bottom and virtual
(view) schemas layered on top. Multi-layer databases
take many forms. For example, a set of view tables can
be used to insulate applications from stored tables that

have been partitioned or denormalized, and which
change as the workload changes. A federated database
provides a virtual schema above multiple sources. A
data warehouse gathers and transforms data and stores it
in a separate server; this can be seen as computing a
materialized view (subject to delays in propagating
source updates). Web-oriented distributed systems often
have layers of objects derived from each other. The
specification of a virtual schema can be as simple as a
“create view” SQL statement, or as complex as a series
of warehouse transformations involving data scrubbing,
integration of multiple sources, and multiple levels of
aggregation over several dimensions.
 Our research begins with the observation that existing
schema transformation algorithms and tools propagate
data from source layers to view layers, but do not
propagate metadata. That is, all of the metadata that
was painfully collected at a source schema is “locked”
into that schema; users of virtual schemas see none of it.
The goal of our work is to create a virtuous circle. When
metadata can be exploited more widely, it will have
greater value to the organization, leading to incentives to
capture more metadata and to propagate it more widely.
The result is that databases will be better described and
more usable.
 We therefore investigate how to propagate metadata
between schemas. Three challenges must be met:
• Diverse propagation semantics: For example, one

might define the access rights associated with a join
result to be the intersection of the sources’ access
rights, and the trustworthiness to be the minimum
of the sources’ trust values.

• Scale: Each warehouse data attribute might have
~10 metadata properties (e.g., ownership,
responsibility, precision, units, accuracy,
timeliness, …). Administrators simply lack the
time to extend views’ attribute derivations to derive
all these meta-attributes.

• Coordination: No schema is an island. When
planning a change, the effects on all relevant
schemas must be considered, and several
administrators may need to participate.

 All three difficulties can be approached through
inference rules that generate assertions about view
metadata (based on the sources’ metadata and the
derivation function). Section 2 presents our approach to
inference rules. Section 3 then considers the issue of
how to support coordination of work across different
schemas. Section 4 contains conclusions and open
research problems. Reference [1] contains an initial
mockup (pure html) of how one might capture and use
inference rules.

2. Metadata Capture and Inference

2.1. Preliminaries

 Metadata assertions take the form (database granule,
property, value). An asserted property value denotes that
the granule’s property dominates (is better or equal to)
the bound. A database granule is a subset of a database,
e.g., a table, column, row, cell, or view. A property
describes some meta-information about the granule, e.g.,
credibility, error-bound, access permission, timestamp,
and so forth.
 Each property takes values from a domain. The
domain must be partially ordered by “better than”; better
metadata indicates some property of the data is superior.
“Better” often corresponds to numeric > (e.g., for
credibility), numeric < (e.g., for error bound), or set
containment (e.g., “accessible to {joe, fred, sue}” is
better than “accessible to {joe}”). To make it easy to
combine information, we generally require that the
domain have top and bottom values (±∞) and a
summary operator ⊕ , a unique least upper bound
operator that returns the least value that dominates its
inputs (e.g., max credibility, min error bound, or union
of two access lists). With this approach, as long as
asserted metadata is correct and inference (discussed
below) is sound, we have a consistent system.
 Metadata is most commonly used to denote lower
bounds, i.e., assertions that denote that a value is “good
enough”. It is also possible to express upper bounds, if
desired. Upper bounds give rise to a dual theory, with a
separate set of inference rules, and are not discussed
further in this paper.
 Metadata can be asserted directly on derived granules
(i.e., on views), as well as on base tables. For example,
recent data (e.g., SALES where Year>1998) may have
better credibility and precision than the overall SALES
information, and summarized information (e.g., Total
SALES.Amt, Dept# grouped by Dept#) may have a
more liberal security policy.
 All assertions are considered correct, whether directly
asserted or provided by an inference rule. One can then
obtain a valid bound by taking the ⊕ of the bounds
obtained from all such values. A system can obtain
bounds on view metadata from three sources: bounds
asserted explicitly on the view, bounds inferred from the

view’s definition, and bounds inferred from other
queries that are known to be equivalent to the view
query.

2.2. Inference Rules

2.2.1. Theory of Inference Rules. Inference rules are
functions that produce assertions on view metadata from
the metadata asserted on sources. The rules will be
provided by metadata tool vendors (for generic rules) or
by sophisticated administrators (for organization-specific
rules).
 Rule providers must be cautious, as we insist that
rules be sound. That is, in every case where the rule is
asserted to apply, it yields a correct bound (though not
necessarily the best possible one). The motivation is
that sound rules can be composed without knowledge of
the particular context. In contrast, it seems too hard to
interpret values inferred by a sequence of rules each of
which “is usually true” or “gives a good
approximation”.
 Inference rules will be illustrated using a running
example. Let RECENT_SALES be the view (SALES
where Year > 1998), and suppose that the table SALES
has properties Accuracy (defined as the likelihood that a
randomly-chosen cell’s value will be correct), and
Precision (defined as the number of digits that are
significant, worst case, for all cells).
 In principle, one might need a separate inference rule
for computing each property of each view granule. For
example, suppose we were certain that in our company,
data collection practices have improved. Then we might
have a rule that lets us infer that a bound on
SALES.Accuracy applies also to
RECENT_SALES.Accuracy. Such a rule would then be
reevaluated when the inputs’ metadata changed.
 For access permissions, SQL99 semantics use only
direct assertions, except that the view owner’s privileges
are inferred from permissions on the sources. In [2], we
showed that one can obtain much greater power if the
query processor is able to identify alternative
expressions.
2.2.2. Tractable Cases – Obtaining Inference Rules
En Masse. A full set of inference rules would provide a
rule for inferring each property for each granule. This
would be an enormous amount of work, often requiring
both external world knowledge and programming skills.
There are cases (e.g., determining the precision of a
value that is the result of a multiplication) where
determining an appropriate rule is nontrivial.
Fortunately, the complexity of the general case is not
always necessary. This section identifies situations
where one can determine rules more easily. If we were
building a commercial tool tomorrow, we would
incorporate them.
 The goal is to have rules that apply to many
granules, and are provided by software vendors. Such

rules must rely on semantics of inferred property and of
the data derivation operators. (General views can be seen
as expression trees, and handled stepwise from the
leaves.) Even an incomplete set of inference rules can
provide a great deal of metadata that is unavailable
today; we would be satisfied with partial success. We
thus explore three tractable situations: trivial
derivations, instance properties that bound the worst
case, and query-insensitive properties.
 First, many views perform trivial mappings, such as
attribute renaming, units conversion (multiplication),
and some format transforms. While technically trivial,
such mappings can occur hundreds of times in a
federated schema, either standalone or as part of more
complex views. Hence automating even trivial
propagations can be a real benefit.
 In cases we have seen, all properties except
“language” were invariant under renaming. Under
constant multiplication (e.g., for units conversion),
many properties (e.g., security, credibility) are invariant,
and others simply scale (e.g., precision). Sometimes
more complex rules can be obtained [3], e.g., for
precision of a scalar expression, based on precision of
the inputs.
 Second, many properties describe instance properties
– a value that bounds every cell in the database granule
described (e.g., precision, worst case error, “Joe has
permission to read”). Such a bound obviously applies to
any subset of those cells. Hence, the bound for the
source granule is also correct for the view (though not
necessarily tight). The inference rule for such views is
thus: identity. Such a rule applies to Project,
and to both ordinary Select and Select with a
nested subquery.
 Finally, for many properties, the view metadata can
be bounded as a function of the inputs’ metadata,
regardless of what operators are used in the view. We
call such rules query insensitive. They generalize the
single inference rule that [4] applies to several kinds of
Boolean metadata.
 In the examples below, query insensitive lower
bound rules can be expressed by applying an associative,
commutative constructor operator ⊗ (usually,
greatest lower bound) to the sources’ metadata
values. Five query-insensitive properties, with their
constructor functions, are:
• Security permissions. Security permissions. One

has the right to execute a query if one has the right
to access each source table. If each permission is
represented by the access predicate pi, then the
bound inferred for the view is AND(pi).

• Timestamps. Suppose each source table has a
timestamp meta-attribute that means “this data is
guaranteed up to date, as of this timestamp”. Then
the view meta-attribute infers the worst (i.e., the
minimum) timestamp of any of its inputs.

• Integrity level. Data may be kept at several integrity
levels, representing successive levels of care (e.g.,
raw, reviewed, confirmed, warranted…) [5, ch. 2.8].
The inferred bound is the worst level of any of its
source values.

• Source attribution. Each source table has a meta-
attribute listing the origins of its data. The view
table’s attribution is inferred as the union of the
source lists.

• Pricing. Suppose each input table has a meta-
attribute giving the cost of accessing it. Then the
cost associated with the view is at most the sum of
these costs.

2.2.3 Top-Down Propagation (Update to Derived
Metadata). Inference rules drive bottom-up
propagation. That is, bounds on views’ property values
are determined from the bounds on the views’ input
properties. The combined, best-available bound can be
considered as a view over the relevant directly-asserted
metadata (comprising assertions on both source and
view granules).
 Top-down propagation refers to attempts to change
the combined bound on view metadata. Like updates to
ordinary data views, the goal is to change the sources to
change the derived value. This is different from simply
asserting a new bound. First, the desired new value may
be inconsistent with sources—worse that the bound
inferred—so the source assertions need to be changed
(lowered). Even if the new value is consistent (i.e above
the inferred lower bound), one has the choice between
providing a new assertion on the view, or an assertion
about source metadata that will give the desired view
behavior.
 For example, suppose a view administrator requests
that the role DataMiner be given access to
RECENT_SALES. A source administrator can achieve
this by simply granting permission on the view;
alternatively, if the date is irrelevant to the decision and
further needs are anticipated, one might prefer to grant
more generally, e.g., on SALES, or on SALES where
Date>1990.
 Thus, top down propagation (like ordinary view
update) tends to be semantically ambiguous. The only
theoretical guidance is that a legal implementation
should achieve the desired effect on the view. Beyond
that, it will often be necessary for a human to intervene
to determine which course to take, as discussed in
Section 3.

3.0. Communicating about Metadata

 This section addresses the tension between two forces
on metadata administrators:
• Metadata updates are naturally formulated or judged

in terms of the currently-visible schema.

• No schema is an island, since inference rules
propagate the updates.

3.1. Propagating a Change: Actions and
Scope

 Cross-schema coordination of updates to metadata
involves more than ACID-transaction consistency;
equally important is knowing the desirability of the
changes to the various stakeholders, and helping them to
reach agreement. For example, an information provider
may agree to consult with consumers who use views,
before making changes that can reduce consumers’ access
or data quality. This tension gives rise to the research
problem: Devise primitives for coordinating metadata
updates among tables related by data derivation.
 A cursory examination reveals that change requests
have many modes, e.g., commands, notifications, and
“trial balloons” that are posted to see user reaction. Our
first thought was to express each as a different property,
so one could see both the current and proposed value.
However, it is not tolerable to similarly expand the set
of inference rules. We therefore need a model that allows
a single rule to apply to metadata that differ only in the
mode of its assertion.
 In the next subsection, we give several examples to
provide motivation and requirements. In addition, we
show how the situations would be represented in our
(first cut) model for separating “desired action” from
“property value being considered”. In this model, a
request to change a meta-attribute instance G.M can take
several forms. The ones we illustrate are:

• Command that the specified value of G.M be
installed in the database.

• Propose that the specified value of G.M be
installed in the database

• Request the recipient to make the change,
without having authority to insist.

• Notify others of the current value of G.M.
 Each of these contexts is called an action. The
scenarios below show that inference rules can be
insensitive to the action; we hypothesize that this is true
in general.
 We next observe that one may not wish to broadcast
the change to the world, when starting a discussion.
Hence one needs the ability to specify who should be
informed, i.e., a scope. The scope helps us send a
description of the change, expressed in terms of the right
schema, to the right agent (human or an automated
service). An action can have a scope of either explicit
(private to recipients listed in the message) or unlimited
(any user to whom effects could propagate).
 We envision a loose coupling, in which received
values do not immediately overwrite the current ones.
Local facilities would process the incoming messages to
apply the received values appropriately, e.g., by
notifying humans immediately, or batching for later

attention, or by calling installation scripts. Section 4.2
speculates about further extensions in this vein.

3.2. Example Scenarios

 This section considers several example scenarios. For
each scenario we describe the implied action, its scope,
and the effect of the propagation. For top-down
propagation, semantic ambiguity is resolved by
propagating several proposals, for humans to handle.
Further features are needed to allow recipients to indicate
acceptance, and to have an appropriate Commit protocol
for coordinated decisions.
 These scenarios assume that the required inference
rules do exist, and that for top-down propagation the
software has generated proposals for a reasonable set of
semantic alternatives.
 The five scenarios below all address a system with
source databases, a warehouse, and a federation layer. An
Information Systems group, denoted IS, manages source
databases (relational); each database has its own
administrator. There are also two derived databases, each
controlled by a user department. One user department
extracts information into a data warehouse, and
processes requests entirely in terms of this warehouse.
The other department creates a federated schema. Its user
requests are treated as requests against a view, and
translated automatically into programs that access the
source databases. The same set of user roles (e.g.,
Actuary) are known to all three systems.

• The IS dept has established that only certain user
groups (e.g., Actuaries, ClaimsAdjusters) may
access information whose source was IS data. The
warehouse-keepers need to infer what permissions
are allowable for the warehouse to grant. These
grants could be executed automatically by the
warehouse, or the warehouse could treat them as an
upper bound and make manual assignments.
Federation users will find that permissions are
checked against source tables, but still want to
know what will be allowed. Hence they too use the
inferred permissions.
 From the source to the warehouse, this is a
command action (scope=warehouse). That is, it is
obligatory to keep warehouse assertions consistent
with the inferred values (though they can be lower).
For (scope= federation) views, it is a Notify action.
The IS department recommends but does not require
that the federation’s informative permissions be in
synch.

• The IS dept is considering revoking some access
permissions on its source tables, but wants to ask
whether view parties have strong objections. The
view parties see the proposed changes (in terms of
their view tables) and respond.

 This is a propose message, propagated bottom-
up from IS. Note that the source uses propose
messages to do “what if” analysis. Its scope might
be global. However, only users that IS has
contracted to support may have a right to protest.

• A warehouse administrator sends a message to the
IS dept requesting additional write permissions on
the RECENT_SALES view. The propagation
mechanism generates two possible interpretations:
grant additional permissions on the view, or grant
additional permissions on the base table. These
interpretations are received by the IS dept, which
can choose either route. Alternatively, they can
counter-propose, e.g., to give permission on
SALES where DATE>1990, or even to grant only
part of the desired view privilege, e.g.,
RECENT_SALES where Amount<100K.
 Both the initial message and any counter-
proposals are propose commands, explicit scope.
The initial message is propagated top-down. When
both parties are satisfied, the IS dept will send a
global command message describing the changes
made. As illustrated, the parties can define new
views and counter-propose permissions in terms of
those views.

• The company wants to compare the warehouse’s
enforced permissions with the allowed permissions,
to identify excessive grants at the derived schemas,
and also to show source permissions that seem not
to be in use. The auditors translate the permissions
so they are expressed against the source schema, and
then compare them.
 This is a notify message, global scope, with
inference bottom-up from IS. A variant is to have
the test initiated from one view schema, e.g., the
warehouse. The inference is still bottom up, but
propagation would be explicitly scoped (i.e., to the
warehouse).

4. Summary and Open Problems

4.1. Benefits

 We have provided a conceptual framework for meta-
attribute propagation and communication in multi-layer
database systems. This area has received little attention
in academia or industry, perhaps because it is difficult to
provide services that span DBMSs, organizations, and
approaches to metadata semantics and representation.
For administrators, our basic goal is to allow each
administrator to work within their own schema, without
tracing through derivation logic. Automating even a part
of this task would make much more metadata available
for the various schemas, and greatly aid negotiators.
 Our approach is based on asserting bounds on
metadata. This provides robustness. The inference
system shows how one can infer among diverse

schemas, and combine evidence from multiple sources.
A query rewriter can automatically generate queries
equivalent to a view definition. Incomplete metadata
information, an incomplete set of inference rules, and
incomplete enumeration of alternative computation paths
may result in a looser bound, but it will still be correct.
This graceful degradation makes the theory seems very
appropriate for wizards that assist administrators.
 We showed the requirements for collaboration, with a
variety of scenarios. Our collaboration categories give
useful constructs for guiding what should be done with
inferred metadata. They enable a loosely coupled
architecture, where arriving metadata is stored into
ancillary objects, separate from the current values. Local
mechanisms can then apply them appropriately (e.g., to
notify humans, or invoke installation scripts).

4.2. Some Open Problems

 Research is needed to develop a more comprehensive
solution. The system metadata management
environment should split roughly into modules that do
propagation, plus those that do coordination.
 For propagation, there are many open problems in
defining and managing inference rules. First, for nearly
every kind of metadata and every data derivation
operator, sound inference rules are needed. For example,
what is the precision of a scalar product or a column
total (in terms of its inputs’ precision and the number of
rows); given various assumptions about foreign keys,
what are the completeness and credibility of a join and
semijoin? Each case is a narrow research task, well
suited to beginners. A tough, general problem is to find
a use for defaults, or “approximate” or “usually accurate”
inference rules. Next, one needs to configure query
processors to reveal alternative expressions for a query.
One then needs to produce algorithms that efficiently
find and apply relevant rules, exploiting simplifications
(e.g., where ⊕ and ⊗ form a lattice) but handling
realistic complications (full query languages, and sets of
tables that are mutually derivable).
 We do not yet understand how to modularize a
system for such distributed metadata. Experimentation
is needed. Inference rules (which capture much metadata
semantics) may also have a part to play in controlling
collaboration.
 For coordination, the facilities need to be extended,
to reduce burdens on administrators. Currently, an
administrator must specify the scope for propagation,
and the mode of using the propagated values at their
destinations. For top down propagation, the
administrator has the additional burden of managing sets
of alternative translations. Finally, currently
administrators must manually determine appropriate
scope, and the mode in which the recipient should treat
received values.

5. References

[1] A. Rosenthal, E. Sciore, G. Gengo, “Demonstration of
Multi-Tier Metadata Management,”at
http://www.cs.bc.edu/~sciore/papers/demo.zip

 [2] A. Rosenthal and E. Sciore, “Security Administration
for Federations, Warehouses, and other Derived Data.” IFIP
11.3 Working Conference on Database Security, Seattle,
WA, 1999
http://www.cs.bc.edu/~sciore/papers/secadmin.ps

[3] H. Kon, Data Quality Management: Foundations in
Error Measurement and Propagation. Ph.D. Thesis, MIT
Sloan School of Management, 1996,

[4] A. Motro, “Panorama: A Databases System that
Annotates Its Answers to Queries with their Properties,” J.
Intelligent Info. Systems, 1996.

 [5] S. Castano et. al., Database Security, Addison-Wesley,
1994.

