

2016 Federal DevOps Computing Summit
Report

Michelle Casagni, Melissa Heeren, Diane Hanf, Michael Kristan, Susan Kuwana

The MITRE Corporation1

Tom Suder and Tim Harvey

The Advanced Technology Academic Research Center

December 9, 2016

1 The authors’ affiliation with The MITRE Corporation is provided for identification purposes only, and is

not intended to convey or imply MITRE’s concurrence with, or support for, the positions, opinions or

viewpoints expressed by the authors.

Approved for Public Release; Distribution Unlimited. 16-4460 © 2016 The MITRE Corporation. ALL RIGHTS RESERVED.

 2

Table of Contents

1 Executive Summary .. 3

2 Introduction .. 5

3 Collaboration Session Overview ... 5
3.1 Nuts and Bolts of DevOps Culture Change in the Government Space 6

3.1.1 Session Goals .. 6
3.1.2 Session Summary ... 6
3.1.3 Recommendations ... 6

3.2 Product Owner Expectations ... 9
3.2.1 Session Goals .. 9
3.2.2 Session Summary ... 9
3.2.3 Recommendations .. 10

3.3 DevOps Reality ... 11
3.3.1 Session Goals ... 11
3.3.2 Session Summary .. 11
3.3.3 Recommendations .. 12

3.4 Secure Development Operations (SecDevOps) – The Intersection of Security,
Development and Deployment ... 13

3.4.1 Session Goals ... 14
3.4.2 Session Summary .. 14

3.5 Recommendations .. 15
3.5.1 Addressing the gaps in culture .. 15
3.5.2 Building trust in software products... 15
3.5.3 Refining processes and standards .. 15

4 Conclusion & Summit Recommendations .. 16

5 Acknowledgements .. 17

 3

1 Executive Summary

An inaugural ATARC (Advanced Technology Academic Research Center) Federal

DevOps Summit was held on August 18, 2016 in Washington, D.C. During this summit,

four MITRE-ATARC Collaboration sessions provided representatives of industry,

academia, government, and MITRE the opportunity to discuss challenges the government

faces using DevOps and Agile processes for software development and delivery. The

goal of these sessions is to create an interactive forum for participants to exchange ideas

on best practices, recommendations, success stories, barriers and requirements to advance

the adoption of DevOps and Agile within the government.

Participants ranged from Director, CIO, and other executive levels from government and

industry to practitioners from government, industry, and MITRE. Each collaboration

session had a MITRE, Government and Industry lead to drive the discussions with

session participants towards addressing challenge areas in DevOps and Agile, as well as

identifying courses of action to be taken to enable government and industry collaboration

with academic institutions.

This white paper summarizes the discussions in the collaboration sessions and presents

recommendations for government, academia, and industry while identifying intersecting

points among challenge areas. The sessions identified key overarching themes which are

summarized below:

Culture changes are needed to implement DevOps/Agile practices in an organization.

Predominantly, organizations need to get buy in to change from an “us vs. them” culture,

and dissolve the silo mentality. Support from executive levels of the organization are

necessary to show advocacy for change and be a strong change agent to show the way. It

is recommended that agencies ensure there is an organizational “Champion” willing to

support and mandate DevOps/Agile methodologies and tools. It is also recommended that

an organization-wide set of polices, guidelines, and language specific to DevOps/Agile

be standardized and implemented in a consistent and repeatable manner.

Appropriate roles and training are necessary for successful DevOps/Agile adoption.

The iterative and rapid pace of DevOps and Agile processes requires multi-disciplinary

teams working collaboratively together. Often times testers and developers are working

side-by-side and some situations the different roles have competing objectives even

though end goal is a shared responsibility. Several recommendations include ensure the

correct roles are identified and supported with training, offer a rotation of roles in a

“safe” environment to allow teams to experience the perspectives of different job

functions, and pair developers with testers, operations, or security members.

 4

The Product Owner is a critical role in a DevOps/Agile development environment. It is

evident that in many organizations, Product Owner is assigned as an “on the side” role

without an understanding of the level of effort and commitment necessary for success.

The lack of a trained Product Owner lowers the likelihood of project success. A

recommendation is to create a specific billet for the role of Product Owner, or that

product owner responsibilities be mapped clearly to an existing billet. Furthermore, a

Product Owner in a Federal Agile/DevOps program needs to be a government employee

empowered to make decisions regarding the prioritization of user stories and the

determination that the solution demonstrated meets the definition of done.

It was also recognized that training approaches, both formal and informal, assist in

reinforcing the culture to support DevOps/Agile success. Upper management should

receive appropriate training or briefing to understand impacts of moving to an

Agile/DevOps culture. Another suggestion is that DevOps/Agile training become part of

standard Product Manager training and certification (e.g., Defense Acquisition University

(DAU), Federal Acquisition Institute Training Application System (FAITAS),

Department of Homeland Security (DHS) Performance and Learning Management

System (PALMS), etc.).

Security requirements are critical, yet onerous, and often not incorporated at the

beginning of the development lifecycle.

This is concurrence that security requirements, while critical, are onerous in their current

form. Stringent security and privacy related policies, requirements, paperwork and

scanning requirements add significant burden to the DevOps process. Recommendations

to incorporate into the DevOps process to ease the challenges of security compliance

include:

 Build strong feedback loops into the software lifecycle that has shared visibility
across developers, operators, and security professionals

 Elevate the cost of security vulnerabilities in planning and estimation
 Increase auditing of all software and configuration changes

 Treat security as another form of quality testing and assurance

 Adopt a test driven software development strategy with security acceptance criteria

 Define security as a functional requirement in software development instead of

treating it as a non-functional requirement

Many existing policies and procedures are outdated in the sense that they better align

with waterfall processes instead of Agile methodologies. Security needs to be talked

about at the architecture level (and at every stage) in the software development lifecycle

and that money and time should be devoted to secure development.

 5

2 Introduction

An inaugural ATARC (Advanced Technology Academic Research Center) Federal

DevOps Summit was held on August 18, 2016 in Washington, D.C. During this summit,

four MITRE-ATARC Collaboration sessions provided representatives of industry,

academia, government, and MITRE the opportunity to discuss challenges the government

faces using DevOps and Agile processes for software development and delivery. The

goal of these sessions is to create an interactive forum for participants to exchange ideas

on best practices, recommendations, success stories, barriers and requirements to advance

the adoption of DevOps and Agile within the government.

Participants ranged from Director, CIO, and other executive levels from government and

industry to practitioners from government, industry, and MITRE. Each collaboration

session had a MITRE, Government and Industry lead to drive the discussions with

session participants towards addressing challenge areas in DevOps and Agile, as well as

identifying courses of action to be taken to enable government and industry collaboration

with academic institutions.

The MITRE Corporation is a not-for-profit company that operates multiple Federally

Funded Research and Development Centers (FFRDCs)2. ATARC is a non-profit

organization that leverages academia to bridge between government and corporate

participation in technology3. MITRE works in partnership with ATARC to host these

collaborative sessions as part of the Federal DevOps Summit.

This white paper is a summary of the results of the collaboration sessions and identifies

suggestions and recommendations for government, industry, and academia while

identifying cross-cutting issues among the challenge areas.

3 Collaboration Session Overview

Each of the five MITRE-ATARC collaboration sessions consisted of a focused and

moderated discussion of current problems, gaps in work programs, potential solutions,

and ways forward regarding a specific challenge area. The sessions for this summit

addressed:

 Nuts and Bolts of Culture Change in the Government Space

 Product Owner Expectations

 DevOps Reality

 Secure Development Operations (SecDevOps) – The Intersection of Security,

Development and Deployment

2 https://www.mitre.org/about/corporate-overview
3 http://www.atarc.org/about/

https://www.mitre.org/about/corporate-overview
http://www.atarc.org/about/

 6

This section outlines the goals, themes, and findings of each of the collaboration sessions.

3.1 Nuts and Bolts of DevOps Culture Change in the Government Space
This session focused on sharing current challenges in changing longstanding cultures to

embrace Agile and DevOps and discussed the Do’s and Don’ts from agencies working to

enact this culture change.

3.1.1 Session Goals

 Share current challenges in changing longstanding cultures to embrace Agile and
DevOps

 Identify behaviors to embrace and avoid based on experiences of
Agency/Department that are working to enact this culture change

3.1.2 Session Summary
Session participants started out by identifying what they felt needed to change.

Predominantly, organizations needed to get buy in to change from an “us vs. them”

culture, dissolving the silo mentality and reaching out across Development, Operations

and User communities to embrace an environment that supports a DevOps culture. To do

this, participants identified they needed support from the executive levels of the

organization, showing advocacy for change, and a strong change agent to show the way.

Participants felt they needed cultural messaging: definitions, process of DevOps, meaning

(outcomes) of DevOps, showing by action what it means to be part of a DevOps

environment, and how it aligns with organizational goals. The group also felt they

needed focus on getting the supporting information technology (IT) resources to foster

and nurture the environment: knowledgeable DevOps practitioners, tools, lifecycle

framework, and education plan to show program managers and other stakeholders how to

collaborate and plan differently. For example, events as hackathons expose people to

how DevOps can work, helping them to ease their fears of migrating.

3.1.3 Recommendations
Session participants then focused on more details for getting people to change and

maintaining that change especially when they have been “raised” in a culture that is

optimized for silo thinking. The group identified a predominant set of “Ps” that must be

addressed and aligned to initiate the culture change:

Principles—understand they are working together using the same principles.

Several agencies have DevOps projects under way with full support across the

spectrum. They are being successful by keeping focus on the goal and delivering

quality code in a user-responsive manner.

Practices—identify those key practices that are markers of the DevOps culture

such as coming to the table to positively address issues as they arise, leaving out

the finger-pointing and focusing on solving the problem, and “doing” vs. “being”

are positive. More importantly, embrace a scientific mindset by holding technical

exchange meetings, Lightning talks, or coffee talks for sharing, cross-pollinating

and co-mingling across stakeholder disciplines to promote a shared understanding

about DevOps.

 7

Products—automate the DevOps process to meet your delivery goals ensuring

that it not only reflects the code and user interfaces developed, but it also provides

history for retrospectives and supports the desired habits of the culture.

Policy—set policies that propel people towards acting in the way you want them

to behave.

People—ensure that the participants are able to participate. In the case of using

DevOps that is supporting Agile development ensure the correct roles are

identified and supported with training.

Pain Points—address pain points as soon as they arise and do it in a positive,

nurturing manner.

Promotion—promote the benefits of DevOps and continue to reinforce them

positively.

Perspective—understand that each participant in the DevOps comes from a

different environment with differing perspectives. A great practice to keep

forward momentum is to keep the perspective on meeting a delivery goal and

contributing to the success of the mission, i.e., measuring value vs. velocity.

Perception—change perception of leadership, help them see that in a DevOps

context, IT is a customer that is there to ensure that mission/organizational goals

are met. A technique for altering perception is to rapidly move teams through a

three phase process to achieving success: alpha, beta, live. The Alpha phase is

designed to promote experimentation and exploration giving DevOps team

members a place to learn. Beta allows them to do a meaningful prototype that will

have value and promotes discussion on the users’ true needs. Then as the

requirement is better understood, go live using the DevOps environment to assure

quick delivery with low quality issues. Doing this often and providing

transparency to quick wins to as many stakeholders as possible also helps to

educate the community on the shift in the DevOps delivery paradigm.

Lastly, though not a “P”, the group identified that there is a need for nucleation; need a

critical mass of expertise, tools, technologies and processes in-house to properly support

a DevOps culture. The group concluded that the pillars of culture change success required

an organization to show commitment by insisting on alignment to the mission, ensuring

adequate budgets for the DevOps environment, supporting continuity in projects that are

executing using DevOps and establishing a healthy, highly involved DevOps community.

The group transitioned to talking about the “Ts” of DevOps culture change. Not to be

understated, is the need to have training to help with culture change. The group

identified several training approaches, both formal and informal, to reinforcing the

culture to support DevOps success. Amongst those approaches are initiating the

organization by resetting them on the purpose of DevOps, standardizing organization-

wide on DevOps language, understanding that the organization must migrate through a

set of stages: listening-to-mindset-to-culture, and deliberately usher the organization

through these stages to solidify the culture change.

Having a Resource Center in place where teams can get coaching, courses, or mentors is

very useful for supporting culture change. Continuously communicate the approach;

 8

ensure that that participants understand that they are focusing on quality deliveries at a

pace faster than they may have experienced, and last but not least, make and take time to

train across teams so that everyone can better understand how the other stakeholders play

into the process.

As the discussion continued the group finally arrived at the nexus of Agile and DevOps.

Some felt Agile should be kept out of the DevOps conversation, many more felt that

DevOps was a critical contribution to building quality into Agile development.

Discussions moved to a use case for DevOps in which one organization was trying to

determine how to reduce a 187- day window to make a single line of code change.

DevOps could certainly reduce that window and the group thought that showing that

window reduction using DevOps would be a huge boost towards acceptance and

garnering support for culture change.

The group also discussed an approach for demonstrating how DevOps could help

improve delivery and quality by demonstrating improvement through small, highly

focused demonstrations where performance is baselined and improvement is shown. This

will allow an organization to easily track their progress as they embrace DevOps.

Continuing along the thread of measuring success an organization should set thresholds

which are immediately addressed if falling behind. Measurement and accountability are

fundamental to DevOps culture.

From a tools perspective, group members with more experience felt tools were enablers

to the culture, allowing organizations to empirically collect data on performance, improve

delivery speeds, and get early feedback on defects with quick fixes when it is cheaper to

fix them. Once the DevOps process is in place, a recommendations was tools should be

chosen through experimentation to determine the best fit with the DevOps environment

that has been established. Collaboration session participants also shared wisdom to stay

technology agnostic when selecting tools, once again, selecting ones that make sense for

their environment.

Techniques that were emphasized include removing focus from “us vs. them”, creating

empathy beyond what each DevOps team member knows by deploying training

techniques that allow for safe swapping of roles during team training or in real situations

where the duties to be done by the learner are highly scripted, supporting high awareness

of the day-to-day experience from which the process can recover if the task at hand does

not go as planned. These techniques tend to enlighten team players as to how their

contributions can be improved to help other team players do their jobs.

The other “Ts” discussed include:

Testing—expect that there will be brownfield testing of capability. Rely on

usage to provide empirical evidence of cosmetic preferences system-wide that can

be rapidly incorporated back into future releases. This technique however, should

not be used for critical functionality.

Teaming—employ, select or nurture people who are highly collaborative,

inquisitive, talented, and they with naturally sustain the culture that supports

 9

DevOps success. Set their focus on collective code/product ownership and getting

it through the DevOps process; this is a key enabler.

Tangle of Security—get rid of rework due to security; involve security early and

often and team with security to determine how to attain mission needs securely.

Transparency—using Kanban and other tools to ensure that members across the

team understand the team process, how they can adjust, and where improvements

can be made.

Last but not least, shape your organizational structure the way you want your code to be

developed and the agility you expect your business/mission to have (Conway’s Law); at

the heart of success should be to respond to the needs of the mission product users,

remove burden from use of the product and remove redundancy in the process to allow

for speedy delivery.

3.2 Product Owner Expectations
This session focused on the role of the Product Owner in a DevOps environment, and

how leaders can transition from other traditional Program Management roles to become a

Product Owner.

3.2.1 Session Goals

 Identify Product Owner responsibilities
 Compare Program/Project manager tasks with Product Owner tasks
 Identify the biggest challenges that Product Owners in the Federal Space face
 Determine what is necessary to make a Product Owner successful

3.2.2 Session Summary
This session began with introductions of participants, where participants identified their

current role and their goals for the session. There was a great diversity of experience

with DevOps, and with the Product Owner role in an Agile/DevOps environment. As the

discussion progressed, several takeaways emerged:

3.2.2.1 Training is needed for successful Agile Product owner
Several participants had been placed in the role of “Product Owner” in an “Agile”

development environment with no prior experience in Agile. The lack of understanding

of the basics of the Product Owner role clearly lowered the likelihood of success for these

individuals in that role. Because the role of the Product Owner is so critical in an Agile

development environment, this lack of a trained Product Owner similarly lowers the

likelihood of project success. The group recommended that Agile training become part of

standard Product Manager training and certification (e.g., Defense Acquisition University

(DAU), Federal Acquisition Institute Training Application System (FAITAS),

Department of Homeland Security (DHS) Performance and Learning Management

System (PALMS), etc.).

3.2.2.2 Clarity of roles
Some of the participants self-identified as “project manager/product owner/scrum

master.” As the discussions progressed, it became clear that the lack of clarity of what a

 10

role entails and clear assignment of those responsibilities to a team member lead to

confusion and overload. This leads to the next takeaway.

3.2.2.3 Appreciation by upper management of role of product owner as a real job
In Agile development and DevOps culture, the role of Product Owner is critical. Yet

there was evidence that in many organizations, upper management assigns someone, or

multiple people to that role, without an understanding of the level of effort and

commitment necessary for success. In several organizations, the Product Owner has a

different primary job and is performing the Product Owner role “on the side.” The group

recommended that a specific billet be created for the role of Product Owner, or that

product owner responsibilities be mapped clearly to an existing billet.

3.2.2.4 Product Owner needs to be government/full-time participation/single point
of contact /Empowered

The Product Owner in a Federal Agile/DevOps program needs to be a government

employee empowered to make decisions regarding the prioritization of user stories and

the determination that the solution demonstrated meets the definition of done. The

Product Owner validates the business needs. He or she is a subject matter expert who

works closely with users, that the customer (who understands the product owner role)

respects. In the past, the customer has not had a role in IT development. This change and

level of involvement required is not well understood. A strong Product Owner can clarify

these roles and set expectations.

3.2.2.5 Role doesn’t change significantly with DevOps
DevOps can be defined as a deliberate collaboration between an operational team and the

engineers developing capabilities to meet a customers’ needs. While many processes are

automated in a DevOps environment, the role of the Product Owner remains the same:

prioritize the backlog, and validate the solutions demonstrated by the teams. The

difference is that with DevOps, the tangible outcomes are visible sooner.

3.2.2.6 Focus on roles, not the terminology

In some organizations, there is a focus on getting positions staffed; an Agile project must

have a Product Owner, so a Product Owner is named. It is critical that the role itself and

the value it brings to the Agile team is understood and appreciated. Without that, focusing

only on the terminology, an organization can end up with someone who is Product Owner

“in name only”.

There is a lot of confusion about the difference between product owner and project

manager role. These roles are very different, but often a project manager will be

reassigned as Product Owner. In this situation, it can be helpful for an organization that is

committed to transitioning to Agile and DevOps to bring in an Agile Coach to work with

product owners.

3.2.3 Recommendations

 Upper management receive appropriate training/briefing to understand impacts of
moving to an Agile/DevOps culture

 11

 Careful consideration to be made when selecting Product Owner; consider end-user
relationships, interpersonal skills, and long-term availability and ability to commit

 Train Product Owner in Agile, DevOps
 Consider small project to pilot DevOps, with full support of upper management.

3.3 DevOps Reality
This session focused on the policy, cultural and technical challenges and solutions for
implementing DevOps methodology and tools in the federal government.

3.3.1 Session Goals

 What can “continuous” integration and deployment look like in your Agency?
 You don’t have to be Google to embrace DevOps culture

3.3.2 Session Summary
This session began with the agency representatives discussing a wide range of DevOps

experiences within their organizations. While each organization goes through its own

journey, there are common challenges and obstacles that the organizations encounter.

The common challenges with implementing DevOps can be categorized into Culture,

Testing and Security, and DevOps Policy.

The culture changes needed to implement Agile/DevOps practices in an organization

cannot be overstated. The group identified lack of knowledge, fear of change and

organizational stovepipes as challenges. One organization stated that a clear lesson

learned was that the first step with DevOps should be to establish an overall goal that

addresses cultural change. The group recognized the difficulty of changing the way

people think about their processes and systems.

The group switched to ideas about breaking down organization stovepipes and discussed

ideas about rotating developers around the operations jobs and skills and rotating on-call

responsibilities. It is important to provide opportunities for developers to see and

experience operational problems first-hand to improve their understanding. Hackathons

have proven to be valuable ways to educate developers and support cultural changes

while concurrently getting some valuable development done.

The discussion shifted to the testing and security challenges for organizations. DevOps

tools can provide transparency on what exactly the change(s) are at a much great level of

fidelity and automation than previously possible. However, existing configuration

management, change control boards, testing practices, security assessment and release

management processes pose challenges to the goal of rapid deployments. These processes

and policies need to be more agile and adapted to the opportunities that the cloud and

DevOps practices provide.

The group had good discussion about the impacts of testing and Independent Verification

and Validation (IV&V) on DevOps practices. Questions about where and how often

IV&V fits into the DevOps pipeline process were raised. The importance of

configuration reports on the build package details and automated test result reports were

 12

essential. The goal of DevOps is that everything is code (software, infrastructure, test,

security).

The group discussed that daily releases are possible and even multiple releases in a day

could be achieved. The keys to these rapid releases are that each release is small with

phased gate reviews, automated reviews, and quality standards. The idea of reducing and

condensing these various processes into System Level Agreements (SLAs) was

discussed. SLAs could specify that deployments do not wait for weekends or nights and

they should include rollback strategies to clearly identify what happens if something goes

wrong on a deployment. One organization described a daily change management process

that they proved out as a pilot. The discussion included the benefits of containerization

that allows software packaging, version control, and deployment via containers that can

be version controlled in a repository. The whole infrastructure can be rolled back via the

container, if needed.

There was concurrence that security requirements, while critical, are onerous in their

current form. Stringent security and privacy related policies, requirements, paperwork

and scanning requirements add significant burden to the process. The group discussed

the opportunities that DevOps methods and tools offer to ease the challenges of security

compliance. Possible solutions include automating security controls, shifting static

security methods to dynamic security concepts and tools.

The importance of establishing effective DevOps policy was another topic. One

organization described how a project started off as mobile, morphed into DevOps with

automation and extended to continuous integration. This organization successfully

established a policy to identify these processes and require that applications comply with

this new policy. Another organization described their mission to build and deploy new

applications within a portfolio. Without well-defined policies and standards, the result

was a huge mix of approaches, tools and inconsistent deployment outcomes.

The discussion turned to design guidance and the current need to decouple the application

lifecycle from infrastructure lifecycle. End users do not care about application versus

infrastructure; they only care about the service. Audit trails of user actions can help.

Auditing and logging are part of systems architecture and should be some of the policies

defined at the beginning.

3.3.3 Recommendations
The recommendations from this session are categorized as follows:

3.3.3.1 Changing Organizational Culture - “Integrate” Don’t “Separate” - Essential for
DevOps

 Ensure there is an organizational “Champion” willing to support and mandate
DevOps methodology and tools

 Organize the teams in different ways, e.g., a matrix team approach (development,
testing, security, system/database administrators, and business) or team rotations
can extend existing expertise and expand the general skill levels

 13

 Pair operations staff with the developers. Increase skill levels and round out
knowledge for both operations and development staff through rotations

 Pair developers together as they tend to be driven by efficiency, but will bring
different strengths and focus areas. Pairing can help fill in the gaps and smooth out
the skill variances

 Add a security person to DevOps team to ensure the upfront security focus and
compliance is established early in the lifecycle.

3.3.3.2 Test & Security – “Automate, Automate, Automate” - Mandatory for DevOps

 Ensure code standards are established and conduct code reviews to validate
compliance as important steps before automated testing can be effective

 Establish a test pyramid. Testers need to be knowledgeable about unit tests. On the
functional side, testers should be included early in the development process

 Test Driven Development (TDD) is essential. Know what is being built so that tests
are developed prior to the first line of code

 Developers need to start asking how they are testing the code, not just how they are
developing it. Developers may feel the unit tests will slow them down, so more
education on the entire process and positive impacts of upfront testing

 Behavioral driven development is another effective approach that facilitates early
collaboration and better understanding of test criteria. Provide and utilize business
scenarios that can be tested

 Be attentive to the ratio of developers to testers. Begin with a 1:1 ratio of
developers to testers. The ratio can lessen for testers as more test automation and
the functional and regression suite grows

 Property based testing (generative) is another effective approach, e.g., typically test
a range, test inner and outer boundaries; property based testing addresses tests that
provides all the values

 Implement continuous monitoring and alerts for non-compliance with security
requirements

 Implement a “Shift Left” in the software development lifecycle for security
compliance testing to accelerate security compliance and improve software quality
upfront in the lifecycle.

3.3.3.3 DevOps Policy

 Establish and mandate organization-wide policies and guidelines to effectively
implement DevOps in a consistent and repeatable manner

 Use effective design principles for micro-services: simplify, loosely couple, remove
dependencies, remove technical debt

 Make legacy applications small by keeping the data inside, have an API layer, and
use micro-services to break down functional areas

 Change acquisition requirements from software requirements to delivery of
development teams and skillsets.

3.4 Secure Development Operations (SecDevOps) – The Intersection of
Security, Development and Deployment

This session focused on understanding where security fits into a DevOps model and how

to continuously modernize applications in the federal government with security baked in.

 14

3.4.1 Session Goals

 Where does Security fit in a DevOps model?

 How do you continuously modernize applications with security baked in?

3.4.2 Session Summary
This session began with a general discussion of DevOps and what it means to each

organization. Given that this session has a focus on security, most of the participants

came to the discussion with either a background in security or an interest in trying to

make DevOps work in an environment that has strong requirements (compliance,

accreditation, policy) that constrain the process. The discussion took a number of turns

and tangents throughout the time period, but revolved around three major topics or

themes: addressing the culture gaps, building trust in software products, and refining

processes and standards.

Looking at the cultural gaps, the group agreed that security professionals and software

developers don’t always share the same goals even though security is a shared

responsibility. A lot of developers lack backgrounds in security and systems

administration. Because DevOps teams may not have security engineers assigned to a

team, developers need to become more aware of security and to build security decisions

in the process. The group discussed training strategies to make developers and operators

more aware of a compliance mindset and the risks of having elevated permissions, but

acknowledged that training is difficult when teams frequently rotate out. The other

methodology discussed is to bring security engineers and auditors into teams early on in

the process and to reconcile that different organizations have different risk factors.

On the theme of building trust and continually monitoring for threats, the discussion

started with the observation that many agencies and organizations are relying more on

open source and more complicated code bases that make up lots of micro services and

libraries, possibly from third parties. The session participants posed the question of how

government organizations are ensuring the integrity of this virtual supply chain of

software. There is a constant reuse of untrusted code and the concern is that software

engineers and software developers don’t go the extra step to look up security of third

party libraries. Security professionals, assessors, and auditors pointed out that if the

platform or repository isn’t integrated or trusted, then you might not be able to ensure

security of the system. Discussion continued with hypothetical scenarios of potentially

blocking the internet access to software developers or as a last drastic measure, creating a

white list of application programming interfaces (APIs) and libraries as part of enterprise

architectures.

Lastly, the group discussed aspects of refining their own organization’s processes and

standards to accommodate both DevOps and the increasing velocity of security activities.

Many existing policies and procedures are outdated in the sense that they better align

with waterfall processes instead of Agile methodologies that are attempting to rapidly

deploy a product that meets stakeholder requirements. The concern is that the pace of

innovation is so much faster that the security community cannot catch up. The group

voiced the opinion that security needs to be talked about at the architecture level (and at

 15

every stage) in the software development lifecycle and that money and time should be

devoted to secure development. Different strategies were discussed such as thread

modeling, secure testing, and applying the Risk Management Framework (RMF) into the

DevOps process. The concern was how these security activities will scale. Working

against well-defined standards such as NIST Special Publication 800.53 and OSCAL may

assist with those challenges.

3.5 Recommendations
Following the themes of culture, trust, and processes/standards, the recommendations are

broken up into these categories:

3.5.1 Addressing the gaps in culture

 Build strong feedback loops into the software lifecycle that has shared visibility
across developers, operators, and security professionals

 Elevate the cost of security vulnerabilities in planning and estimation
 Provide full stack training to all team members and give them strong ties to

academia to understand emerging trends
 Increase transparency and integration of IT Service Management (ITSM) systems

into DevOps
o Give security professionals access to developer work logs and flows
o Give developers access to IT Information Library (ITIL) portals
o Tie all products and tools together to include source code management

(SCM), build servers, and monitoring systems

3.5.2 Building trust in software products

 Digitally sign all code and verify checksums of all libraries that are being leveraged

in software

 Use plugins in Integrated Development Environments (IDEs) that in real-time, flag

code for security warnings

 Leverage stateless architectures coupled with immutable architectures that lower

risk of compromise

 Increase auditing of all software and configuration changes

 Treat security as another form of quality testing and assurance

3.5.3 Refining processes and standards

 Define security as a functional requirement in software development instead of

treating it as a non-functional requirement

 Increase transparency in software development lifecycle so that all stakeholders

have visibility

 Adopt a test driven software development strategy with security acceptance criteria

 Automate security processes to make assessments repeatable and scalable

o Assess and accredit the process (early-on) of continuously delivering

software instead of assessing the end product

 Deploy a robust logging infrastructure

 16

o Centralize logging so that ephemeral services don’t need to persist state and

logs

o Make application logging a security requirement up front

 Build abuse cases in addition to use cases to tease out malicious users

 Leverage automation of documentation whenever possible

4 Conclusion & Summit Recommendations

The August 2016 Federal DevOps Summit highlighted several challenges facing the

Federal Government’s adoption of DevOps and Agile practices. A common set of themes

emerged across the individual session: cultural barriers to adoption, lack of appropriate

training, and security requirements. Success stories are coming from government

adoption efforts and with continued collaboration and sharing best practices and

recommendations for mitigation these challenge will evolve.

The following are the key overarching themes from the four sessions.

Culture changes are needed to implement DevOps/Agile practices in an organization.

Predominantly, organizations need to get buy in to change from an “us vs. them” culture,

and dissolve the silo mentality. Support from executive levels of the organization are

necessary to show advocacy for change and be a strong change agent to show the way. It

is recommended that agencies ensure there is an organizational “Champion” willing to

support and mandate DevOps/Agile methodologies and tools. It is also recommended that

an organization-wide set of polices, guidelines, and language specific to DevOps/Agile

be standardized and implemented in a consistent and repeatable manner.

Appropriate roles and training are necessary for successful DevOps/Agile adoption.

The iterative and rapid pace of DevOps and Agile processes requires multi-disciplinary

teams working collaboratively together. Often times testers and developers are working

side-by-side and some situations the different roles have competing objectives even

though end goal is a shared responsibility. Several recommendations include ensure the

correct roles are identified and supported with training, offer a rotation of roles in a

“safe” environment to allow teams to experience the perspectives of different job

functions, and pair developers with testers, operations, or security members.

The Product Owner is a critical role in a DevOps/Agile development environment. It is

evident that in many organizations, Product Owner is assigned as an “on the side” role

without an understanding of the level of effort and commitment necessary for success.

The lack of a trained Product Owner lowers the likelihood of project success. A

recommendation is to create a specific billet for the role of Product Owner, or that

product owner responsibilities be mapped clearly to an existing billet. Furthermore, a

Product Owner in a Federal Agile/DevOps program needs to be a government employee

empowered to make decisions regarding the prioritization of user stories and the

determination that the solution demonstrated meets the definition of done.

 17

It was also recognized that training approaches, both formal and informal, assist in

reinforcing the culture to support DevOps/Agile success. Upper management should

receive appropriate training or briefing to understand impacts of moving to an

Agile/DevOps culture. Another suggestion is that DevOps/Agile training become part of

standard Product Manager training and certification (e.g., Defense Acquisition University

(DAU), Federal Acquisition Institute Training Application System (FAITAS),

Department of Homeland Security (DHS) Performance and Learning Management

System (PALMS), etc.).

Security requirements are critical, yet onerous, and often not incorporated at the

beginning of the development lifecycle.

This is concurrence that security requirements, while critical, are onerous in their current

form. Stringent security and privacy related policies, requirements, paperwork and

scanning requirements add significant burden to the DevOps process. Recommendations

to incorporate into the DevOps process to ease the challenges of security compliance

include:

 Build strong feedback loops into the software lifecycle that has shared visibility
across developers, operators, and security professionals

 Elevate the cost of security vulnerabilities in planning and estimation
 Increase auditing of all software and configuration changes

 Treat security as another form of quality testing and assurance

 Adopt a test driven software development strategy with security acceptance criteria

 Define security as a functional requirement in software development instead of

treating it as a non-functional requirement

Many existing policies and procedures are outdated in the sense that they better align

with waterfall processes instead of Agile methodologies. Security needs to be talked

about at the architecture level (and at every stage) in the software development lifecycle

and that money and time should be devoted to secure development.

5 Acknowledgements

The authors of this paper would like to thank The Advanced Technology Academic

Research Center and The MITRE Corporation for their support and organization of the

summit. The authors would also like to thank the session leads and participants that

helped make the collaborations and discussions possible. A full participant list is

maintained and published by ATARC on the FedSummits web site4.

4 http://fedsummits.com/devops/august-2016/agenda/

