
Defeating Signed BIOS Enforcement

Corey Kallenberg John Butterworth Xeno Kovah
Sam Cornwell

ckallenberg@mitre.org, jbutterworth@mitre.org

xkovah@mitre.org, scornwell@mitre.org

The MITRE Corporation

Abstract
In this paper we evaluate the security mechanisms used
to implement signed BIOS enforcement on an Intel sys-
tem. We then analyze the attack surface presented by
those security mechanisms. Intel provides several regis-
ters in its chipset relevant to locking down the SPI flash
chip that contains the BIOS in order to prevent arbitrary
writes. It is the responsibility of the BIOS to config-
ure these SPI flash protection registers correctly during
power on. Furthermore, the OEM must implement a
BIOS update routine in conjunction with the Intel SPI
flash protection mechanisms. The BIOS update routine
must be able to perform a firmware update in a secure
manner at the request of the user. It follows that the pri-
mary attack surfaces against signed BIOS enforcement
are the Intel protection mechanisms and the OEM im-
plementation of a signed BIOS update routine. In this
paper we present an attack on both of these primary at-
tack vectors; an exploit that targets a vulnerability in the
Dell BIOS update routine, and a direct attack on the Intel
protection mechanisms. Both of these attacks allow ar-
bitrary writes to the BIOS despite the presence of signed
BIOS enforcement on certain systems.

1 Introduction

The BIOS is the first code to execute on a platform during
power on. BIOS’s responsibilities include configuring
the platform, initializing critical platform components,
and locating and transfering control to an operating sys-
tem. Due to its early execution, BIOS resident code is
positioned to be able to compromise every other compo-
nent in the system bootup process. BIOS is also respon-
sible for configuring and instantiating System Manage-
ment Mode (SMM), a highly privileged mode of execu-
tion on the x86 platform. Thus any malware that controls
the BIOS is able to place arbitrary code into SMM. The
BIOS’s residence on an SPI flash chip means it will sur-

vive operating system reinstallations. These properties
make the BIOS a desirable residence for malware.

Although BIOS malware is an old topic, recent re-
sults that make use of BIOS manipulations have once
again renewed focus on the topic. Brossard showed that
implementing a BIOS rootkit may be easier than tradi-
tionally believed by making use of opensource firmware
projects such as coreboot[3]. Bulygin et al showed that
UEFI secure boot can be defeated if an attacker can write
to the SPI flash chip containing the system firmware[5].
The Trusted Platform Module (TPM) has recently been
adopted as a means for detecting firmware level mal-
ware, but Butterworth et al showed that a BIOS rootkit
can both subvert TPM measurements and survive BIOS
reflash attempts[6].

These results are dependent on an attacker being able
to make arbitrary writes to the SPI flash chip. However,
most new computers either require BIOS updates to be
signed by default, or at least provide an option to enforce
this policy. Signed BIOS update enforcement would pre-
vent the aforementioned attacks. Therefore, an examina-
tion of the security of signed BIOS enforcement is nec-
essary.

2 Related Work

Invisible Things Lab was the first attack against signed
BIOS enforcement[9]. In their attack, an integer over-
flow in the rendering of a customizable bootup splash
screen was exploited to gain control over the boot up
process before the BIOS locks were set. This allowed
the BIOS to be reflashed with arbitrary contents.

A related result was discovered by Bulygin where it
was noticed that on a particular ASUS system, firmware
updates were signed, but the Intel flash protection mech-
anisms were not properly configured[4]. Thus an at-
tacker could bypass the signed BIOS enforcement by
skipping the official BIOS update process and just writ-
ing to the flash chip directly.

1

Powers, Ellen J.
Approved for Public Release; Distribution Unlimited. 14-0724

Powers, Ellen J.
Copyright © 1997-2014, The MITRE Corporation. All rights reserved.

3 Intel Protection Mechanisms

The Intel ICH documentation[7] provides a number of
mechanisms for protecting the SPI flash containing the
BIOS from arbitrary writes. Chief among these are the
BIOS CNTL register and the Protected Range (PR) reg-
isters. Both are specified by the ICH and are typically
configured at power on by a BIOS that enforces the
signed update requirement. Either (or both) of these can
be used to lock down the BIOS.

3.1 BIOS CNTL

The BIOS CNTL register contains 2 important bits in
this regard. The BIOS Write Enable (BWE) bit is a write-
able bit defined as follows. If BWE is set to 0, the SPI
flash is readable but not writeable. If BWE is set to 1, the
SPI flash is writeable. The BIOS Lock Enable bit (BLE),
if set, generates an System Management Interrupt (SMI)
if the BWE bit is written from a 0 to 1. The BLE bit
can only bet set once, afterwards it is only cleared dur-
ing a platform reset. It is important to notice that the
BIOS CNTL register is not explicitly protecting the flash
chip against writes. Instead, it allows the OEM to estab-
lish an SMM routine to run in the event that the BIOS
is made writeable by setting the BWE bit. The expected
mechanism of this OEM SMM routine is for it to reset
the BWE bit to 0 in the event of an illegitimate attempt
to write enable the BIOS. The OEM must provide an SMI
handler that prevents setting of the BWE bit in order for
BIOS CNTL to properly write protect the BIOS.

3.2 Protected Range

Intel specifies a number of Protected Range registers that
can also protect the flash chip against writes. These
32bit registers specify Protected Range Base and Pro-
tected Range Limit fields that sets the relevant regions
of the flash chip for the Write Protection Enable and
Read Protection Enable bits. When the Write Protec-
tion Enable bit is set, the region of the flash chip de-
fined by the Base and Limit fields is protected against
writes. Similarly, when the Read Protection Enable bit
is set, that same region is protected against read at-
tempts. The HSFS.FLOCKDN bit, when set, prevents
changes to the Protected Range registers. Once set,
HSFS.FLOCKDN can only be cleared by a platform re-
set. The Protected Range registers in combination with
the HSFS.FLOCKDN bit are sufficient for protecting the
flash chip against writes if configured correctly.

3.3 Vendor Compliance

Using our Copernicus tool [1], we surveyed the SPI flash
security configuration of systems throughout our orga-
nization. Of the 5197 systems in our sample that im-
plemented signed BIOS enforcement, 4779 relied exclu-
sively on the BIOS CNTL register for protection. In
other words, approximately 92% percent of systems did
not bother to implement the Protected Range registers.1

4 Dell BIOS Update Routine

The BIOS update process is initiated by the operating
system. The operating system first writes the new BIOS
image to memory. Because the BIOS image may be
several megabytes in size, one single contiguous alloca-
tion in the physical address space for accomodating the
BIOS image may not be possible on systems with lim-
ited RAM. Instead, the BIOS image may be broken up
into smaller chunks before being written to RAM. These
small chunks are referred to as “rbu packets.”2 The rbu
packets include structural information such as size and
sequence number that later allow the BIOS update rou-
tine to reconstruct the complete BIOS image from the
individual packets. These rbu packets also include an
ASCII signature “$RPK” that the BIOS update routine
searches for during a BIOS update.

$RPK… Packet=N, size=0x100

EB 39 00 00 00 FF FF FF FF FF …

$RPK… Packet=N-1, size=0x1000

00 00 FF FF FF FF FF…

System Management Mode RAM
SMM Update

Routine
Copyright 2011 Dell Inc. A29..
FF FF FF FF FF FF FF FF FF FF

…
EB 39 00 00 FF FF FF FF FF FF

Figure 1: BIOS update image reconstituted from rbu packets

Once the rbu packets have been written to the address
space, the operating system sets byte 0x78 in CMOS
and initiates a soft reboot. During system startup BIOS

1This number is somewhat skewed by the large portion of Dell sys-
tems in our sample, which never seem to implement Protected Range
registers. However, the issue is not exclusive to Dell.

2http://linux.dell.com/libsmbios/main/
RbuLowLevel_8h-source.html

2

Powers, Ellen J.
Copyright © 1997-2014, The MITRE Corporation. All rights reserved.

checks the status of CMOS byte 0x78 and if set, trig-
gers an SMI to execute the SMM BIOS update rou-
tine. The BIOS update routine then scans the address
space for rbu packets by searcing for the ASCII signature
“$RPK.” The particular BIOS we analyzed used physi-
cal address 0x101000 as the base of the area in RAM
where it would reconstruct the incoming BIOS image
from the individual rbu packets. Upon discovering each
rbu packet in the address space, the update routine uses
the rbu packet header information to determine where to
place that chunk of the BIOS image described by the cur-
rent rbu packet in the reconstruction space. Once all rbu
packets have been discovered and the new BIOS image
has been reconstituted in the reconstruction area, the up-
date routine verifies that the new image is signed with
the Dell private key. After the signature has been veri-
fied, the new image is written to the flash chip.

5 Attacking Dell BIOS Update

Any vulnerabilities in the BIOS update process that can
be exploited before the signature check on the incom-
ing image occurs, can lead to an arbitrary reflash on the
BIOS. Importantly, the update process is required to re-
construct the complete update image from the individual
rbu packets scattered across the address space before a
signature check can occur. Because the rbu packets are
generated on the fly by the operating system at runtime,
the rbu packets are unsigned.

5.1 Dell BIOS Vulnerability Specifics
After examining the update routine’s parsing of rbu pack-
ets, a memory corruption vulnerability was identified that
stemmed from improper sanity checking on the unsigned
rbu packet header. Upon discovery of an rbu packet, se-
lect members of the rbu packet’s header are written to an
SMRAM global data area for use in later reconstruction
calculations. The listing below shows this initial packet
parsing.

mov eax, [eax] ;eax=rbu pkt
...
movzx ecx, word ptr [eax+8]
shl ecx, 4
mov ds:gHdrSize, ecx
movzx eax, word ptr [eax+4]
shl eax, 0Ah
sub eax, ecx
...
mov ds:g_pktSizeMinusHdrSize, eax

Next, the update routine uses the pktSize and pktNum
members of the rbu packet to determine where to write
the packet in the reconstruction area. Insufficient sanity
checking is done on the pktNum, pktSize and hdrSize

members before they are used in the calculations for the
inline memcpy parameters below. In fact, a malformed
rbu packet header can cause the below memcpy to over-
write SMRAM. If controlled carefully, this can lead to an
attacker gaining control of the instruction pointer in the
context of the BIOS update routine.

xor edi, edi
mov di, cx ;di=pktNum
mov ecx, ds:g_pktSizeMinusHdrSize
dec edi
imul edi, ecx
add edi, 101000h
...
mov edx, ds:gHdrSize
push esi
shr edx, 2
lea esi, [eax+edx*4]
mov eax, ecx
shr ecx, 2
rep movsd

$RPK… Packet=0x83f9 size=0xfffe

Shellcode
Shellcode
Shellcode
Shellcode

System Management Mode RAM SMM Update
Routine Packet Reconstruction Space

Shellcode
Shellcode
Shellcode

….

Figure 2: malicious rbu packet causes reconstruction area to
overlap with SMRAM

5.2 Exploitation of Dell BIOS Vulnerabil-
ity

The BIOS update routine executes in the context of SMM
which is absent of traditional exploit mitigation tech-
nologies such as DEP, stack canaries, ASLR, etc. Be-
cause of this the attacker is free to choose any available
function pointer for overwriting. However, the attacker
must carefully choose how to control the overflow. Over-
writing very large amounts of the address space in this
super priviledged mode of execution can be problem-
atic. If the attacker overwrites too much, or overwrites
the wrong region of code, the system will hang before

3

Powers, Ellen J.
Copyright © 1997-2014, The MITRE Corporation. All rights reserved.

he has control of the instruction pointer. In our proof of
concept, we chose to overwrite the return address for the
update routine itself. We used a brute force search to de-
rive a malicious rbu packet header that would allow us to
overwrite this return address without corrupting anything
else that would cause the system to hang before the over-
written return address was used. Our brute force search
yielded an rbu packet with a pktSize of 0xfffe and a pk-
tNum of 0x83f9, which we verified would successfully
exploit the vulnerability.

To store the shellcode we abused the same RAM per-
sistence property of a soft-reboot that is used by the
BIOS update process itself. We used a Windows ker-
nel driver to allocate a contiguous portion of the physical
address space in which to store both our malicious rbu
packet and our shellcode. After poisoning the physical
address space with our shellcode and rbu packet, a soft
reboot of the system successfully exploits the vulnera-
bility. Our proof of concept shellcode simply writes a
message to the screen, but a weaponized payload would
be able to reflash the BIOS with a malicious image.

5.3 Dell BIOS Vulnerability Conclusion

The vulnerability described above was discovered on a
Dell Latitude E6400 running BIOS revision A29. After
coordinating with Dell, the vulnerability was found to ef-
fect 22 other Dell systems. This vulnerability has been
assigned CVE number CVE-2013-3582[2]. After work-
ing with Dell, the vulnerability was patched at revision
A34 of the E6400 BIOS.

We can assume that a significant amount of BIOS up-
date code on consumer systems was developed before
signed BIOS enforcement became popular. Because of
this, it is likely that the code for updating BIOS in a se-
cure manner relies on legacy code that was developed
during a time when security of the BIOS was not a high
priority. Furthermore, BIOS code is generally propietary
and has seen little peer review. Because of these rea-
sons, we suspect that more vulnerabilities like the one
presented here are lurking and waiting to be discovered
in other vendor’s firmware.

6 Attacking Intel Protection Mechanisms

As noted in section 3.3, a majority of the systems we
have surveyed opt to rely exclusively on the BIOS CNTL
protection bits to prevent malicious writes to the BIOS.
This decision entangles the security of the BIOS with
the security of SMM. Any vulnerabilities that can be ex-
ploited to gain access to SMM can now be leveraged into
an arbitrary reflash of the BIOS. To better illustrate this
point, we will revisit an old vulnerability.

6.1 Cache Poisoning
In 2009 Duflot et al. and Invisible Things Lab discovered
an Intel CPU cache poisoning attack that allowed them to
temporarily inject code into SMRAM[8][10]. This attack
was originally depicted as a temporary arbitrary code in-
jection in SMRAM that would not persist past a plat-
form reset. However, on the majority of systems that do
not employ Protected Range registers, this vulnerability
can be used to achieve an arbitrary reflash of the BIOS.
Furthermore, because the BIOS is responsible for instan-
tiating SMM, the cache poisoning attack then allows a
permenant presence in SMM.

The aforemention cache poisoning attack worked by
programming the CPU Memory Type Range Register
(MTRR) to configure the region of memory containing
SMRAM to be Write Back cacheable. Once set to this
cache policy, an attacker could pollute cache lines corre-
sponding to SMM code and then immediately generate
an SMI. The CPU would then begin executing in SMM
and would consume the polluted cache lines instead of
fetching the legitimate SMM code from memory. The
end result being arbitrary code execution in the context
of SMM.

On vulnerable systems, it is straight forward to use
this attack to prevent the SMM routine responsible for
protecting the BWE bit on the BIOS CNTL register from
running. Once the cache line for this SMM routine is
polluted, an attacker can then set the BWE bit and it will
stick. Malicious writes can then be made to the BIOS.

We have verified this attack to work against a Dell Lat-
itude D630 running the latest available BIOS revision3

with signed BIOS enforcement enabled. This particular
attack has been largely mitigated by the introduction of
SMM Range Registers which, when properly configured,
prevent an attacker from arbitrarily changing the cache
policy of SMRAM. The particular instantiation of this
attack that allows arbitrary BIOS writes was reported to
CERT and given tracking number VU#255726. The af-
fected vendors do not plan to release patches for their
vulnerable systems due to ending support for BIOS up-
dates on these older systems.

6.2 Other SMM Attacks
Despite the cache poisoning attack being patched on
modern systems, the important point is that many signed
BIOS enforcement implementations are weakened by
failing to implement Protected Range registers and in-
stead relying exclusively on the integrity of SMM for
protection. There is a history of SMM break ins includ-
ing some theoretical proposals by Duflot et al.[8] and an-
other unique attack by Invisible Things Lab[9]. There is

3A17 at time of writing

4

Powers, Ellen J.
Copyright © 1997-2014, The MITRE Corporation. All rights reserved.

reason to expect this trend to continue.
A cursory analysis of the EFI modules contained in a

Dell Latitude E6430 firmware volumes running the latest
firmware revision4 reveals 495 individual EFI modules.
144 of these modules contain the “smm” substring and so
presumably contribute at least some code to run in SMM.
Despite being of critical importance to the security of
the system, the SMM code base on new systems does
not appear to be shrinking. This is a disturbing trend.
An exploitable vulnerability in any one of these SMM
EFI modules could potentially lead to an arbitrary BIOS
reflash situation.5

We found have another vulnerability that exploits this
SMM BIOS CNTL entanglement and allows for arbi-
trary BIOS reflashes. This vulnerability affects many
new UEFI systems that enforce signed BIOS update by
default. This vulnerability has been reported to CERT
and been assigned tracking number VU #291102. Be-
cause we are still working to contact effected vendors
and help them mitigate the vulnerability, we have chosen
not to disclose the details of the vulnerability at this time.

7 Conclusion

Signed BIOS enforcement is an important access control
that is necessary to prevent malicious actors from gain-
ing a foothold on the platform firmware. Unfortunately,
the history of computer security has provided us with
many examples of access controls failing. BIOS access
controls such as signed firmware updates are no differ-
ent. Implementing a secure firmware update routine is a
complicated software engineering problem that provides
plenty of opportunities for missteps. The code that parses
the incoming BIOS update must be developed without
introducing bugs; a challenge that remains elusive for
software developers even today. The platform firmware,
including any update routines, are programmed in type
unsafe languages.6 The update code is usually propri-
etary, complicated and difficult to find and debug as a
result of the environment it runs in. This combination of
properties makes it highly probable that exploitable vul-
nerabilities exist in firmware update routines, as we have
shown in the case of Dell BIOS.

The SPI flash protection mechanisms that Intel pro-
vides to guard the BIOS are complicated and overlap-
ping. A preliminary survey of systems in our enterprise
environment reveals that many vendors opt to rely exclu-
sively on the BIOS CNTL protection of the BIOS. This
decision has greatly expanded the attack surface against
the BIOS, to include all of the vulnerabilities that SMM

4A12 at time of writing
5The Dell Latitude E6430 also fails to implement Protected Range

registers.
6generally C or handcoded assembly

may contain. This problem is compounded by an in-
creasingly large SMM code base, a trend present even
on new UEFI systems. In our opinion, OEMs should
start configuring the Protected Range registers to protect
their SPI flash chips as we believe this to be more robust
protection than BIOS CNTL.

As with other facets of computer security, signed
BIOS enforcement is a step in the right direction. How-
ever, we must continually work to refine the strength
of this access control as new weaknesses are presented.
Our hope is that the results presented in this paper will
contribute towards incremental improvements in vendor
BIOS protection, that will ultimately lead to signed BIOS
enforcement being a robust and reliable protection.

References

[1] Copernicus: Question your assumptions about
bios security. http://www.mitre.
org/capabilities/cybersecurity/
overview/cybersecurity-blog/
copernicus-question-your-assumptions-about.
Accessed: 10/01/2013.

[2] Cve-2013-3582. http://www.kb.cert.
org/vuls/id/912156. Accessed:
10/01/2013.

[3] J. Brossard. Hardware backdooring is practical. In
BlackHat, Las Vegas, USA, 2012.

[4] Y. Bulygin. Evil maid just got angrier. In
CanSecWest, Vancouver, Canada, 2013.

[5] Y. Bulygin, A. Furtak, and O. Bazhaniuk. A tale of
one software bypass of windows 8 secure boot. In
BlackHat, Las Vegas, USA, 2013.

[6] J. Butterworth, C. Kallenberg, and X. Kovah. Bios
chronomancy: Fixing the core root of trust for mea-
surement. In BlackHat, Las Vegas, USA, 2013.

[7] Intel Corporation. Intel I/O Controller
Hub 9 (ICH9) Family Datasheet. http:
//www.intel.com/content/www/us/en/
io/io-controller-hub-9-datasheet.
html. Accessed: 10/01/2013.

[8] Loc Duflot, Olivier Levillain, Benjamin Morin,
and Olivier Grumelard. Getting into the smram:
Smm reloaded. Presented at CanSec West 2009,
http://www.ssi.gouv.fr/IMG/pdf/
Cansec_final.pdf. Accessed: 02/01/2011.

[9] R. Wojtczuk and A. Tereshkin. Attacking Intel
BIOS. In BlackHat, Las Vegas, USA, 2009.

5

Powers, Ellen J.
Copyright © 1997-2014, The MITRE Corporation. All rights reserved.

[10] Rafal Wojtczuk and Joanna Rutkowska. Attacking
smm memory via intel cpu cache poisoning.
http://invisiblethingslab.com/
resources/misc09/smm_cache_fun.
pdf. Accessed: 02/01/2011.

6

Powers, Ellen J.
Copyright © 1997-2014, The MITRE Corporation. All rights reserved.

