
© 2014 The MITRE Corporation. All rights reserved.
Approved for Public Release,14-2221

C o r e y K a l l e n b e r g
X e n o K o v a h
J o h n B u t t e r w o r t h
S a m C o r n w e l l

Extreme Privilege Escalation
on Windows 8/UEFI Systems

@ c o r e y k a l
@ x e n o k o v a h
@ j w b u t t e r w o r t h 3
@ s s c 0 r n w e l l

| 2 |

Introduction

 Who we are:
– Trusted Computing and firmware security researchers at The

MITRE Corporation

 What MITRE is:
– A not-for-profit company that runs six US Government "Federally

Funded Research & Development Centers" (FFRDCs) dedicated to
working in the public interest

– Technical lead for a number of standards and structured data
exchange formats such as CVE, CWE, OVAL, CAPEC, STIX,
TAXII, etc

– The first .org, !(.mil | .gov | .com | .edu | .net), on the ARPANET

© 2014 The MITRE Corporation. All rights reserved.

| 3 |

Outline

 The agony of ring 3
 Escaping to the deepest, darkest, depths of the system where

few mortals dare tread
 2 new take-complete-control-of-the-system-and-defeat-all-

security BIOS exploits: The King's Gambit, The Queen's Gambit
 Disclosure timeline and vendor response
 The Watcher appears!
 Questioning your assumptions (and assessing your risk) with

Copernicus
 Conclusion

© 2014 The MITRE Corporation. All rights reserved.

| 4 |

Attack Model (1 of 2)

 An attacker has gained administrator access on a victim
Windows 8 machine
 But they are still constrained by the limits of ring 3

© 2014 The MITRE Corporation. All rights reserved.

| 5 |

Attack Model (2 of 2)

 Attackers always want
– More Power
– More Persistence
– More Stealth

© 2014 The MITRE Corporation. All rights reserved.

| 6 |

Typical Post-Exploitation Privilege Escalation

 Starting with x64 Windows vista, kernel drivers must be signed and contain
an Authenticode certificate

 In a typical post-exploitation privilege escalation, the attacker wants to
bypass the signed driver requirement to install a kernel level rootkit

 Various methods to achieve this are possible, including:
– Exploit existing kernel drivers
– Install a legitimate (signed), but vulnerable, driver and exploit it

 This style of privilege escalation has been well explored by other
researchers such as [6][7].

 There are other, more extreme, lands the attacker may wish to explore

© 2014 The MITRE Corporation. All rights reserved.

| 7 |

Other Escalation Options (1 of 2)

 There are other more interesting post-exploitation options an
attacker may consider:
– Bootkit the system
– Install SMM rootkit
– Install BIOS rootkit

© 2014 The MITRE Corporation. All rights reserved.

| 8 |

Other Escalation Options (2 of 2)

 Modern platforms contain protections against these more exotic
post-exploitation privilege-escalations
– Bootkit the system (Prevented by Secure Boot)
– Install SMM rootkit (SMM is locked on modern systems)
– Install BIOS rootkit (SPI Flash protected by lockdown mechanisms)

© 2014 The MITRE Corporation. All rights reserved.

| 9 |

Extreme Privilege Escalation (1 of 2)

 This talk presents extreme privilege escalation
– Administrator userland process exploits the platform firmware

(UEFI)
– Exploit achieved by means of a new API introduced in Windows 8

© 2014 The MITRE Corporation. All rights reserved.

| 10 |

Extreme Privilege Escalation (2 of 2)

 Once the attacker has arbitrary code execution in the context of the
platform firmware, he is able to:
– Control other "rings" on the platform (SMM, Ring 0)
– Persist beyond operating system re-installations
– Permanently "brick" the victim computer

© 2014 The MITRE Corporation. All rights reserved.

| 11 |

Target Of Attack

 Modern Windows 8 systems ship with UEFI firmware
 UEFI is designed to replace conventional BIOS and provides a

well defined interface to the operating system

© 2014 The MITRE Corporation. All rights reserved.

| 12 |

Obligatory UEFI Diagram

© 2014 The MITRE Corporation. All rights reserved.

BREAKING IN EARLIER == MORE PRIVILEGED

| 13 |

Windows 8 API

 Windows 8 has introduced an API that allows a privileged
userland process to interface with a subset of the UEFI interface

© 2014 The MITRE Corporation. All rights reserved.

| 14 |

EFI Variable Creation Flow

 Certain EFI variables can be created/modified/deleted by the
operating system
– For example, variables that control the boot order and platform

language
 The firmware can also use EFI variables to communicate

information to the operating system
© 2014 The MITRE Corporation. All rights reserved.

| 15 |

EFI Variable Consumption

 The UEFI variable interface is a conduit by which a less privileged
entity (admin Ring 3) can produce data for a more complicated
entity (the firmware) to consume
 This is roughly similar to environment variable parsing attack

surface on *nix systems

© 2014 The MITRE Corporation. All rights reserved.

| 16 |

Previous EFI Variable Issues (1 of 2)

 We’ve already co-discovered[13] with Intel some vulnerabilities
associated with EFI Variables that allowed bypassing secure
boot and/or bricking the platform

© 2014 The MITRE Corporation. All rights reserved.

| 17 |

Previous EFI Variable Issues (2 of 2)

 However, VU #758382 was leveraging a proprietary Independent
BIOS Vendor (IBV) implementation mistake, it would be more
devastating if an attacker found a variable vulnerability more
generic to UEFI

© 2014 The MITRE Corporation. All rights reserved.

| 18 |

OEMs

(Original
equipment
manufacturers)

UEFI Vulnerability Proliferation

 If an attacker finds a vulnerability in the UEFI "reference
implementation," its proliferation across IBVs and OEMs would
potentially be wide spread.
– More on how this theory works "in practice" later…

© 2014 The MITRE Corporation. All rights reserved.

Notional, not literal, representation of
the flow of code between vendors

UEFI

(Unified
Extensible
Firmware
Interface)

IBVs

(Independent
BIOS Vendors)

| 19 |

Auditing UEFI

 UEFI reference implementation is open source, making it easy to audit
 Let the games begin:

– Svn checkout https://svn.code.sf.net/p/edk2/code/trunk/edk2/

http://tianocore.sourceforge.net/wiki/Welcome

© 2014 The MITRE Corporation. All rights reserved.

| 20 |

Where to Start Looking for Problems?

 Always start with wherever there is attacker-controlled input
 We had good success last year exploiting Dell systems by

passing an specially-crafted fake BIOS update…
 So let's see if UEFI has some of the same issues
 The UEFI spec has outlined a "Capsule update" mechanism

© 2014 The MITRE Corporation. All rights reserved.

| 21 |

Where to Start Looking for Problems?

 Always start with wherever there is attacker-controlled input
– Many of the UEFI variables are writeable by the OS, and are thus

“attacker controlled”
 We had good success last year exploiting Dell systems by

passing an specially-crafted fake BIOS update…
 The UEFI spec outlines a "Capsule update" mechanism for

firmware updates
– It’s not directly callable by ring 3 code…
– But it can be initiated by the creation of a special EFI Variable!
– We considered this to be a good target

© 2014 The MITRE Corporation. All rights reserved.

| 22 |

Capsule Scatter Write

 To begin the process of sending a Capsule update for
processing, the operating system takes a firmware capsule and
fragments it across the address space

© 2014 The MITRE Corporation. All rights reserved.

| 23 |

Capsule Processing Initiation

 The operating system creates an EFI variable that describes the
location of the fragmented firmware capsule
 A "warm reset" then occurs to transition control back to the

firmware

© 2014 The MITRE Corporation. All rights reserved.

| 24 |

Capsule Coalescing

 The UEFI code "coalesces" the firmware capsule back into its
original form.

© 2014 The MITRE Corporation. All rights reserved.

| 25 |

Capsule Verification

 UEFI parses the envelope of the firmware capsule and verifies
that it is signed by the OEM

© 2014 The MITRE Corporation. All rights reserved.

| 26 |

Capsule Consumption

 Contents of the capsule are then consumed….
– Flash contents to the SPI flash
– Run malware detection independent of the operating system
– Etc…

© 2014 The MITRE Corporation. All rights reserved.

| 27 |

Opportunities For Vulnerabilities

 There are 3 main opportunities for memory corruption
vulnerabilities in the firmware capsule processing code
1. The coalescing phase
2. Parsing of the capsule envelope
3. Parsing of unsigned content within the capsule

 Our audit of the UEFI capsule processing code yielded multiple
vulnerabilities in the coalescing and envelope parsing code
– The first "BIOS reflash" exploit was presented by Wojtczuk and

Tereshkin. They found it by reading the UEFI code which handled
BMP processing and exploiting an unsigned splash screen image
embedded in a firmware[1]

© 2014 The MITRE Corporation. All rights reserved.

| 28 |

Bugs Galore

 We spent ~1 week looking at the UEFI reference implementation and
discovered vulnerabilities in the capsule processing code
– We found 2 exploitable vulnerabilities code-named after chess moves. King's

Gambit is in DXE phase, Queen's Gambit in PEI phase.
 The vulnerabilities allow an attacker to get code execution in the context of

an almost entirely unlocked platform

© 2014 The MITRE Corporation. All rights reserved.

| 29 |

Vulnerabilities Summary

 The presence of easy to spot integer overflows in open source
and security critical code is… disturbing
– "Many eyes make all bugs shallow"… so is anyone (defensive)

looking?

ValidateCapsuleIntegrity: Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

© 2014 The MITRE Corporation. All rights reserved.

| 30 |

Onward To Exploitation

 The aforementioned code runs with read-write-execute
permissions
– Flat protected mode with paging disabled
– No mitigations whatsoever

 However, successful exploitation in this unusual environment was
non-trivial

© 2014 The MITRE Corporation. All rights reserved.

| 31 |

Coalescing Exploit Success

 Exploited using a multistage approach that involved corrupting
the scatter-gather list
– Achieves surgical write-what-where primitive

See whitepaper for full details on the exploitation technique © 2014 The MITRE Corporation. All rights reserved.

| 32 |

Envelope Exploitation Success

 Memory corruption took the form of a non-terminating loop writing
partially controlled values
 Exploited by having non-terminating loop self-overwrite

© 2014 The MITRE Corporation. All rights reserved.See whitepaper for full details on the exploitation technique

| 33 |

Exploitation Mechanics Summary

 See the whitepaper for the super nitty-gritty details
 Capsule coalescing exploit (Queen's Gambit) allows for surgical

write-what-where primitive resulting in reliable exploitation of
the UEFI firmware
– Exploited using only Windows 8 EFI variable API
– Stores payload at predictable physical addresses by spraying EFI

variables onto the SPI flash
 Capsule envelope parsing vulnerability (King's Gambit) can be

exploited but corrupts a lot of the address space
– System possibly left in an unstable state if not rebooted
– Relies on a 3rd party kernel driver to stage payload at a certain

physical address
 In both cases, attacker ends up with control of EIP in the early

boot environment

© 2014 The MITRE Corporation. All rights reserved.

| 34 |

Exploitation Flow (1 of 9)

 Our Sith attacker is unimpressed with his ring 3 admin privileges
and seeks to grow his power through the dark side of the force

© 2014 The MITRE Corporation. All rights reserved.

| 35 |

Exploitation Flow (2 of 9)

 Attacker creates many copies of a payload variable
– Payload contains evil capsule as well as shellcode

 Similar to heap spray, this technique puts the attackers payload at a
predictable physical address

© 2014 The MITRE Corporation. All rights reserved.

| 36 |

Exploitation Flow (3 of 9)

 Attacker prepares to initiate capsule update by creating the
CapsuleUpdateData variable

© 2014 The MITRE Corporation. All rights reserved.

| 37 |

Exploitation Flow (4 of 9)

 Warm reset is performed to transfer context back to UEFI
– “Warm reset” probably means S3 sleep but is implementation specific

© 2014 The MITRE Corporation. All rights reserved.

| 38 |

Exploitation Flow (5 of 9)

 Capsule processing is initiated by the existence of the
"CapsuleUpdateData" UEFI variable

© 2014 The MITRE Corporation. All rights reserved.

| 39 |

Exploitation Flow (6 of 9)

 UEFI begins to coalesce the evil capsule

© 2014 The MITRE Corporation. All rights reserved.

| 40 |

Exploitation Flow (7 of 9)

 UEFI becomes corrupted while parsing evil capsule

© 2014 The MITRE Corporation. All rights reserved.

| 41 |

Exploitation Flow (8 of 9)

 Attacker gains arbitrary code execution in the context of the early
boot environment
– Platform is unlocked at this point

© 2014 The MITRE Corporation. All rights reserved.

| 42 |

Exploitation Flow (9 of 9)

 Attacker can now establish agents in SMM and/or the platform
firmware to do their bidding

© 2014 The MITRE Corporation. All rights reserved.

| 43 |

Unnatural Powers

 With these new powers, an attacker can:
– Brick the platform
– Defeat Secure Boot[2]
– Establish an undetectable SMM rootkit[8][5]
– Subvert hypervisors[9]
– Subvert TXT launched hypervisors[3]
– Circumvent operating system security functions[11]
– Survive operating system reinstallation attempts
– Other?

© 2014 The MITRE Corporation. All rights reserved.

| 44 |

Demo Time

© 2014 The MITRE Corporation. All rights reserved.

| 45 |Vulnerability Disclosure & Vendor Response
http://www.kb.cert.org/vuls/id/552286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4859
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4860

 We told Intel & CERT about the bugs we found on Nov 22nd

(King's Gambit) and Dec 4th (Queen's Gambit) 2013
– We conveyed that we would extend our typical 6 month

responsible disclosure deadline, and we would be targeting public
disclosure in the summer at BlackHat/Defcon
 MITRE sets a 6 month default deadline to help prioritization to fix the

problems. Things without deadlines have a tendency to not get done.
– We also directly contacted some of the OEMs that we had the

ability to send encrypted email to
 Intel patched the bugs in the UEFI source code in January 2014,

and they are patched in the latest stable UEFI Developers Kit
(UDK) 2014 release (March 2014)
 Intel held multiple meetings with many OEMs and IBVs to

communicate and clarify issues. They also asked the vendors to
report which systems were vulnerable.

© 2014 The MITRE Corporation. All rights reserved.

| 46 |Vulnerability Disclosure & Vendor Response
http://www.kb.cert.org/vuls/id/552286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4859
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4860

 Then we didn't hear anything for a while.
 In June we started to get nervous that there was a mismatch in our

expectations about what vendors would be telling us
– We expected to get a list of before BlackHat of which BIOS revisions

vendors had released that patched the vulnerabilities.
– What we got instead was a taste of the bad old days where some

vendors didn't reply Intel, others replied that they're not vulnerable
when they actually are, and others replied under NDA and we don't
know what they said.

 In July we had to start an aggressive follow-up campaign with
OEMs and IBVs where we specifically went and looked at their
systems to try and identify signatures that indicate the presence of
the vulnerable code, so we could cite specific evidence that they
were vulnerable.

 Moral of the story: BIOS vendors are not used to having to fix
vulnerabilities. (And you the BIOS users are not used to having to
patch them even if patches exist!)

© 2014 The MITRE Corporation. All rights reserved.

| 47 |

Our current understanding

Vendor Response
Intel Vulnerable, fixed in January & released in UDK2014
Phoenix Vulnerable, fixed (see next slide)
Insyde Not vulnerable (see next slide)
AMI Vulnerable, fixed (see next slide)
HP Vulnerable, fixed (see 4 slides from now)
Dell Suspect code found with binary analysis, but is dormant and will

be quarantined or removed in upcoming releases.
Lenovo Incorporating Phoenix updated source code
Panasonic Under inspecting with IBV
Other Vendors Unknown, waiting for contact info

© 2014 The MITRE Corporation. All rights reserved.

| 48 |

Our current understanding

Vendor Response
Phoenix Based on our analysis, we believe that our product was

vulnerable to the attacks based on exploiting the three bugs, as
described in the whitepaper:
1. Integer overflow in determining if CapsuleSize +

DescriptorSize > Memory size.
2. Integer overflow with summation of descriptor array Length

members in GetCapsuleInfo.
3. Multiplication overflow with sufficiently large NumBlocks

when allocating LbaCache buffer.
These issues affected our currently shipping SCT3 products and
were fixed as of May 23, 2014, and the updates were promptly
provided to our customers. We verified that our new SCT4
product is not affected by these issues.

AMI AMI has addressed the issue on a generic basis and is working
with OEMs to implement fixes for projects in the field and
production. End users should contact their board manufacturer
for information on when a specific updated BIOS will be
available.

Insyde Insyde's Capsule Update code is not vulnerable to this attack.© 2014 The MITRE Corporation. All rights reserved.

| 49 |

How can Vulnerability Coordination be Done
Better in the Future?

 Stick with CERT for vulnerability disclosure
– We originally asked Intel to coordinate both because the

vulnerability was in their reference source code, but also because
they have many IBV/OEM BIOS engineer contacts.

– However Intel can only lean on OEMs/IBVs so hard, because at
the end of the day they're also customers.

 The UEFI forum is in the process of setting up a UEFI Security
Response Team (USRT) to better coordinate these sort of
disclosures in the future.
– Shooting to go live by Sept 1
– The USRT will help work with the long-tail of vendors who are not

the top-3 PC vendors who are the main ones we tend to focus on

© 2014 The MITRE Corporation. All rights reserved.

| 50 |

Trickle-down Vulnerabilities

 In our whitepaper we discussed a concrete example of finding
the UEFI reference source code vulnerabilities in a shipping HP
Elitebook 2540p system.
 MITRE is not in any way endorsing or denigrating HP's products

specifically. As with the Dell system we attacked last year, we
did our analysis there just because we happened to have such
systems easily available to us.
 So as we did last year with Dell, we'd like to invite a

representative from HP to offer their thoughts on the
vulnerabilities, their response, a point of contact for any future
vulnerabilities, etc.

© 2014 The MITRE Corporation. All rights reserved.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

BlackHat 2014
UEFI Vulnerability Briefing

Jim Waldron
Senior Architect for Platform Security
Business Personal Systems

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.52

UEFI Vulnerability Briefing
Introduction

HP values the important contribution MITRE provides to the computing
community

HP treats all security issues seriously, and seeks to provide appropriate
mitigations in a timely manner

Individuals and organizations wishing to report security issues should
contact our Software Security Response Team at this email address:

security-alert@hp.com

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.53

UEFI Vulnerability Briefing
The HP 2540p EliteBook

This system shipped in 2010

A 2540p BIOS update fixing this issue is available for download from the
2540p “Support -> Drivers & Downloads” page at hp.com

For additional information on this vulnerability please refer to the HP
Security Bulletin at the following link:

https://h20564.www2.hp.com/portal/site/hpsc/public/kb/docDisplay/?docId=emr_na-c04393276

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.54

HP SureStart is the first self-healing technology solution created to protect
against Malware and Security attacks aimed at the BIOS

HP SureStart

• Self-healing: Automatic recovery from BIOS
malware and security attacks1,2

• Firmware protection against Permanent
Denial of Service (PDoS) attacks

• Detects, reports and allows auto recovery of
Advance Persistent Threats (APTs) aimed at
BIOS

Features

• No user downtime waiting for IT/Service ticket2
• Results in fewer help desk calls for crisis recovery

or bricked units
• Secure by default; safeguards machine unique

data

Problems it solves

• Virtually uninterrupted Productivity
• Confidence in BIOS Rollout
• Reduce TCO; no need to reinstall/replace

hardware3

• Detection and recovery transparent to
customer

Customer benefits

1. 100% Automatic recovery of BIOS boot block.

2. If all copies of BIOS are compromised or deleted, a manual step for recovering BIOS is available.

3. Applicable to 2013 EliteBooks and ZBooks.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Thank you

| 56 |

BIOS Attacks: So What?
What Can Attackers Do If They Break Into BIOS?

 We get asked this question a lot, and our answer is
"EVERYTHING! YOU CAN DO EVERY. SINGLE. THING!" or
"A BIOS attacker has available to it a superset of the capabilities
of all lower privileged attackers."
 But of course they can be excused for thinking we’re just

another group of security folks trying to spread FUD.
 We don’t spread FUD, we talk about what we know to be

technologically and architecturally possible.
 But maybe we should put the fear of God into people?
 Or at least…the fear of Galactus!

© 2014 The MITRE Corporation. All rights reserved.

| 57 |

Presenting
the first
appearance
of
The Watcher!

Marvel Comics
Fantastic Four #13, 1963

| 58 |

The Watcher

 The Watcher lives in SMM (where you can't look for him)
 It has no build-in capability except to scan memory for a magic

signature
 If it finds the signature, it treats the data immediately after the

signature as code to be executed
 In this way the Watcher performs arbitrary code execution on behalf

of some controller

 A controller is responsible for placing into memory payloads for
The Watcher to find
 These payloads can make their way into memory through any

means
– Could be sent in a network packet which is never even processed by

the OS
– Could be embedded somewhere as non-rendering data in a document
– Could be generated on the fly by some malicious javascript that's

pushed out through an advertisement network
– Could be pulled down by a low-privilege normal-looking dropper
– Use your imagination

© 2014 The MITRE Corporation. All rights reserved.

| 59 |

The Watcher, watching

© 2014 The MITRE Corporation. All rights reserved.

0
0x1000
0x2000
0x3000

. . .

RAM

P
er

io
di

c
co

nt
in

uo
us

 p
ay

lo
ad

si

gn
at

ur
e

se
ar

ch
 a

ll
R

A
M

0x2F7FE000
Web Page

…
Attached

(non-rendering)
payload

System
Management

RAM (SMRAM)

Design tradeoffs:
We don't want to scan every 4 byte
chunk of memory. So instead we scan
every 0x1000-aligned page boundary.

How do we guarantee a payload will be
found on a page-aligned boundary?
a) Another agent puts it there
b) Controller prefixes the payload with

a full 0x1000 worth of signatures
and pointers to the code to be
executed (this guarantees a
signature will always be found at
the boundary or boundary+4)

There are obviously many different
ways it could be built.

Controller
positions
payload

| 60 |

Demo

Marvel Comics
Fantastic Four #48, 1966

Impel 1991
Marvel Universe Series 2

| 61 |

Watcher Stats

 A week to get dev env set up (I didn't have my SPI programmer) and to
find where to insert the code into SMM so it got called on every SMI
 2 days to write Watcher + basic print payload
 Watcher itself: ~ 60 lines of mixed C and inline assembly
 Print payload: 35 bytes + string, 12 instructions
 Ultimate Nullifier payload: 37 bytes, 11 instructions

 Overall point: very simple, very small, very powerful
 How likely do you think it is that there aren't already Watchers watching?
 But we can't know until people start integrity checking their BIOSes

© 2014 The MITRE Corporation. All rights reserved.

| 62 |

The Watcher of Tomorrow

 One can imagine numerous ways that something like The Watcher
could be made a lot harder to deal with in the future
– Use Intel AES instructions to decrypt payload before execution (so

that even if a malware analyst happened to catch the payload, they
wouldn't be able to see the function unless they had already captured
The Watcher and its AES key)

– Include asymmetric crypto signature checking on payloads (so that
only the one true controller can cause code execution)

– Incorporate Smite'em[8] to hide the persistence in the BIOS flash chip
– Every payload changes out the signature that will be searched for to

find the next payload (to hinder network-based signature analysis)
– Use formal covert channels for C2 (also to hinder network analysis)
– Payloads wipe themselves from memory after execution (to defeat

memory forensics)
– Use your imagination

 Making malware isn't our gig. Understanding what's possible and
creating strategies to defeat it is.

© 2014 The MITRE Corporation. All rights reserved.

| 63 |

Marvel Comics
Fantastic Four #49, 1966

Does the appearance of
The Watcher portend the
end of all things?

Is this BIOS doomsday?!

No!

The Watcher (and other
BIOS malware) can be
taken down!

| 64 |

© 2014 The MITRE Corporation. All rights reserved.

Marvel Comics, Original Sin #1, 2014 Marvel Comics, Original Sin #2, 2014

| 65 |

Copernicus. Nikolaus Copernicus.

Question your
assumptions!

Hello strange
(cyber)space-men of

the future.

| 66 |

What can you do about it?

 Run Copernicus. It has been updated to automatically report if your
system is on the small list of currently known-affected systems for
CERT VU # 552286 (the CERT VU and Copernicus will be updated
as more vendors acknowledge their vulnerability)
– http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-

blog/copernicus-question-your-assumptions-about or just search for
"MITRE Copernicus"

 We are now releasing our UEFI binary integrity checking script
(bios_diff.py) for use on UEFI BIOS dumps. This can help you
detect if your BIOS has been backdoored
– You can often extract "known good" BIOS dumps from BIOS update

applications. We have a basic collection, but this doesn't scale well.
– We're going to be working with BIOS vendors to get a standard

metadata format whereby they can provide true known good contents
of the flash chips, and what should and shouldn't naturally change
(e.g. where are the UEFI non-volatile variables, etc)

© 2014 The MITRE Corporation. All rights reserved.

| 67 |

What can you do about it?

 If you're in charge of an enterprise, start running BIOS updates
– And start requesting your asset management software vendor

include BIOS revision and vulnerability status information
 If you're a security vendor, start including BIOS checks

– If you're a customer, start asking for BIOS checks
 We are happy to freely give away our Copernicus code to get

vendors started with incorporating checking BIOSes. All we ask
for in return is some data to help further our research and help
show why BIOS security is so important.
 We want BIOS configuration & integrity checking to become

standard capabilities which are widely available from as many
vendors as possible.
– No more massive blind spot please!

© 2014 The MITRE Corporation. All rights reserved.

Conclusions
The Watcher Sandman

Queen's

Gambit
King's

Gambit

Charizard

Snorlax

(Coming soon!)

Smite'em the Stealthy

(Coming soon!)

Ticks Fleas

| 69 |

© 2014 The MITRE Corporation. All rights reserved.

http://timeglider.com/timeline/5ca2daa6078caaf4 aka
http://bit.ly/1bvusqn

| 70 |

Summary

 We have found and disclosed two new exploitable vulnerabilities.

 These vulnerabilities would allow an attacker to take control of the
system before any security is enabled, and persist indefinitely via
the SPI flash chip.

 We have also invented a new technique to make BIOS/kernel
exploits more reliable by staging shellcode into UEFI non-volatile
variables, which will be mapped at predictable locations.

 We have shown The Watcher, which is an example of how an
attacker can gain arbitrary code execution in the most privileged
x86 execution domain, System Management Mode.

 We have updated our public "Copernicus" software which can
integrity check a BIOS to look for backdoors, or check for the
presence of known vulnerabilities.

© 2014 The MITRE Corporation. All rights reserved.

| 71 |

Conclusions

 It's time to get serious about firmware security
– Start patching your BIOSes
– Start demanding firmware inspection capabilities

 UEFI has more tightly coupled the bonds of the operating system and the
platform firmware

 Specifically, the EFI variable interface acts as a conduit by which a less
privileged entity (the operating system) can pass information for
consumption by a more privileged entity (the platform firmware)
– We have demonstrated how a vulnerability in this interface can allow an

attacker to gain control of the firmware
 Although the authors believe UEFI to ultimately be a good thing for the

overall state of platform security, a more thorough audit of the UEFI code
and OEMs/IBVs' extra "value added" code is needed

 MITRE's Copernicus continues to be updated and remains the only
enterprise-deployable system that can integrity check and vulnerability
check your BIOSes
– But MITRE doesn't make products so industry needs to come talk to us

© 2014 The MITRE Corporation. All rights reserved.

| 72 |

Questions & Contact

 {ckallenberg, xkovah, jbutterworth, scornwell} @ mitre . org
 Copernicus @ mitre . org
 @coreykal, @xenokovah, @jwbutterworth3, @ssc0rnwell
 @MITREcorp

 P.s., go check out OpenSecurityTraining.info!
 @OpenSecTraining

© 2014 The MITRE Corporation. All rights reserved.

| 73 |

References

 [1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf

 [2] A Tale of One Software Bypass of Windows 8 Secure Boot – Yuriy Bulygin –
Jul. 2013 http://blackhat.com/us-13/briefings.html#Bulygin

 [3] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna
Rutkowska – Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

 [4] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013 –
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-
enforcement.pdf

 [5] BIOS Chronomancy: Fixing the Core Root of Trust for Measurement –
Butterworth et al., May 2013
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf

 [6] IsGameOver() Anyone? – Rutkowska and Tereshkin – Aug 2007
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

 [7] Defeating Windows Driver Signature Enforcement – j00ru - Dec 2012
http://j00ru.vexillium.org/?p=1455

© 2014 The MITRE Corporation. All rights reserved.

| 74 |

References 2

 [8] Copernicus 2 – SENTER The Dragon – Kovah et al. – March 2014
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-
Dragon-CSW-.pdf

 [9] Preventing and Detecting Xen Hypervisor Subversions – Rutkowska and
Wojtczuk – Aug 2008 http://www.invisiblethingslab.com/resources/bh08/part2-
full.pdf

 [10] A New Breed of Rootkit: The Systems Management Mode (SMM) Rootkit –
Sparks and Embleton – Aug 2008 http://www.eecs.ucf.edu/~czou/research/SMM-
Rootkits-Securecom08.pdf

 [11] Using SMM for "Other Purposes" – BSDaemon et al – March 2008
http://phrack.org/issues/65/7.html

 [12] Using SMM to Circumvent Operating System Security Functions – Duflot et
al. – March 2006 http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf

 [13] Setup for Failure: Defeating UEFI SecureBoot – Kallenberg et al. – April 2014
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f
3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

© 2014 The MITRE Corporation. All rights reserved.

