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ABSTRACT

Objective

To characterize and ameliorate the weaknesses of clinical negation detection techniques across 

corpora that have different annotation schema.

Materials and Methods

Named entities and negation attributes have been manually annotated in several corpora, 

including the new SHARPn NLP Seed Corpus, the 2010 i2b2/VA NLP Challenge assertion 

annotations, the MiPACQ Corpus, and the NegEx Test Set.  We analyze each of these corpora 

through the lens of two contrasting systems: a rule-based NegEx baseline, and the SHARP 

machine-learning-based attribute discovery tool.

Results

The machine learning system performed relatively well when trained and tested on data from a 

single corpus (e.g., F1=93.5%, 93.6%, and 73.6% for SHARP, i2b2, and MiPACQ, respectively).  

When training and testing on different corpora, performance dropped significantly in most cases.  

Co-training tests typically performed better than cross-training, but co-training was not 

uniformly better than the best single model.

Discussion

We suggest that the weak cross-training and inconsistent co-training performance arise partially 

from differences in annotation guidelines for the corpora, most importantly in the way that 

named entities are defined and annotated. Both the training and evaluation of negation detection 

systems are affected by these differences in guidelines.
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Conclusion

Though negation detection is a straightforward task in relatively constrained settings, when 

evaluated in heterogeneous corpora and annotation schema, performance may fall well below 

that of published benchmarks for both machine learning-based and rule-based approaches.  

Furthermore, it is difficult to determine the optimal mix of training data, or a standardized way to 

constrain evaluation metrics, since both are influenced by the corpus and annotation 

characteristics.
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BACKGROUND AND SIGNIFICANCE

Negation in unstructured clinical text is a well-known phenomenon.  It is crucial for any 

practical interaction with clinical text, since the medical significance of “no wheezing” is quite 

different from just “wheezing.” With the increasingly widespread use of electronic medical 

records (EMRs), computational methodologies for negation detection have also become well-

known, most notably the early and strikingly straightforward NegEx algorithm.[1]  In NegEx, 

simple regular expressions yield solid performance on detecting the negation of Findings, 

Diseases, and Mental or Behavioral Dysfunctions from the Unified Medical Language System 

(UMLS).  The success of NegEx (and other techniques) is attributable to the constrained 

pragmatics of clinical text: because physicians are writing the text in order to convey the health 

status of a patient, the medically pertinent concepts (and what can be said about them) are 

constrained.  The sublanguage around these concepts that expresses negation (and other modality 

markers) is therefore constrained as well. Since existing algorithms have performed well at 

capturing negation,[2-8] many clinical natural language processing (NLP) practitioners consider 

negation detection a solved problem (see Table 1).

However, the present work uncovers some surprising potential pitfalls in negation 

annotation and detection.  In the course of executing what would appear to be a standard 

negation task as part of the Strategic Health IT Advanced Research Project on the Secondary use 

of the EHR (SHARPn) Attribute Discovery team, we found that “benchmark” gold standard data 

sets (and their respective annotation guidelines) differed sufficiently to have a profound effect on 

the viability of negation detection algorithms. What follows is an exploration of the differences 

between four corpora, analyzed through the lenses of rule-based negation detection and machine 
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learning-based negation detection.  We conclude that practical negation detection in unrestricted 

clinical corpora is still a challenging task for both machine learning-based and rule-based 

approaches.  Furthermore, it is difficult to determine an optimal mix of training data or to 

standardize evaluation metrics, since both are influenced by corpus-specific annotation 

guidelines.  The results we report here pave the way for future work in domain-adaptive and task-

adaptive methods, and illustrate the benefit of more extensive and consistently-annotated 

corpora.

As the Attribute Discovery team for SHARPn NLP, our overarching goal is to discover 

clinically relevant attributes of named entities (NEs).  Aside from negation, these include 

uncertainty (i.e., the NE is possible but not confirmed), conditional usage (i.e., the NE depends 

on circumstances or is in the future), the subject under discussion (i.e., the NE is related to the 

patient, a family member, or someone else), and generic usage (i.e., the NE is not asserting 

something about a subject).  In illustrating the influence of data sources on the negation detection 

task, we make use of two outputs of the SHARPn NLP team; first, the new SHARPn NLP Seed 

Corpus of clinical text with multiple layers of syntactic and semantic information, including NEs 

and polarity (i.e., negation). Comparisons are made between this corpus, the 2010 i2b2/VA NLP 

Challenge corpus, the MiPACQ corpus, and the NegEx Test Set.  Second, the SHARPn Attribute 

Discovery tool has a new Polarity module currently available in the Apache cTAKES project 

(clinical Text Analysis and Knowledge Extraction System; ctakes.apache.org); a thorough 

methodological treatment is described in a forthcoming publication. 

After a discussion of the extensive related work in negation detection, the remainder of 

this article will introduce the data and methods for corpus and system comparisons of negation 

detection, present the resulting performance of systems on the different corpora, and discuss 
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implications for negation detection and annotation schema in the larger picture of clinical 

informatics.

RELATED WORK

Negation detection was a very practical early motivation for NLP adoption among the 

informatics community, and thus significant effort has gone into this task. While there have been 

many systems implementing negation detection, publicly available corpora for testing them are 

limited by patient privacy concerns, as is typical in clinical NLP. 

Negation detection systems have shown excellent performance in clinical text, beginning 

with the rule-based NegEx algorithm.[1] NegEx was originally evaluated on spans of text that 

matched UMLS Findings, Diseases, and Mental or Behavioral Dysfunctions, among 1000 test 

sentences sampled from discharge summaries at the University of Pittsburgh Medical Center; a 

regression test set was released later with de-identified notes of 6 different types.  NegEx has 

produced numerous updated and customized systems, including the negation detection module 

released with ConText[9] which performed well on a benchmark NegEx Test Set (available at 

https://code.google.com/p/negex/wiki/TestSet). Our tests used the ytex version[10] of NegEx as 

a baseline and included the NegEx Test Set as a benchmark.

Similar to NegEx, many other negation algorithms take a rule-based approach, with a 

variety of techniques: lexical scan with context free grammar,[2] negation ontology,[3] or 

dependency parse rules.[4] Some negation algorithms treat the problem as a machine learning 

classification task[5] or as some hybrid between rules and machine learning.[6 7] The 

performance of these systems and their data sources is summarized in Table 1 below.

Table 1: Extensive successful previous work on negation detection in clinical text
Algorithm Data source Prec. Rec. F1
Negfinder [2] 10 surgery notes &  discharge 

summaries; UMLS concepts
91.84 95.74 92.96
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NegEx[1] UPMC ICU discharge summaries; 
clinical conditions

84.49 77.84 80.35

Neg assignment 
grammar[3]

Hopkins HNP notes; SNOMED concepts 91.17 97.19 93.90

Negation Detection 
Module[7]

Stanford radiology reports; unmapped 
text phrases

98.63 92.58 94.91

ConText[9] UPMC 6 note types; clinical conditions 92 94 93
MITRE assertion[6] 2010 i2b2/VA; unmapped “problem” text 

phrases
92 95 94

DepNeg[4] Mayo clinical notes; symptoms & 
diseases

96.65 73.93 83.78

All these general approaches were represented in the 2010 i2b2/VA NLP Challenge task 

on assertions.[8]  In addition to catalyzing innovation from multiple systems, this shared task 

produced a benchmark data set that is available for research with a simple data use agreement; it 

interprets negation on medical “problem” NEs as an assertion that the problem is “absent.”  

The four corpora used in our study all annotate named entities explicitly (though they 

differ on whether they are mapped to an ontology), but only include the scope of negation 

indicators implicitly (through the pertinent NEs).  Some efforts have reversed this, giving an 

implicit notion of named entities but an explicit notion of negation scope: notably the BioScope 

Corpus[11] that was used as part of the CoNLL 2010 Shared Task.[12]  Bioscope annotates 

negation, uncertainty, and their scopes on de-identified clinical free text (1,954 radiology 

reports), biological full articles (9 articles from FlyBase and BMC Bioinformatics), and scientific 

abstracts (1,273 abstracts also in the GENIA corpus).  Here, the scope of negation is specified as 

the maximum span within which the negation cue word could be applicable, and the scope 

cannot be disjoint from the cue word. This is in contrast to the negation annotations we explore; 

we do not explore scope annotations for two reasons: First, the lack of gold standard named 

entity mentions is an additional source of error that no other corpus would have, making the 

comparison unfair. Second, while such scope annotations overcome some recall issues for 
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negation of non-standard terminology (e.g., “patient is not feeling as much like a pariah today”), 

they do not overcome issues in fine-grained annotation guideline distinctions (see Discussion 

section on Annotation Guidelines).

MATERIALS AND METHODS

This study is designed as an evaluation of negation detection systems on different test 

corpora.  We first describe the annotated NLP corpora used in training and testing, with salient 

information about the gold standard entity and negation annotation guidelines.  We then discuss 

the new Polarity component of the SHARPn Attribute Discovery tool and briefly mention the 

other systems used for comparison.

Corpora and Guidelines

SHARPn NLP Seed Corpus

The SHARPn NLP Seed Corpus consists of 97 de-identified radiology notes related to 

Peripheral Arterial Disease (PAD) from Mayo Clinic, and 86 de-identified breast oncology 

progress notes regarding incident breast cancer patients from Group Health Cooperative.  This 

multi-layered annotated corpus follows community adopted standards and conventions for the 

majority of annotation layers, which include syntactic trees, predicate-argument structure, 

coreference, UMLS named entities, UMLS relations, and Clinical Element Models (CEM) 

templates.  Negation is included in the CEM templates as an attribute of UMLS concepts.

The SHARPn NLP named entity (NE) annotations are Diseases and Disorders, Signs and 

Symptoms, Procedures and Methods, Devices, Medications and Drugs, and Labs.  Spans of text 

of these types are mapped to concept unique identifiers (CUIs) in the UMLS, though an 

allowance is made for concepts not represented in the UMLS (i.e., “CUI-less” concepts).  If sub-
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concepts were of the same semantic group, the most specific concept within a span was mapped. 

For example, in the statement “no small bowel obstruction,” the more specific “small bowel 

obstruction” would be annotated, as opposed to the more general “bowel obstruction.” However, 

overlapping spans of different semantic groups were annotated (e.g., annotate “small bowel” in 

the above, since it is an anatomical site).  Named entities, attributes, and relations were annotated 

in the SHARPn NLP corpus with a single pass.  The guidelines call for an explicit negation 

indicator, the presence of which sets the polarity of a NE to -1 (negated); it is +1 (not negated) 

by default. Within its training set, the SHARPn Seed Corpus has 10,574 NEs labeled with a 

negation attribute (whether positive or negative).

2010 i2b2/VA NLP Challenge Corpus

The 2010 i2b2/VA NLP Challenge Corpus contained a total of 871 manually annotated, 

de-identified reports from Partners Healthcare, Beth Israel Deaconess Medical Center, and the 

University of Pittsburgh Medical Center.  The majority of notes were discharge summaries, but 

the University of Pittsburgh Medical Center also contributed progress reports.

In the 2010 i2b2/VA NLP challenge corpus, annotators were instructed to mark “only 

complete noun phrases or adjective phrases” as concepts, including most modifiers (e.g., chest x-

ray), articles and possessives (e.g., her chest x-ray), and up to one prepositional phrase per 

concept (e.g., pain in the chest).  Concepts were constrained to be phrases of UMLS-like 

semantic groups titled “problems,” “treatments,” or “tests.”  Attribute annotations were only 

carried out on “problems” and consisted of 6 possible categories: “present,” “absent,” “possible,” 

“conditional,” “hypothetical,” and “not associated with patient.”  The “absent” category matches 

most closely with negation in other annotation schema, but it includes inherently negated terms 

(e.g., afebrile) as well.  There is only one assertion status possible per concept.  The i2b2/VA 
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“absent” annotations provided 11,968 training NEs labeled with a (asserted or negated) negation 

attribute.

MiPACQ Corpus

MiPACQ corpus[13 14] annotates multiple syntactic and semantic layers, similar to the 

SHARPn NLP corpus.  There are three major divisions to the sources of data: a snapshot of 

Medpedia articles on medical topics, written by clinicians, retrieved on April 26, 2010; 353 

clinical questions from the National Library of Medicine’s Clinical Questions corpus 

(http://clinques.nlm.nih.gov), collected by interviews with physicians; and 13,091 sentences 

from Mayo Clinic clinical notes and pathology notes related to colon cancer.

Per the MiPACQ annotation guidelines, each of these sources is annotated with named 

entities of a full standard set of UMLS semantic groups,[15] as opposed to subsets used in other 

corpora.  These are generally full noun phrases, but multiple annotations on the same string are 

permitted, especially when a relation can be identified (e.g., one annotation specifying a 

procedure, another specifying the anatomical site where it took place).  Guidelines on negation 

are not detailed, but it is implied that the negation of a condition amounts to the absence of that 

condition. The MiPACQ Corpus provided 22,544 NEs labeled with a negation attribute (positive 

or negative) for training.

NegEx Test Set

The NegEx Test Set is a set 2,376 sentences from 120 de-identified University of 

Pittsburgh Medical Center reports (20 each of radiology, emergency department, surgical 

pathology, echocardiogram, operative procedures, and discharge summaries).  This set was used 

to evaluate the ConText algorithm,[9] while another 120 reports of similar distribution (not 

publically available) were used for the development of the negation portion of ConText (i.e., an 
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updated NegEx).

Signs, symptoms, diseases, and findings with qualitative values were included as 

manually annotated named entities, but demographics, risk factors, and findings with 

quantitative values were excluded.  Each NE was then annotated for negation, temporality (past, 

present, or future), and experiencer (patient vs. other). The NegEx Test Set provided 2,371 NEs 

labeled with a positive or negative negation attribute, which were used for both training and 

testing.

NegEx Baseline System (YTEX)

Evaluations used the NegEx algorithm, as implemented in the Yale cTAKES Extensions 

(YTEX),[10] as a baseline.  Because NegEx is a rule-based method, we would expect it to be 

immune to performance improvement or degradation based on training data.  However, it is well-

known that customization of rules is likely necessary when applying NegEx settings other than 

the one in which it was initially developed.  The YTEX negation module was used alongside the 

standard cTAKES pipeline.

SHARPn Polarity Module

As with many existing approaches, the SHARPn Polarity module treats negation 

detection as a classification problem for NEs.  This module is implemented within the cTAKES 

system, leveraging feature extraction and machine learning programming interfaces available in 

the ClearTK suite of tools (available at https://code.google.com/p/cleartk/). The polarity module 

used in our tests is currently available as a tagged branch of the Apache cTAKES source code 

repository, and will be part of a future cTAKES release. 

We trained the SHARPn Polarity module on each of the four corpora; train/test splits 
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were provided for the SHARPn, i2b2/VA, and MiPACQ corpora; for these three corpora, 

training and testing in our evaluations uniformly respected these training and testing splits (e.g., 

even in cases like training on SHARP data but testing on i2b2 data).  Because the development 

set corresponding to the NegEx Test Set was not available, we used the Test Set as both training 

data and testing data; the tables presenting our results use hash shading to show when reuse 

training data invalidates the test performance measures.

For both training and testing, we used gold standard NEs and negation annotations as 

defined in each of the corpora; we also used the default cTAKES pipeline and models (in the 

tagged version) to produce all other portions (e.g., sentence annotations, tokens, POS tags, 

dependency parses, constituency parses, semantic role labels).  While there is some risk for error 

propagation from these other components into negation detection, we believe this risk is 

minimized and can be “ignored” for the main precision, recall, and F-measure metrics, because 

systemic errors would appear in both training and testing data, and any impact on negation 

performance would be mediated through their representation in a machine learning feature 

vector.

RESULTS

Single Corpus Cross-training

Table 2 shows the SHARPn Polarity module trained on each of the four training corpora 

(the rows), evaluated on each of the test corpora (columns).  For simplicity in this section, we 

will refer to each corpus as a “domain,” though we recognize that each corpus bridges multiple 

medical domains.  “In-domain,” then refers to training and testing a model in the same corpus; 

“cross-domain” refers to training a model on one corpus and testing that model on a different 
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corpus.

Table 2: Machine learning models trained (rows) and tested (columns) on different 
corpora, and their comparison with a rule-based method (bottom row).

sharp  i2b2   Mipacq  negexts  
Train P R F P R F P R F P R F
sharp 97.7 89.6 93.5 93.3 71.1 80.7 86.6 47.3 61.2 97.

3
79.

2
87.

3
i2b2 79.1 70.8 74.7 96.2 91.2 93.6 78.1 66.7 71.9 95.

9
94.

9
95.

4
mipacq 83.8 64.6 72.9 91.8 75.0 82.6 86.5 64.0 73.6 98.

6
42.

4
59.

3
negexts 56.9 60.4 58.6 88.4 74.9 81.1 69.9 71.3 70.6 100 99.

8
99.

9
none(ytex
)

56.9 68.8 62.3 84.9 79.5 82.1 66.7 76.5 71.3 94.
9

95.
7

95.
3

The diagonal cells in Table 2 show relatively strong results for in-domain F-measures (SHARP 

93.5%, i2b2 93.6%, MiPACQ 73.6%; note that NegEx Test Set numbers are not meaningful).  

Off-diagonal cells report cross-domain results.

The widely used rule-based NegEx algorithm (bottom row) performed quite well on the 

NegEx Test Set (F1=95.3%), but when used without modification on other corpora, performance 

fell to unacceptable levels (e.g., F1=62.3% on SHARP data). In each data set, a machine learning 

model automatically trained on the in-domain corpus outperformed NegEx, and at least one cross-

trained model also outperformed NegEx (e.g., on the SHARP test set, an i2b2-trained model gets 

F1=74.7% vs. YTEX NegEx’s F1=62.3%).

The four corpora appear to differ in their usefulness as training sets. For training sets, this 

was measured by the macro-averages across rows (excluding in-domain tests): 80.7% (i2b2), 

76.4% (SHARP), 71.6% (MiPACQ), and 70.1% (NegEx Test Set). Additionally, the corpora 

differ with respect to their difficulty as test sets, as we calculated by macro-averaging down 

columns (excluding in-domain tests). Without in-domain training data, evaluating on SHARP 

and MiPACQ corpora seemed to be particularly difficult (68.7% and 67.9%, respectively); i2b2 
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and NegEx test sets were significantly easier (81.5% and 80.7%, respectively).

The usefulness and difficulty of corpora is more nuanced than these averages, and they 

did not correlate directly with corpus size, as one might expect if the corpora were generated by 

the same (hypothetical) source distribution.  For example, on NegEx test data, training with the 

largest corpus, MiPACQ, yielded significantly worse performance (F1=59.3%) than training with 

the i2b2 corpus (F1=95.4%), which is half its size.  Furthermore, the poor performance was not 

uniform or symmetric; for example, there are two cross-training tests with recall in the 40-

percent range: training on SHARP but testing on MiPACQ, and training on MiPACQ but testing 

on NegEx Test Set. 

Out-of-domain Co-training

One practical question a user might ask is: “What corpora should I use to train a negation 

detection system for my data?”  Table 3 below illustrates the difficulty of answering this 

question. The first four rows are reproduced from the F-measure columns of Table 2, where the 

first three rows are cross-domain tests ranked by score, the fourth row is in-domain tests.  

Table 3: Performance in practical negation detection situations on a held-out corpus
 sharp i2b2 mipacq negexts
Out-of-domain 1 58.6 80.7 61.2 59.3
Out-of-domain 2 72.9 81.1 70.6 87.3
Out-of-domain 3 74.7 82.6 71.9 95.4
In-Domain 93.5 93.6 73.6 99.9
All 3 Out-of-domain 79.0 83.9 69.1 69.9
All 4 89.7 92.6 75.3  

Table 3’s fifth row simulates a typical downstream user’s situation: no in-domain training 

data is available, and all available out-of-domain corpora are used to build a model (a different 

model in each column on this row).  Note that the performance of these large, conglomerate out-
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of-domain models is uniformly lower than training with in-domain data. For the SHARP and 

i2b2 corpora, “use all the out-of-domain data you have” is the best strategy.  However, for the 

MiPACQ and NegEx Test Set corpora, choosing a single out-of-domain model would have been 

better.

The sixth row of Table 1 represents a single model that is trained on all training sets 

available, simulating the case of a downstream user who is able to annotate a sizable amount of 

in-domain data.  This conglomerate model obtains the best-performance on the MiPACQ test set 

of all tested models; it performs slightly below single-in-domain-corpus training for SHARP and 

i2b2.  Thus, whether there is in-domain data available or not, we cannot conclude a uniform 

policy such as “use all available data to train your model” or “train a model on a single most 

similar corpus.”

DISCUSSION

Differences in Annotation Guidelines

We have hypothesized that some of the discrepancy in performance between corpora was 

caused by differences in annotation guidelines, stemming primarily from different accounts of 

named entities.  We should note that all annotation projects reported high inter-annotator 

agreement, but we do not have corpora that are multiply-annotated with different guidelines. 

Here, we qualitatively analyze the annotation guidelines concerning the annotation of both NEs 

(concepts) and attributes (assertion status).

The primary difference between the annotation guidelines of the corpora appears to be in 

the definition of NEs, rather than direct indications of how negation should be handled. First, NE 

annotation guidelines differ in the semantic types that are allowed.  The most permissive is the 
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MiPACQ corpus, which annotates 17 UMLS Semantic Groups. SHARP only annotates the 6 

most clinically relevant groups, namely, Diseases and Disorders, Signs and Symptoms, Labs, 

Medications, Procedures, and Anatomical Sites.  The NegEx Test Set is much more narrow, 

including only Signs, Symptoms, Diseases, and Findings with qualitative values. The i2b2 

corpus is similarly restrictive, only annotating “problems,” i.e., Diseases, Signs and Symptoms.

The corpora also differ in how wide of a span to consider when identifying NEs.  NegEx 

Test Set is the most permissive, annotating whole clinically-relevant phrases as NEs regardless 

of their syntactic type (e.g., the statement “Right ventricular function is normal” is treated as a 

single entity as shown by the underlining).  i2b2/VA guidelines only consider whole noun and 

adjective phrases as possible NEs (e.g., “her shortness of breath and coughing resolved” includes 

the modifier “her” in the NE). Similar to i2b2/VA, MiPACQ also indicates that whole noun 

phrases should be candidate NEs, but smaller units are typically used in practice (e.g., “her chest 

x-ray” leaves out the modifier “her”). SHARP predominantly annotates maximal strings that 

match UMLS terms as NEs, which often excludes long paraphrases and closed-class modifying 

adjectives (similar to MiPACQ), although there are some cases of CUI-less NEs and multi-span 

NEs.

Another difference in NE annotation guidelines is the amount of overlap allowed 

between NEs. The NegEx Test Set has only one phrase annotated per sentence, hence no overlap 

in NEs; i2b2/VA only annotates full noun and adjective phrases, so fully subsumed NEs are not 

allowed. In contrast, SHARP annotates subspans as long as they are mapped from the UMLS and 

of a different semantic type (e.g., both “chest” (anatomical site) and “chest x-ray” (procedure) in 

“her chest x-ray”).  MiPACQ removes this restriction of different semantic types, but stipulates 

that some relationship must be shared between the subspan and the full span – this is in practice 
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very similar to SHARP (e.g., there is a locationOf relationship between “chest” and “chest x-

ray”).  

Overall, the four guidelines are not as precise with negation annotation definitions as they 

are with NEs. The SHARP, MiPACQ, and NegEx Test Set representations imply a relation 

between a negation marker and the negated term, therefore they require a cue word (e.g., a cue 

word like “no” would be marked, and the following term “shortness of breath” would then set a 

negation_indicator=present accordingly). The i2b2/VA guideline assumes a pragmatic inference 

about the intent of the author in describing his/her observations (e.g., “no shortness of breath” 

would mark assertion=absent without marking the cue word).  This difference does lead to some 

morphological-related annotation differences. For example, “afebrile” is marked as “absent” for 

i2b2, but not in SHARP, MiPACQ, or NegEx Test Set since there is no external negation 

indicator. However, these attribute annotation differences do not seem sufficient to explain the 

overall differences in cross-domain vs. in-domain performance.

The Big Picture for Negation Detection 

Training or developing negation detection systems is hindered when the sources of data 

and the annotation guidelines do not align or are not large enough to overcome differences. 

Negation detection systems have demonstrated the utility of clinical NLP within controlled 

domains (Table 1), but when in-domain training data is scarce or nonexistent, negation detection 

performance remains challenging (Table 3). Note that to ensure excellent negation performance 

for a machine learning model, we still need to annotate examples of negation on the target 

corpus for fully supervised in-domain training. If negation detection is “solved” given a 

prerequisite in-domain annotation effort, it is only partially “solved.”  Rule-based methods do 

not provide relief from this: negation is not fully “solved” if it is “solved” given an expert who 
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can develop domain-specific rules.

Negation evaluation is also greatly affected by differing annotation guidelines. For 

example, the i2b2/VA corpus was annotated for only “problem” NEs.  Thus, evaluation results 

are not necessarily applicable if a user expects a wider range of NEs to be properly negated, for 

example in an information retrieval or large-scale population/corpus analysis. Conversely, if a 

downstream user of a negation detection system is only concerned with the clinical problems, as 

may be the case in an information extraction or controlled classification setting, then the i2b2 

corpus is quite appropriate; the performance on the MiPACQ and SHARP corpora might be 

misleading, since it will evaluate on NEs that are not of interest. We have not observed any 

corpus that would serve as a fully generalizable benchmark for the negation task in clinical NLP.

The solution is not necessarily to standardize the task of negation detection, or even 

negation annotations.  Negation annotations may be used toward many different ends. Tasks 

such as downstream information extraction, classification, summarization, question-answering, 

or patient/cohort retrieval differ with respect to the requirements that they impose on a negation 

detection algorithm.   Robust solutions may require tailoring to specific tasks.

CONCLUSION

While a review of published work may suggest that the negation detection task in clinical 

NLP has been “solved,” our analysis of negation detection performance in multiple corpora 

indicates substantial work remains to be done.  Though negation detection can be straightforward 

in constrained settings, both rule-based and machine-learning approaches have mixed results in 

heterogeneous corpora.  Furthermore, it is difficult to determine the optimal mix of training data, 

or a standardized way to constrain evaluation metrics, since both are influenced by the corpus-
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specific annotation guidelines. Future work should include the development of empirical model-

selection algorithms to automate the selection of training and testing data, and task-adaptive 

negation detection algorithms.
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Figure legends


