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A network queuing model of the National Airspace Sstem has been developed to support
research into a strategic air traffic flow managemat capability. One of the challenges in the
execution of the model is the size of the network the computing resources required when
modeling the entire United States are immense. A& way to reduce the network size, we
investigate route clustering, i.e., grouping simila routes to reduce the number of paths
between two airports. Clustering routes comes at eost: as the number of clusters falls, the
with-in cluster variability rises, and the solution quality is diminished. A trade-off curve for
solution quality vs. cluster variability is develogd for a sample problem involving seven
major airports.

I. Introduction/Background

A prototype capability for strategic air traffioofk management is undergoing research and develdpnidre
capability, called Flow Contingency Management (FCMill supply automated decision support for whatrently
is a mostly manual proceSsit is recognized that strategic decisions mad wi2- to 24-hour time horizon will
likely improve air traffic flows in the National Agpace System (NAS) by averting large-scale traffiegestion due
to weather. The Next-Generation Air Transportaystem (NextGen) mid-term concept reflects thalrfee this
type of capability.

Basic functionality has been developed for the qayge, including the representation of weather aaffic
forecasts, and the integration of the two forectmstpredictions of significant impact. At the optive look-ahead
times, there is significant uncertainty in the frasts of both weather and traffic and, therefdris, mot appropriate
to represent traffic at the level of individuapgfits. Rather, an aggregate model has been dedeldpereby traffic
is represented as flows (an undifferentiated cofifiights progressing in quarter-hour steps) iqueuing network.
An initial formulation of such a model uses histatiaircraft routings, one-day-prior filed flightutes, and “day-
of” filed and predicted counts as input to a regi@s model to create the demand on a network desobetween
airports. In the network, routes are representedsdmuences of airspace secfodemand is expressed as the
fraction per route of total flow between airpodsd airports are represented as source and sirdsndthe queuing
network model operates by associating air trafimend with a sequence of sectors, and advancirgitiuarter-
hour increments. Sectors have a finite capacitg, fights may queue before transiting a sectodeifnand would
exceed capacity.

In prior work, it was found that clustering airponteduced the network size and complexity, as a®lthe
model’s run-timé. In this paper, we explore another means of reduc@twork size: route clustering, i.e., grouping
of similar routes between airports. Assessinglanity of routes requires a similarity/differenceesasure and we
propose the use of a specialized algorithm calkstit “distance,” appropriate for lexical string reggntation, i.e.,
the sequence of sectors in a route.

The paper is organized as follows. The next sectiescribes the clustering algorithm: edit distance
similarity/difference assessment, and selection ofustering method. Subsequent sections examitial iresults,
selection of a similarity threshold, and trading+efgression model error and resultant network. sidinal section
summarizes findings and suggests a next step iarthlysis.
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II. Route Clustering

In a recent paper describing the modeling of aiffit demand as input to the FCM network queuingletd it
was remarked that routes between two airports ifgor clusters), when represented as a sequenceaibr
transits, often exhibit notable similarity. Foraemple, the following are two historical routes beén Atlanta
Hartsfield and Chicago O’Hare airports:

Route 1: ZTL38 ZTL37 ZID9ZID93 ZID76 ZID78 ZID89 ZAU34 ZAU32
Route 2: ZTL38 ZTL37 ZID9ZID92 ZID76 ZID89 ZAU34 ZAU32

where the elements in the list, such as ZTL38saotor identifiers and the three-character prefigach is the
code for an Air Route Traffic Control Center (ARTEC

ZAU — Chicago ARTCC
ZID — Indianapolis ARTCC
ZTL — Atlanta ARTCC

The two sequences of sector transits are rathafasjndiffering only in the underlined and italieid sector
identifiers.

A. Similarity/Difference Metric — Edit Distance

An obvious model simplification is to group the tes into subsets or clusters to create a smalleuigg
network. Clustering algorithms rely on a distafggction to assess similarities and differencesragrtbe elements
to be clustered. For the application at hand, wliee information is lexical, an “edit distance”appropriate for
determining similarity among elemeritsSimply stated, the edit distance is the numbespafrations needed by a
text editor to transform String 1 into String 2hr&e operations are considered: deletion, inseréind replacement.
For example:

Stringl: abcde
String2: abdef

In this example, the edit distance is 2: (1) deletdf “c,” and (2) insertion of “f.” When compagnsector
sequences, the atomic elements are not singlededte above; rather, the “alphabet” is the setlbkector
identifiers. Using the original example of two tes:

Route 1: ZTL38 ZTL37 ZID9ZID93 ZID76 ZID78 ZID89 ZAU34 ZAU32
Route 2: ZTL38 ZTL37 ZID9ZID92 ZID76 ZID89 ZAU34 ZAU32

The edit distance is 2: (1) replacement of ZID98idID92, and (2) deletion of ZID78.

Since the number of sectors transited is variadlg. (there are fewer sectors between Atlanta dniceGo than
between Los Angeles and New York), we normalizedtiie distance by dividing by the sum of the lersgti the
two strings, and multiplying by 100, so the intejation is “percent difference”:

Similarity/Difference_Measure = 100 x Edit_Distaf{tength of Route 1 + length of Route 2)

Given a similarity/difference measure for the apggiion, a challenge is to select a threshold fatadting routes
as similar or non-similar.

B. Choosing a Clustering Algorithm

With a similarity/difference measure defined, allte pairs for an origin/destination (O/D) can beassessed,
and clustered. It is necessary to select a clagt@lgorithm, as there are many available. Samppdlems were
constructed, and several algorithms were exercidddrd’s Method, Single Linkage, and Leader Aldarit (See
Ref. 5 for descriptions of the first two, and R&for a description of the third). The Leader Aliggom gave the best
results. The advice in the open literature is, wkiest considering a dataset for clustering, to Empseveral
different clustering methods, and to look for ititely-appealing results®
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The steps of the Leader Algorithm are as follows:

1) The first route is assigned as leader of the fitsster.

2) Examine each route in turn.

3) A route within the similarity threshold distanceafeader is assigned to that cluster.

4) A route outside the similarity threshold distantalbleaders becomes the leader of a newly-formed
cluster.

Il. Initial Results

Some experimentation resulted in reasonable séparbetween clusters, via visual assessment, when t
similarity threshold was set to 20 percent. Figute®, and 3 below show the results for clusteafg@bout 35
routes between Los Angeles International and Newk¥oKennedy International Airports during threeydan
August 2013. Figure 1 shows two different routethie same cluster, plotted as a sequence of sgetqian view
showing horizontal boundaries). The two routesdifficult to distinguish on the graphic, they're similar that
they agree on many of their set of transited sect&igure 2 shows two routes in different clusteisually there is
a significant difference in the paths. Figure ®wh the four leaders which represent the entira dat; sector
centroids (defined here as the average of the ¢alyles of the vertices of a sector at a speciigtiide “slice”) are
connected via lines for clarity.
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Figure 1. Two slightly differing routes in the samecluster, plotted as sequences of sectors; Routdslred lines and
squares, Route 2 is green lines and dots. Area bhudaries define U.S. ARTCCs.
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Figure 2. Two routes in different clusters, plottedas sequences of sectors; Route 1 is red lines apliares, Route 2 is
green lines and dots. Area boundaries define U.BRTCCs.
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Figure 3. Four cluster leaders; routes are lines emecting cluster centroids. Area boundaries defin&).S. ARTCCs
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C. Improving the Representative Route of a Cluster

Notwithstanding the display of cluster leader reute Fig. 3, a known deficiency of the Leader Algun (as
noted in Ref. 6), is that the first observation mntered in the execution of the algorithm becorttes
representative of the cluster. In some agglomeratiustering methods such as the K-means methatyster
median or centroid observation is tracked, and imesothe representative of the cluster. As an imgrent to the
Leader Algorithm clustering used herein, a secossspover the data was employed to identify a merdral
observation per cluster. For each cluster, a distanatrix was constructed using the pair-wise édiiances; the
route with the lowest total distance to all clustegmbers was identified, and deemed the best mEmets/e for the
cluster. In Figure 4, one of the several clusténoutes from JFK to CLT is displayed in blue. elleader per the
Leader Algorithm is displayed in red, while the werd route, per the above logic, is displayed ieeyp. A visual
assessment suggests that the procedure of replheingader with the centroid improves the repriegeness for
the cluster.
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Figure 4. A route cluster (blue-colored routes) fron JFK to CLT, with Cluster Leader (red) and Cluster Centroid
(green). The x- and y- axes are north latitude and/est longitude, respectively.

IV. Selecting a Similarity Threshold

The initial trials of the route clustering algonthproduced reasonable visual results. Howeverlyaygpthe
clustering algorithm in practice, it would be nssary to select a similarity threshold quantitdyiveVisual perusal
yielded a threshold setting of 20% for what appesareasonable differences between cluster |leaaigdssimilarity
between routes within a cluster, but testing anplistithg the threshold value in the context of tméemnded
application was necessary.

To be useful, the route clustering approach shouédd a reduced network size while not significgntl
diminishing the quality of the solution. As a qtitative basis of selecting a similarity threshotdsults of a
predictive regression model was used — as mentjaredof the steps of FCM modeling is to predi@, regression
analysis, the fraction of total flow per route,Wweén airport pairs. (An operations model is usegetoerate demand
counts, so that flow fractions can be converted to aegat number of flights per route.) A sample probleim
flights to-and-from seven major airports in the NA&s selected for study. The airports are: AtlaAtaL),
Charlotte (CLT), Denver (DEN), Dallas-Ft. Worth (D, New York Kennedy (JFK), Los Angeles (LAX), and
Chicago O’Hare (ORD). The resultant network hagi2pairs (each of 7 airports has 6 destinations)
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The predictive regression model was exercised ersé¢lven airport dataset (using 60 days of priav flactions
per route), and a comparison of actual to prediotesl evaluated as “mean regression error,” thes tgiing average
absolute difference in flow fractions for the mplé flows of an O/D pair. (“Actuals” are availabMhen the model
is being developed, using archived data.) Asipeaed, different O/D pairs achieved a minimum nregmnession
error at different similarity threshold values. trade-off analysis was considered: reduced netwad vis-a-vis
maximum allowable similarity threshold (MAST) value

In Fig. 5, the mean regression error vs. similatfieshold per airport pair (for a subset of p&iosn the seven
airport dataset, viz., the six destination-speaifiate sets with ATL as the origin airport) is shiow Here, the
MAST value was set to 30%, and the minimum mearessjon error was realized at varying levels ofdinglarity
threshold as it was varied from 0% to 30% for th&igeO/D pairs. (Zero percent corresponds to thgiral set of
routes without any clustering.)

A natural limit to the MAST value occurs at abo¥s—at that point, some O/D pairs have all their @sut
aggregated into a single cluster, meaning theifmaaif the flow being carried on the single-clusteute is 100%.
An anomalous situation with regression modelingesi the mean regression error in this case is giere there is
a single observation and therefore zero degredseeflom in the regression model and a “perfect’tfie flow
fraction is predicted to be 100% on a single, €rexd route, and that agrees with the actuals.

004
— ’
002 - S~ —
i ATL-CLT S
004
R s
oz ATLDEN s i
0
—
o 006 E—
— p— T—
S _—— B T 1
w 0.04 - ATL-DFW IS B
c o
.9 o002
(%]
$ 01
— o
& 005 - ATL-JFK R, -
o B S e — )
c ]
o
01
= [P
005 - ATL-LAX S L e B
—t — —F
0
004 T T T T I
et S g
002 ATLORD 4 —— 7 — T
] 1 1 1 1 1
0% 5% 10% 15% 0% 25% 30%
Similarity Threshold

Figure 5. Similarity threshold vs. Mean RegressiotError for selected airport pairs from the seven aimport problem.
Maximum Allowable Similarity Threshold (MAST) is 30%.

Multiple runs were undertaken, varying the MAST ualfrom 0% to 50%. In each run, the 42 O/D pairs
achieved their minimum regression error at a misiofilarity threshold values. As an example, aiphgolution
can be seen in Table 1 when the MAST value isoséb%. Whereas the DEN-ATL routes achieved mininmiean
regression error with no clustering at all (sinithathreshold=0%), the DEN-LAX routes used the MIAST value
of 45%.
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Similarity thresholds which yield minimumaverage regression error, for MAST of 45% (subsetfaesults).

Table 1.
Origin-Destination Similarity Threshold (%)
CLT-JFK 35
CLT-LAX 5
CLT-ORD 5
DEN-ATL 0
DEN-CLT 40
DEN-JFK 10
DEN-LAX 45

Since a composite solution is a mixture of OD-sjecsimilarity threshold values, some overall chrst
variability measure is needed in the trade-off gsial That is to say, a trade-off between reduetdiork size and
MAST would be over-simplifying. To that end, we ghiti overall cluster variability based on a meaafraithin-
cluster variability.

A natural effect of clustering is that, for a givdataset, as the similarity threshold increases,niimber of
clusters diminishes, and the average within-clustaiability rises. Note that for some clusterialgorithms,
notably the well-known K-means approach, the witluster sum of squares can be computed direatlg (sed to
help determine the proper number of clust®F)r the application at hand, however, K-means waowoldwork well,
since determining the difference or distance betwe® flight routes is not straightforward.

Earlier in this paper, we championed the edit-distaas a reasonable metric to compare two flightesy if each
is represented as a sequence of airspace se®ors.for the within-cluster variability measure,ist necessary to
consider actual flight path geometry to achievaia dssessment of path variation. A reasonablesunezof the
difference between two routes is the maximum laggiation (MLD) between them. To define the fiigpath, we
used the sequence of sector centroids. Figura énlarged portion of Fig. 3, showing the MLDwbtroutes.
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Figure 6. Maximum lateral deviation between two rotes (Route 1 is pink dots, Route 2 is blue dots).
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This approachof determining path difference using MLD was swsstelly used in an earlier study comparing
clear-weather routing to weather avoidance flighttes'® Here, the measurement is applied to all pairoaofes
within a cluster, and the total deviation, in undé nautical miles, is then averaged. Another siepthe
computations is needed, since a composite solagtimtains 42 different O/D pairs, with greatly vawyidistances
between origin and destination. This distance betworigin and destination airports is an imporfantor in the
extent of the MLD — it is more likely there is ada MLD for transcontinental flight routes betwdsrs Angeles
and New York than there is for short-hop flight tes between Charlotte and Atlanta, as there iseater
availability of airspace between the former pahefiefore, the O/D distance is used as a divisaptmalize for this
phenomenon. As a further refinement to this cakiom, the average MLD is squared to magnify thetrdoution of
large route difference’s.

In summary, the computation of overall cluster ability for a composite solution is:

[(Average within-cluster MLD) + Distance(O,D)] averaged over 42 airport pairs.

The trade-off of reduced network size and overaiter variability is shown in Fig. 7. A fitted e (R =
0.99) is overlaid on the point observations. At tipper left in the figure, no clustering (overdlister variability =
0) is associated with a network size of about 2@80@es. At the lower right, corresponding to a MA& 50% and
the greatest overall cluster variability, the agsted network size is about 1700. The trade-off’eus concave,
meaning that a disproportionate increase in ovelaliter variability (x-axis) is needed to effectdacrease in
network size (y-axis). Such a trade-off curve Wil constructed for the full problem, all flows hetentire NAS,
and inform analysts as the research and developonethie broader FCM project continues.
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Figure 7. Network Problem Size vs. Average ClusteVariance. (Numbers in circles are MAST values. Théx,y)
pairs for MAST=10 and 15 are coincident.)

® The approach is similar to one explored by MITR#lleague George Solomos. He produced a studyaok tr
variation measurements, but the study is not irofien literature.

" The mechanism is similar to the computation of steistical variance of a population: squared atémis from
the mean heighten the influence of outliers.
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V. Summary

We have presented an approach for grouping oreziagtof flight routes using the edit-distance rieedipplied
to the sequence of transited airspace sectorthelmtended application, a network queuing modéhe NAS,
reducing the number of routes will reduce comptrgeources required to solve the problem. Howeeelycing the
number of routes impacts the quality of a solutidn the case here, it increases the mean regnessior in a
model which predicts flows on routes. A tradeanfflysis has been presented, for a limited sevgarraaport
problem. In follow-on work this trade-off analysiéll be pursued for a full flight route networkmesentation of
the NAS.
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