
Improving

S/w Quality norms
within

military systems
Some Ideas on Changes to the

DII COE S/W Quality Compliance Process

Robert A. Martin and Audrey Taub

22 April 1998

MITREThe views expressed in this presentation are those of the authors and do not necessarily reflect the policies or position of Th e MITRE Corporation.
Editorial graphics © 1994, 1995,1996 Martin and Morrison, used with permission.

2

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessment?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

3

MITRE

Why Are We Interested In Quality Anyway?

WISE

Alliance
Processors

.

1

27

LOCALTALK NETWORKS

Wang
VS

7110

Wang
VS
300

WANG INFORMATION SYSTEM EXCHANGE

Alliance

Alliance

Alliance

Twisted Pair

Remote
Cluster
Switch

coax

coax

fiber

PC
XT

PC
AT

PS/2

PC
AT

STANDALONE/NETWORKED PCS

Building 213

Mac Mac Mac Mac Mac

MINX VIDEO TELECONFERENCING

Remote
Cluster
Switch

fiber

coax

BIU

BIU
Ethernet

D/C
Host

DCP

BIU

C/I
Host

DCP

BIU BIU

Modem

Master
NCC

Modem

Backup
NCC

Bridge
Half

Bridge
Half

KG

KG

BIU

AIDS
CLUSTER

AIDS
CLUSTER

Cable 1
Cable 2

Ethernet

cluster
server

cluster
server

cluster
server

Remote
Site

Remote
Site

Remote
Site

Remote
SiteRemote

Site

NDS BROADBAND LAN

Constrained Resources

New Requirements
and Needs

New Technology

Changing
Operational
Environment

C I Systems3

change

4

MITRE

The Information Technology World Is
Rapidly Changing
0 IT organizations face many forces of change

- Ever-changing user requirements
- Hardware obsolesence rates that seem to accelerate
- Commercial software is always being updated
- Systems must be postured for growth and evolution

0 Systems become “brittle” over time
- Small changes can ripple through the system and incur

unanticipated problems that increase cost and risk
- Measurements for overall software “quality” are often

neglected during development
- Code structure, design, and the rationale for changes

are lost

 Software Quality Teams must do more than remove errors!

5

MITRE

Looking Beyond Errors To Judge The
Quality of Software
0 Traditionally, most software organizations have focused on

development
- Manage schedule
- Manage cost
- Provide desired functionality to users
- Maintainability issues are frequently deferred until the

product is fielded
0 Why focus on a lifecycle quality perspective?

- Software outlives hardware
- Tightening budgets motivating code re-use efforts
- Decisions made early in development may mean the

difference between updating code and re-engineering it

Historically, eighty cents out of every dollar the DOD
spends on software goes toward maintenance

6

MITRE

What is Software Maintenance? …and… What Do
Software Maintainers Do?
A S/W maintainer’s job activities over a 15 year lifecycle

Perfective

55%
Adaptive

25%

Corrective

20%

(Lientz & Swanson Survey, 1980)

Understand
47%

Verify
28%

Implement Change
25%

 Why?

- Complexity coupled with
lack of good supporting
documentation

0 Largest source of expenses in
maintenance are driven by:
- the time spent trying to

understand the structure and
behavior of the software

(McClure '90)

7

MITRE

Defining Software Quality Issues
0 What is the system I currently have really like?

- Type & level of detail in the paper documentation
- Understandability of the code and documentation

0 What flexibility has been left to me by the original
developers?
- Hard coded assumptions or limitations
- Overall capacity for functional growth and change

0 How tied am I to my current environment?
- OS & COTS dependencies
- Choice of language, tools, and/or language extensions

 In short, we need to know if the system will
ever work again after we make a change!

0

8

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by S/W quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessment?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

9

MITRE

How Do You Measure an Abstract Concept
Like Quality

10

MITRE

Software Lifecycle Quality Is Not Well
Defined
0 Most will agree they want their systems to be reliable,

maintainable, evolvable, portable, open, etc.
0 Most people can't agree on what, specifically, reliable,

maintainable, evolvable, portable, open, etc. actually mean
or how to measure such qualities for an arbitrary body of
code

0 Commercial software tools and metrics provide insights
into implementations but typically do not provide any
sense of higher context for lifecycle issues

Our definition: A quality system minimizes
the risks to the system

11

MITRE

Complications to a System’s Software
Quality

NIFTY
HACKS
of the
SUN

GURUSS
ec

re
ts

of
 th

e
fil

e
sy

st
em

PORTABLE??
OF COURSE IT’S
PORTABLE.
THE WHOLE THING
FITS ON ONE TAPE.

M
O
T
I
F

P
O

S
IX

X

ANSI SQL

12

MITRE

Establishing a Framework for Measuring
Quality
0 Many areas can help minimize a system’s risks

- Some are well studied and have full fledged disciplines,
technologies, and examination methodologies in place

- Specifically: requirements traceability, functional
completeness, and system testability are well established
areas of study

0 The other life-cycle risk areas have received less attention
but have enormous potential for reducing the levels and
types of risk in the systems fielded

0 Much to draw from:
Rome Air Development Center work and others
- McCall et al. in 1977

- Bowen et al. in 1984

- Kitchenham et al.’s ESPRIT REQUEST project, 1987 & 1989…

13

MITRE

Basics of Quality Analysis Frameworks

Boehm et. al. RADC
Original Quality Factors

device
independence

completeness

accuracy

consistency

accessibility

communicativeness

structuredness

device
efficiency

self-descriptiveness

conciseness

legibility

augmentability

portability

reliability

efficiency

human
engineering

testability

understandability

modifiability

Measurable
Property

Perceived Aspect
of Quality

1977

14

MITRE

Relationships Among Software Quality Assessment
Research Efforts

RADC-McCall et al

1977

RADC-Bowen et al

1984

ESPRIT REQUEST
Kitchenham et al

1987

ESPRIT REQUEST
Kitchenham et al

1989

Rome Laboratory
Software

Quality Framework

Assessment Technology

Processing Power

Disk Sizes
Memory Sizes

Computer Technology

Dromey
1992-1995-1995

ISO-9126
Software Product Evaluation

Quality Characteristics and Guidelines
1991

AFOTEC
Software Assessment Team

Pamphlets

}

}

Rome Laboratory
-- SQT2 --

Software Quality Technology
Transfer Consortium

QUES

Portability

Evolvability

 Maintainability

Descriptiveness

Consistency

Independence

ModularityDocumentation

Anomaly Control

Design Simplicity Self-Descriptiveness

15

MITRE

Bridging the Gap between The Measurable
and Unmeasurable

Maintainability

Evolvability

Portability

SQAE
METHODOLOGY

Complexity
Set-Use
SLOC Count
API Utilization
Coding StandardsDescriptiveness

Software Quality
Analysis Frameworks

Quality Concepts Metrics & Measures

16

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by S/W quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessmemt?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

17

MITRE

One Method of Assessing Software Quality

√
-

+

18

MITRE

Attributes Of A Useful S/W Quality
Assessment Methodology
0The assessment should be:
- repeatable (independent of the assessor(s))
- independent of language, architecture, platform
- not dependent on presence of “all” code
- provide detailed insight into the software risks
- software centric
- based on artifacts only
- “cheap” to perform
- examine all artifacts of the system

= source code (including scripts, data, …)
= supporting documentation (both internal and

external to the code) and standards
- leverage automation where-ever possible

19

MITREThis Chart Contains Representative Assessment Results

Risk Mitigators
0 Naming conventions used for modules and variables helps

understand the code’s functionality.

0 Good use of white space and indention.

0 Modules are easily viewed at once (< 100 LOC)

0 Good functional documentation with high-level design.

0 Good design documentation, showing data and control flows.

0 Good developer documentation for supported APIs.

0 Good top-down hierarchical structure to code.

0 Modules use straightforward algorithms in a linear fashion.

0 System dependencies are to readily available COTS software.

0 Code is of low complexity.

0 Logic flow through individual procedures is easy to follow.

0 Disciplined coding standards followed by the programmers.

0 Considerable effort made to use POSIX calls throughout.

0 System dependencies are isolated and all dependencies on the
platform or COTS are encapsulated.

Quality assessment Finding Examples:
Mitigators, Drivers, & Other Observations

Risk Drivers
0 Level of isolation and encapsulation of dependencies on platform and COTS

packages varies between programmers

0 Use of environmental variables is undocumented and inconsistently done

0 Lack of written standards for naming conventions, error handling, data definitions,
etc

0 Lack of standards for naming conventions, error handling data definitions, I/O, etc

0 Design documentation is poorly organized, incomplete, and at a very high level

0 No low-level design information or functional allocation of software in documentation

0 Machine generated code documentation is inconsistent with the developed code
documentation

0 Machine generated code is undocumented

0 Procedure and file names depend on path for uniqueness

0 Hard coded absolute filenames/paths used

0 UNIX commands hardcoded in the code

0 Hard coded variables used when symbolic constants should have been used

0 There are some machine dependent data representations

0 Code is not ANSI standard

0 Variables used for other than their declared purpose

0 No low-level control and task flows in documentation

0 No prologs for the majority of the modules

0 Inadequate indexing of documentation

0 Excessive use of global variables

0 Input error checking is not consistently applied

0 System dependent on a proprietary language for some functions related to
integration with COTS

0 Lack of consistency in the code between programmers

0 No isolation or encapsulation of dependencies on platform or COTS

0 System tied to a proprietary language for procedural processing and data access

0 System is dependent on a proprietary run-time environment

0 Fourteen violations of one of the few company coding standards

0 Two percent of the code modules are overly large, more than 100 LOC

Other Observations
0 No documented method for other languages to call services

0 “Man pages” are out of date for some APIs

0 Number of modules may be excessive

0 COTS screen description files use standard X-Windows
resource file formats

0 Proprietary language does not support data typing

0 In the vendor’s proprietary language, variables are never
explicitly declared (A typo will create a variable)

0 SQL is only used for ~10% of the code that accesses the
database

- The rest uses the proprietary DBMS calls

0 Complete source code for gnu Perl was included as part of
deliverable subsystem source code

20

MITRE

Quality Assessment Foundation Examples

COTS
Manuals

&
Articles

Source Code

Reference Material

Written Material

Project A

 112,000 LOC

Ada, C, Shell,
TAE+, SQL, X,
MOTIF, Stored
Procedures

C, Shell, X,
MOTIF

Ada, C, ELF,
ezX, SQL, X,
MOTIF

Product Literature

Reference Manual

Users Manual

Top Level Design Doc
SDD

 558,000 LOC

Design and Code Stnds

SDD
SDP

 58,000 LOC

Product Literature

Reference Manual

Users Manual

Design and Code Stnds

Top Level Design Doc
SPS
SDD
SDP

 51,173,315 LOC

Product Literature

Reference Manual

Users Manual

Design and Code Stnds

Top Level Design Doc
SPS
SDD
SDP
Case Tools
Repositories

Project B Project CZ Total of
Projects

Ada, C, FORTRAN,
COBOL, shell, TAE+,
SQL, X, MOTIF, UIL,
Stored Procedures,
GEL, ELF, ezX, …

•••

•••

•••

•••

•••

This Chart Contains Representative Assessment Results

21

MITRE

Examples of Tools Used in Assessing
Software Quality

… many tools do not adequately address the use of commercial
packages, or easily deal with multi-language applications, or help you
correctly interpret their metrics.

22

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by S/W quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessment?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

23

MITRE

Having An Understanding Software Quality
Can Be Used In…

 Software Quality

 Assessment Exercise
 Findings for the TUBULAR

 Acquisition Decision

The Selection of Contractors

Selection of Migration Systems

Reviews of S/W Releases for a Project Office

24

MITRE

Software Quality Assessment Uses
0 Understanding the Software’s quality can:
- Allow for evaluation of a contractor based on quality of

past products
- Allow for in-progress corrections to a development effort
- Guide future migration decisions
- Provide for the rapid identification of the sources of risk

= in understandable & actionable terms for mgmt
= in fine detail for the technologists

- Provide a broad review of the software lifecycle risks
associated with multi-component systems

- Allow risk comparisons for systems independent of
language, platform, architecture, …

- Guide the build, buy, or re-use decisions

25

MITREThis Chart Contains Representative Assessment Results

Examples of Software Quality
Risk Profiles (3D)

26

MITRE

One Way Of Indicating The Resulting Risk
Profiles

Representative Risk Level Ratings with Risk Level
Breakpoints Indicated by Rating in First Column

 Low Risk - HAS LITTLE POTENTIAL TO CAUSE DISRUPTION, NORMAL CONTRACTOR EFFORT AND NORMAL GOVERNMENT MONITORING WILL
 PROBABLY BE ABLE TO OVERCOME DIFFICULTIES.

 Moderate Risk - CAN POTENTIALLY CAUSE SOME DISRUPTION. HOWEVER, SPECIAL CONTRACTOR EMPHASIS AND CLOSE GOVERNMENT MONITORING WILL
 PROBABLY BE ABLE TO OVERCOME DIFFICULTIES.

 High Risk - LIKELY TO CAUSE SIGNIFICANT, SERIOUS DISRUPTION EVEN WITH SPECIAL CONTRACTOR EMPHASIS AND CLOSE GOVERNMENT MONITORING.

Depiction of a Moderate
Risk Rating

Depiction of a Low
Risk Rating

Ideal Rating

Total Failure Rating

Marginal Rating

Average of
Acceptable Ratings

Moderate Risk
Range

High Risk
Range

Low Risk
Range

Depiction of a High
Risk Rating

27

MITRE

Examples of Feedback
Application’s Primary Strengths:
Integrator Perspective

0 Isolation of dependencies

- Effort has been made to segregate code so that actual
processing algorithms are buffered from platform and COTS
dependencies.

- This buffering lowers the system’s sensitivity to changes in
its operating environment.

- Should the platform change significantly (New OS, new COTS
Database, etc) code rewrites and unit tests should be
restricted to distinct areas rather than rippling throughout the
system.

MMMMIIIITTTTRRRREEEE

0 Descriptiveness

- The provided documentation addresses aspects of the system
only at the highest level and does not detail essential low level
information:

= System dependencies

= Knowledge domains required for maintenance

= Input data tolerance and valid range of value definitions

= Specific data flow descriptions

= Policies for error handling

- The code itself is poorly documented internally and makes
frequent use of programming constructs which hinder
readability and traceability .

MMMMIIIITTTTRRRREEEE

Application’s Primary Weaknesses:
Integrator Perspective

This Chart Contains Representative Assessment Results

28

MITRE

Assessment Reports And Systems
Assessed To-Date

29

MITRE

Software Quality Assessment
Experience-Base

30

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by S/W quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessment?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

31

MITRE

Stated Goals Of The DII COE Software
Quality Compliance Process
l Directed at COE “common function” components
l Purpose is to:

- Identify components that present significant risk
factors in:
= Integration
= Maintainability
= Correctness
= Reliability

- Identify cost effective candidates for renovation
- Institutionalize software quality compliance

assessment techniques within DII to manage costs and
integration risks

- Identify usage of non-public APIs
- Increase testing effectiveness
- Identify portability risks

32

MITRE

DII COE S/W Quality Measurement Foundation
And Focus
0 Calculate risk rankings using

equations and thresholds
associated with fairly standard
software metrics

Measurable
Property

Perceived Aspect
of Quality

DII COE Software Quality Factors

architecture

maintainability

correctness

reliability

Hal. Difficulty

Cntrl Density

Strct. Compl.

of I/O Nodes

Avg Paths

Hier. Compl.

of Brnchg N.

Entropy

Essent. Compl.

Cyclomatic

of Levels

of Stmnts

Hal. Prgm Lng

COE Cmpt
Tools & COTS

Design Compl.

portabilityOS extensions

POSIX compl.

Complexity &
Quality

design

size

control

process

33

MITRE

COE Software Quality Metrics Definitions
(1 of 2)
l Halstead’s

- Length: Measure of modularity of design
- Difficulty: Measure of difficutlty of developing the component

l Cyclomatic Complexity: Measures # of testable paths/component
l Essential Complexity: Measure of the structure of the testable paths

in a component
l Design Complexity: Measures the complexity of the control flow

implemented by the design
l Source Lines of Code: Physical length of a component
l Control Density: Measures percentages of control structures in a

component
l Max. # of Levels: Measures depth of IF..THEN..ELSE Nests in

components
l Number of Branching Nodes: Measures the # of “GO TOs” or

number of abnormal exits from control structures and loops
l Number of Input/Output Nodes: Measures the number of ways in

and out of a component

Note: These are ALL code-based metrics

34

MITRE

COE Software Quality Metrics Definitions
(2 of 2)

l Hierarchical Complexity: A measure of the average number
of components on a level

l Structural Complexity: Average number of calls per
component in the call graph

l Average Paths: Average number of paths per node in the call
tree

l Number of Levels: Number of levels in a class tree
l Entropy: Measure of orderliness in execution of the

components in a call graph

Note: These are also ALL code-based metrics

35

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by S/W quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessment?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

36

MITRE

Defining An “Industry” For Comparing And
Contrasting Purposes

RADC-McCall et al

1977

RADC-Bowen et al

1984

ESPRIT REQUEST
Kitchenham et al

1987

ESPRIT REQUEST
Kitchenham et al

1989

Rome Laboratory
Software

Quality Framework

Assessment Technology

Processing Power

Disk Sizes
Memory Sizes

Computer Technology

Dromey
1992-1995-1995

ISO-9126
Software Product Evaluation

Quality Characteristics and Guidelines
1991

AFOTEC
Software Assessment Team

Pamphlets

}

}

Rome Laboratory
-- SQT2 --

Software Quality Technology
Transfer Consortium

QUES

Portability

Evolvability

 Maintainability

Descriptiveness

Consistency

Independence

ModularityDocumentation

Anomaly Control

Design Simplicity Self-Descriptiveness

37

MITRE

Comparing Quality Coverage: “Industry”
vs. DII COE S/W Quality

correctness

reliability

efficiency

integrity

usability

maintainability

testability

flexibility

portability

re-usability

interoperability

consistency

accuracy

error tolerance

access control

access audit

operability

training

communicativeness

simplicity

conciseness

completeness

traceability

storage efficiency

execution efficiency

instrumentation

self-descriptiveness

expandability

generality

modularity

software system
independence

machine independence

communications
commonality

McCall et. al. RADC
Modified Quality Model

Measurable
Property

Perceived Aspect
of Quality

device
independence

completeness

accuracy

consistency

accessibility

communicativeness

structuredness

device
efficiency

self-descriptiveness

conciseness

legibility

augmentability

portability

reliability

efficiency

human
engineering

testability

understandability

modifiability

Measurable
Property

Perceived Aspect
of Quality

Boehm et. al. RADC
Original Quality Factors

consistency

documentation

anomaly control

design
simplicity

self-descriptiveness

portability

maintainability

evolvability

descriptiveness

Measurable
Property

Perceived Aspect
of Quality

MITRE SQAE
Quality Factors

modularity

independence

1977

1984

1992

discriptiveness

traceability

organization

simplicity

consistency

testability

expandability

modularity

convention

maintainability

Measurable
Property

Perceived Aspect
of Quality

AFOTEC Supportability
Assessment Factors

Measurable
Property

Perceived Aspect
of Quality

DII COE Software Quality Factors

architecture

maintainability

correctness

reliability

Hal. Difficulty

Cntrl Density

Strct. Compl.

of I/O Nodes

Avg Paths

Hier. Compl.

of Brnchg N.

Entropy

Essent. Compl.

Cyclomatic

of Levels

of Stmnts

Hal. Prgm Lng

COE Cmpt
Tools & COTS

Design Compl.

portabilityOS extensions

POSIX compl.

1991,
1996 1996, 1997

Complexity &
Quality

design

size

control

process

38

MITRE

“Industry” Quality Concern Areas Not
Covered By DII COE S/W Quality

correctness

efficiency

integrity

usability

testability

flexibility

re-usability

interoperability

consistency

accuracy

error tolerance

access control

access audit

operability

training

communicativeness

completeness

traceability

storage efficiency

execution efficiency

instrumentation

self-descriptiveness

expandability

generality

communications
commonality

McCall et. al. RADC
Modified Quality Model

Measurable
Property

Perceived Aspect
of Quality

completeness

accuracy

consistency

accessibility

communicativeness

device
efficiency

self-descriptiveness

conciseness

legibility

efficiency

human
engineering

testability

understandability

Measurable
Property

Perceived Aspect
of Quality

Boehm et. al. RADC
Original Quality Factors

consistency

documentation

anomaly control

self-descriptiveness

evolvability

descriptiveness

Measurable
Property

Perceived Aspect
of Quality

MITRE SQAE
Quality Factors

discriptiveness

traceability

consistency

testability

expandability

convention

Measurable
Property

Perceived Aspect
of Quality

AFOTEC Supportability
Assessment Factors

39

MITRE

Summary Of Significant Areas Missing
From DII COE S/W Quality Assessment
0 Risk areas assessments missing:

- The availability and adequacy of design and coding
standards and the software’s adherence to these
standards

- The availability and adequacy of design documentation
in both the words and the diagrams, as well as the
programmer and user manuals

- The adequacy of thorough prologs and comments
- The understandability and intuitiveness of naming

conventions and the adherance to them by the software
- Adequate characterization and rationalization of

dependence on COTS

40

MITRE

Observations About The DII COE S/W
Quality Assessment Process (1 of 2)
0 It is systematic
0 Calls for a large variety of analyses
0 Produces pointed and direct conclusions
0 Focuses on risks and addressing risks
0 However, Assessment Reports are long and somewhat

technical, requiring considerable understanding of
computer software and the mechanisms and methods
behind its development, as well as the application domain
of the system (i.e., it is very hard to come away with an
understanding of what needs to change and why)

41

MITRE

Observations About The DII COE S/W
Quality Assessment Process (2 of 2)
0 Specifically, the items of concern here include:

- Use of fixed thresholds independent of the application
domain or the languages(s)

- Use of too low (and too high) thresholds for metrics
0 The values of the thresholds are not discussed or

presented in any consistent fashion, nor are they defended.
Essentially, there appears to be no justification for the
values employed.

0 There are no clear definitions to help distinguish between
the implications of “reimplement” and “redesign” when
applied to the problem code

0 Some risks are not appropriately addressed. Specifically:
- the use of COTS code generators and of COTS itself,
- the adequacy of the documentation, comments,

readability, and naming conventions used for the
systems under assessment

42

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by S/W quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessment?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

43

MITRE

Summary Recommendations (1 of 2)
0 Expand scope of assessment to address ALL COE-targetted

applications, not just common ones
0 Eliminate the dependence on fixed thresholds for all kinds of

application domains and in all types of languages;
- Take into account legitimate variations, such as appropriate

use of case constructs in message processing code, which
might need to be excluded from design complexity and
cyclomatic ratings considerations;

- Inspect listings and take into account the type of language
before applying any SLOC judgments;

0 Include the assessment of the source code that is fed into the
automatic code generator since this input code is the material that
will be maintained

0 Clearly present and discuss the values of the thresholds
0 Provide complete definitions as basis of terms used
0 Consider the issues surrounding the use of transient COTS tools

and applications over the lifecycle of the system

44

MITRE

Summary Recommendations (2 of 2)
0 Assess the availability and adequacy of design and coding

standards and the software’s adherence to these standards
0 Assess the availability and adequacy of design documentation in

both the words and the diagrams, as well as the programmer and
user manuals

0 Assess the adequacy of thorough prologs and comments
0 Assess the understandability and intuitivness of naming

conventions and the adherance to them by the software
0 Adequate characterization and rationalization of dependence on

COTS

 Summary statement: Human judgment is still the last best
recourse in understanding what we do with complicated software
written for specific types of domains

45

MITRE

Guiding Principles:
Breadth, Depth, and Repeatability
0 The evaluation of each quality issue should have a specific

scope and context as well as a defined scoring criteria
0 Define context for ratings (ideal, good, marginal, and fail)

- limiting choices increases repeatability
0 Use a mixture of:

- Hard metrics (cyclomatic complexity, flow complexity, …)
- Objective measures (type of information available,

existence of development standards, …)
- Subjective measures (use of white space, usefulness of

comments, level of design detail, …)
0 The Metrics and Objective Measures attributes can have a

scope of all of the code of the system
0 The Measures which require cognitive reasoning need to

be scoped more narrowly (7/7/7 per language)

0 Provide a software tools framework to guide and assist
evaluators & provide context and control of the process

46

MITRE

Example: Software Quality Assessment
Areas and Factors

0 Assess software against a defined set
of quality areas:
- Portability
- Evolvability
- Maintainability
- Descriptiveness

0 Quality areas are based on a set of
seven components:
- Consistency (15 attributes)
- Independence (8 attributes)
- Modularity (10 attributes)
- Documentation (16 attributes)
- Self Descriptiveness (11 attributes)
- Anomaly Control (5 attributes)
- Design Simplicity (11 attributes)

Maintainability

Modularity

Design
Simplicity

Self-Descriptiveness Consistency

Documentation

Anomaly Control

20%

20% 15% 15%
15%

15%

Self-Descriptiveness

Verifiability

Modularity

Design
Simplicity

Evolvability
20%

Anomaly
Control

10%25%

25%

Documentation

20%

Self-Descriptiveness

Verifiability

Modularity

Portability

Independence
20%

25%40%

Documentation

15%

Self-Descriptiveness

VerifiabilityDescriptiveness

50%

Documentation

50%

47

MITRE

Examples of the
Exercise Evaluation Framework

Exercise A The first exercise area concentrates on those activities that can be accomplished by examining the two largest
functional areas of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions
consistent for functional
groupings?

Examine the scheduling modules and one other large functional grouping and cross
reference between them.

Rating will be either Ideal, Good, Marginal, or Failing. If at least one of the
programmers is either consistent or uses distinguishable naming conventions
(marginal), if he/she uses both (good), if all programmers do both (ideal).

2.2 Is the software free of machine,
OS and vendor specific
extensions?

Examine two large functional groupings of code and cross reference between them
and system libraries and known vendor extensions.

Rating will be either Ideal, Good, Marginal, or Failing. Score ideal if no instances
occur, good if such assumptions affect less than 10% of the packages, marginal for
less than 50%, else failing.

2.3 Are system dependent functions,
etc., in stand-alone modules (not
embedded in the code)?

Examine all known instantiations OS and vendor specific dependencies for
encapsulation/isolation.

Rating will be between 1 and 0, where 1 is the higher rating. 1 - (number of
embedded dependencies/total number of dependencies)

•• ••• ••• •

48

MITRE

DISCUSSION OUTLINE
0 Introduction
- What do we mean by S/W quality?

0Background
- How can you measure S/W quality?
- What makes a usable quality assessment?
- What are the uses of S/W quality assessments?

0Discussion
- What does the DII COE S/W Quality Standard

measure?
- What is missing or of questionable utility?

0Recommendations
- Constructing a more useful standard
- Impediments to implementation

49

MITRE

The Range of Software
Quality Assessment Schedules

Start
Assessment

Source Code and
documentation in
hand

Report
and

Briefing
Delivered

- Review material, load tape,
 and access needs for tools

- Revise/Update Tools for
 vendor specific issues

- Product Assessment - Develop Report

- Products to Customer

0 - 2 s

Key:

0 - 3 staff

2 - 3 staff

~1 staff 1 - 2 staff

work days (may not be contiguous)

Assessments can
start immediately if
the right tools are
available and the
tapes are
“readable”

Depending on the size
of the system and the
level of detail requested
in the report the
assessment takes
between 4 and 12 days

Depending on the level of detail the generation of
the final report takes between 1 to 5 days

50

MITRE

Need to Guide the Analyst with Reference
Material
0 To enhance consistency and

repeatability we must provide
adequate assistance and
reference material

51

MITRE

Tools That Can Handle Multiple Language
Systems Are Needed

•Assess Code
Structure

•Assess Code
Complexity

•Find Patterns

52

MITRE

Summary: The Value of a Software Quality
Assessment
0 Can provide an independent, objective assessment with

community norms of key metrics for comparison of a
project with the practices of its peers.

0 Follows a repeatable process
0 Provides specific detail findings
0Minimal effort to accomplish
0 Framework for comparing and contrasting systems
0 Provides mechanism for obtaining a “past

performance” measure of contractors
0 Brings out lifecycle concerns and issues

