Approved for Public Release Distribution Unlimited - 13-4399

Non-Malicious Taint: Bad Hygiene is as Dangerous to the Mission as Malicizun

Robert A. Martin
MITRE Corporation
Bedford, MA

ABSTRACT

Success of the mission should be the focus of software and supply chain assuranes act
regardless of what activity produces the risk. It does not matter ificioua saboteur is the
cause. It does not matter if it is malicious logic inserted at the faatamgerted through an
update after fielding. It does not matter if it comes from an error in judgondérdm a failure to
understand how an attacker could exploit a software feature. Issues fromthadesbygiene,
like inadvertent coding flaws or weak architectural constructs are asrdasge the mission as
malicious acts. Enormous energies are put into hygiene and quality in thelraadié@od
industries to address any source of taint. Similar energies need to be applidédacesafd
hardware. Until both malicious and non-malicious aspects of taint can be dealt waisithat
are visible and verifiable there will be a continued lack of confidence angassun the
delivered capabilities throughout their life-cycle.

BACKGROUND

Every piece of information and communications technology (ICT) hardwdrng-includes

computers as well as any device that stores, processes, or transmits data—has an initially
embedded software component that requires follow-on support and sustainment throughout the
equipment’s life-cycle.

The concept of supply chain risk management (SCRM) must be applied to both the saftivare
hardware components within the ICT. Because of the way ICT hardwareatenmmintained,

the supply chain for on-going sustainment support of the software is often disconnectdtefrom
support for the hardware (e.g., continued software maintenance contractsnditratlies other
than the original manufacturer). As a result, supply chain assurancemggaftiware requires

a slightly unique approach within the larger world of SCRM.

Some may want to focus on just “low hanging fruit” like banning suspect products ttne the
country they come from or the ownership of the producer due to their focusedamatugaore
more critical issues surrounding the software aspect of ICT like the @hiovulnerabilities
outlined in this article. It is a misconception that “adding” software asseitartbe mix of
supply chain concerns and activities will add too much complexity, thereby nfakiRiyl even
harder to perform. Some organizations and sectors are already developinglstahdare and
due-diligence that directly address these unintended and bad hygiene typassfifat said,
such practices for avoiding the bad hygiene issues that make software utsiirfterided
purpose are not the norm across most of the industries involved in creating and supporting
software-based products. Mitigating risk to the mission is a criticatigeand including
software assurance as a fundamental aspect of SCRM for ICT equipmenitisal component
of delivering mission assurance.

Copyright 2014 MITRE Corporation

During the past several decades, software-based ICT capabilities saneeltbe basis of
almost every aspect of today’s cyber commerce, governance, national sacaritgcreation.
Software-based devices are in our homes, vehicles, communications, and toys. Uefgrtunat
software, the basis of these cyber capabilities, can be unpredictabléhsirgcare now
underlying rules software has to follow as opposed to the rest of our materhwinach is
constrained by the laws of gravity, chemistry, and physics with core féig®Rlanck’s
Constant. This is even more true given the variety and level of skills and trainirggefwho
create and evolve cyber capabilities. The result is that for the foresagabtethere will remain
a need to address the types of quality and integrity problems that leave saitwnaiable,
attackable, and brittle directly. This includes addressing the problenadltvamalware and
exploitable vulnerabilities to be accidentally inserted into products during deveiopm
packaging, or updates due to poor software hygiene practices.

Computer language specifications are historically vague and looseignv(itiote: ISO/IEC
JTC1 SC22 issued a Technical Report [1] with guidance for selecting langndgesirey
languages more secure and reliably.) There is often a lack of concernli@ncesrobustness,
and security in the variety of development tools used to build and deploy software. Andréher
gaps in the skills and education of those that manage, specify, create, teglidahede
software-based products.

Additionally, software-based products are available to attackers whotbterd and then make
these products do things their creators never intended. Traditionally this hasdbsl fiar
improved security functionality and more rigorous review, testing, and managéfoergver,
that approach fails to account for the core differences between the emgredesoftware-based
products and other engineering disciplines. Those differences arediéédlr in this article.

The need to address these differences has accelerated as more of theandéitahiadustrial,
financial, and military capabilities rely on cyber-space and the softveesed products that
comprise this expanding cyber world. ICT systems must be designed to mdthsizcks and
offer resilience through better integrity, avoidance of known weakneassese, architecture,
and design. Additionally, ICT systems should be created with designed-in mnotempiabilities
to address unforeseen attacks by making them intrinsically more ruggessaiedir so that
there are fewer ways to impact the system. This same concern has besseeipyeCongress
with the inclusion of a definition of “Software Assurance” in Public Law 112-239 @e883
[2] where they directed DoD to specifically address software assuvéiteesystems.

DEFINING “TAINT” AND SOFTWARE ASSURANCE

While there is no concrete definition of what “taint” specifically means withe cyber realm,
we would be remiss not to look to the general use of the term, as well as synonyms and
antonyms. Merriam Webster [3] provides a useful point-of-departure, as shownenl Tzddbw.

Table 1: Merriam Webster Dictionary Taint Information

blemish, darken, mar, poison, spoil, stain, tarnish,

Taint Synonyms touch, vitiate

Taint Antonyms | decontaminate, purify

[Note: Taint is also defined in the Universal Dictionary of the English Lage.

Taint - n. trace of physical corruption or decay; degradation, imperfection; contamination,
pollution. Vb. To infect with physical or moral deterioration and corruption; to render
unwholesome or noxious. To become infected, corrupted, by something noxious, by decay.
Taintless - adj. Without taint; uncorrupted, pure.

It is important to note that 'taint’ is a state, consequently independent of interitfoT &CT
components is expressed in terms of 'stateful’ properties associated grdmpr@ble logic in

the components that could have malware, exploitable weaknesses, or vulnerabilities
independent of how the components might have become tainted (e.g., through negligence, slopp
manufacturing hygiene, or malicious intent) — in development or supply chain mamageme

So a “tainted” ICT product could be described as one that is blemished, marred, spailed, or
need of being purified and/or decontaminated. Within the Department of Defensge (DoD
community one must also make use of the definition of “software assurance” provitted by
United States Congress in Public Law 113-239 Section 933. Therein, software assuranc
defined to mean “the level of confidence that software functions as intended aaeda$ f
vulnerabilities, either intentionally or unintentionally designed or insedqxhg of the software,
throughout the life cycle”. [Note — this is the same definition used by the CaeroittNational
Security Systems (CNSS) 4001 Glossary.] Taken together, softwarenaeswauld also ensure
that the software was not tainted, since tainted software would offer akeatiae opportunity

to make the software function in an unintended manner.

Similarly, within the software vulnerability community, vulnerability hasrbdefined [4] as an
occurrence of a weakness (or multiple weaknesses) within software, in whigbakeess can
be used by a party to cause the software to modify or access unintended data, prtgyeupt
execution, or perform incorrect actions that were not specifically grantide party who uses
the weakness.

This paper proposes that for any product making use of software, “taint” wouléleber
considered any weakness/issue that impacts its ability to function as thtaritiat otherwise
introduces vulnerabilities or malware.

CYBER HYGIENE — AN EVOLUTION OF SYSTEMS ENGINEERING NEEDED

Some offer that we could address our collective cyber software hygienesanahae problems
if only information assurance, cybersecurity, and supply chain assurancéfabuitb the
general systems engineering practice. However, as described in ¢tharfglsections, there are
three things that are different about software-based systems whenreeingjteem for today’s
cyber world that go beyond what most consider good hygiene and systems emgineeri
Consequently, past norms of “good practice” related to software that remainim use i
government and industry may be inadequate given today’s pervasive use ofesbtised
products in our new cyber world.

Fragile In Unexpected Ways and Deployed in an Unknown Manner

Software based systems often have additional features, interfaces, arahalitgtiue to the
use of & party libraries, general purpose commercial and open source applications, and the
multiplicity of features in system libraries and system calls. Moreovee)ajgers often make
risk decisions for which they are not held accountable (such as disabling comgpiergs
about security flaws in code). As witnessed by the myriad of patches wegalarly called to
address due to the exploitable vulnerabilities they address, today’s sefsae: systems are
inherently frail, and susceptible to attack and manipulation in varying ways. Tesadbe
differences between what is conceived and what is delivered we need to think about how
software-based systems are actually integrated and deployed, as opposeth&yhvoere
designed and envisioned. Generally speaking, the real “deployed” systdvatiattackers study
and attack, not the idealized engineering plans often used to manage the systems.

In other words, it is the software actually used in the field that has to be the fosssmainae
efforts. So, if libraries are incorporated and deployed by a compiler, or g@tian choices
undermine design choices, or someone otherwise exposes a weakness, we needHrs detect t
before our adversaries do.

The various human disciplines that relate to engineering (of any sortheerneshaped by our
collective historical learning from working in and with the physical d.oMVithin that world,
things are essentially repeatable and sufficient description sirmpigsdown to an adequate
understanding of the basic physical science’s behaviors and properties.ittug fram birth is
in this physical world, and our expectations are shaped by that predictable @amrikquently,
it is no wonder that we subconsciously and consciously expect that same level oéconscst
hold in the cyber domains, though without the evidentiary basis for that belief.

The software-based code and logic underpinning cyber capabilities laclethetadility that the
physical world follows. The cyber action and interactions due to the mistakesasdrflour

computer languages, software tools, the training or accountability of sofferaeopers, and

the ingenuity of attackers doesn’t follow a nice scientific formulation. Urgtitan get those

who create, build, and support the cyber systems that people depend on to understand that cyber
is a man-made and man-defined environment and it will not follow any rules othelndisanite

impose and enforce upon them, almost any aspect of a system can become an attauke of

that puts the mission and our people at risk.

Non-Benign Environments with Attackers

We operate in a non-benign cyber world with attackers and attack technique®thit be
considered as "motivated forces of nature.” In traditional engineerinig often dealing with
known hazards and threat agents (e.g., hurricanes, fires, tornadoes), and gentratig, wi
exception of corrosion, these are one time or short term issues, from which one can recov

In contrast, attackers in cyber space are persistent, target-speitifese¢hat will work to
identify weaknesses in their specific targets. They will evolve treetraft to better leverage
the weaknesses of their ICT targets and users. Attackers are dagitvehlife for the cyber
environment that software-based systems will have to work in and survive to support their

intended missions. Mission resilience within our cyber-assisted world iglif@cylt without
ICT resilience.

Adversary Evolution

The third thing that differs from what most engineering approaches expeetspeed and
adaptability of the attacks. This is especially true with regards @i evolution of the attack
techniques and ability of attackers to adapt to change and new elements drbr®fnd
defensive cyber environment. While attacker and defender have always badthgapeed of
that race and the breadth and scope of changes are orders of magnitude quicker anith broade
the software-based cyber realm.

As an example, if one builds a tank it is understood that eventually the adversagnvalup
with a better weapon that will force the development of a new and better tank or ugiygf
tanks. Both the development of the tank and subsequent countermeasures will likebatake y
fitting nicely into the traditional acquisition life cycle.

In contrast, the development and evolution of cyber adversary attacks can change in hours or
days. Admittedly, some of these are tactical changes but they camgétitithe mission. Even

if one were to argue it takes weeks to develop a new strategic cylmirtatthnique, this is still

far faster than the normal acquisition and systems engineering process.

Integrated System Engineering for Hygiene Assurance

While tainted products can be a concern in their own right, the three differencesdurg the
engineering of software-based systems from above and the implicatiotieeeadifferences
represent in ensuring the systems meet their mission in spite of the inteftdhsrs needs to
be threaded throughout the systems engineering activities when tha sysjgestion has any
cyber components. So rather than fitting into today’s systems engineescgg gy that
engineering activity itself needs to be adjusted to better fit the chali¢hat software brings to
our systems so that the systems deployed, with all their fuzzy edges antheddzatures are
what we validate, verify, and gain assurance about just as those systems dhe atie¢rsaries
reconnoiter and attack.

A deep, broad, strategic approach to evolving systems engineering to betssaddr
cybersecurity issues in software-based systems that covers educaganghelegal liabilities

and expectations, business understanding, and systems development methodologied.is need
Only this reworked approach can make software-based systems as relialelsleamd as they
need to be given the role they play in the myriad of governance, business, sandrfigrsonal
endeavors they support.

ASSURANCE FOR THE MOST DANGEROUS NON-MALICIOUS ISSUES

There are a wide variety of ways software can become exploitable t@aekeatallowing them
to make use of the products in ways that the software’s developers and/or those henning t
software never intended. With this comes the question as to which of these nooun&®ies
should an enterprise focus on eliminating or mitigating? Unfortunately, theoesisnple
answer to that question. Because different organizations can use the sametfiveaoé in
vastly different ways, the same flaw could be critical to one and a triviamuggo the other.

Two questions that each enterprise needs to be ready to answer are the questiahamy
particular piece of software is doing for them, and how dangerous would diffeherg faodes
of that software be to the enterprise. This is the “fitness for use” consothetfadit each mission
must address before accepting software into its operational environment.

While there may bedver 1,000 different categories of security mistakes that developers

can make” [5] in the Common Weakness Enumeration (CWE) [6], the community-developed
dictionary of software weakness types such as constructs in code, desigactanehand
deployment of software that can lead to exploitation by attackers, thmzardp be only eight
different consequences or technical impacts [7], as shown in Table 1, to whicfailuess

lead. In other words, if a weakness manifests itself in a product in an exgloitabher and an
attacker successfully exploits it, then there will be one of eight techmpaktts or
conseqguences from that weakness. With each CWE entry the “common consequdddess fie
the “technical impacts” that can result from each weakness in CWE. The &d¢impact and its
translation into an impact to the mission are important criteria within the Dagdpi®ach to
“Threat and Vulnerability Assessments” within program protection planniRB)E, 9] and can
be equally useful to any organization that needs to have reasonable assurande sbétithiee-
based capabilities due what they are intended and nothing more.

The collapsing of the hundreds of types of errors into a small set of techrmpeaitsoffers a
simplification to the question of what an organization should focus on to gain assuranae in thei
software-based products. Instead of trying to remove all weaknessesptitagyecide which of

the eight impacts are either more or less dangerous to them, given whatvilaeespfoduct is

doing for their organization. For example, a public web site utilizing Akamai to provide
information may not worry about weaknesses that lead to resource consumptitfdenia
service exploits but could be extremely concerned about weaknesses thatidarstemeone
modifying the data. Using this approach they could focus their assuranceeactinithose
weaknesses that could lead to this unacceptable failure mode. The eight teclpaictd are

listed in Table 1.

Table 1. Technical Impacts of Software Weaknesses Similarly, tteefBétection

Methods” field within many CWE

Technical Impacts of Software Weaknesses: entries that conveys information about
+ Modify data what types of assessment activities that
+ Read data weakness can be found by. More and

- Denial-of-Service: unreliable execution more CWE entries have this field filled
« Denial-of-Service: resource consumption| in over time. The recent Institute of
- Execute unauthorized code or commands Defense Analysis (IDA) State of the Art

« Gain privileges / assume identity Research report conducted for DoD
+ Bypass protection mechanism provides additional information for use
« Hide activities across CWE in this area. Labels for the

Detection Methods being used within

CWE at present are: Automated Analysis, Automated Dynamic Analysis, AtgdrStatic
Analysis, Black Box, Fuzzing, Manual Analysis, Manual Dynamic Analydenual Static
Analysis, Other, and White Box.

This offers a second simplification where stakeholders can now match weakagssest type
of assessment activities, and will thereby gain insights into whethexdad&ness is still an

issue, or whether it has been mitigated or removed. Continuing the example abowuheusing
information in Figure 1, the specific CWESs that can lead to that type of impabeaaviewed
and the ones that dynamic analysis, static analysis, and fuzzing can gatbece about and
which ones they can not.

Technical Impact | Automated Automated Automated Black Box Manual Manual Manual White
Analysis Dynamic Static Analysis Analysis Dynamic Static Box
Analysis Analysis Analysis

Execute 78, 120, 129, 78, 79,98, 120, 79, 129, 9_, , 476,798 | 78, 798
unauthorized 131,476,805 129,131, 134, 134, 190, 31,
code or 190, 798, 805 494, 698, 494, 805
commands 798
Gain privileges / 798 259, 798 259 798 798, 807 628
assume identity
Read data 209, 311, 78, 89, 129, 78, 79, 89, 129, 14, 79, 89, 131, 209, 404, |78, 798 14
327 131, 209, 404, 131,134,798 129, 134, 209, 311, | 665, 798
665 319, 798 327
Modify data 311, 327 78, 89, 12 78, 89, 129 129, 190, 89, 131 78
131 131, 190 31 190, 311
327
DoS: unreliable 78, 120, 129, 78, 120, 129, 129, 190 400 120, 131, 476,665 78
execution 131, 400, 476, 131, 190, 400, 190, 805
665, 805 05
DoS: resource 120, 400, 404, 120, 190, 400, 190 400, 120, 190, 404 770 412
consumption 770, 805 770, 805 770 805
Bypass 89, 400, 665 79, 89, 190 14, 79, 400 89, 190 665, 798 798, 807 14
protection 00, 798 184, 190, 733
mechanism 733, 798
Hide activities 327 78 78 327 78
Other 400, 40 00, 798 198, 484, 400 494 404, 798 596, 798, 628 484
494, 698, 807 733
733, 798

Figure 1: Weakness Technical Impacts by Detection Methods

Understanding the relationship between various assessment/detection methodsdifiddtse
available over the life-cycle, better enables decision-makers to plapéaifis issue(s) to
review; at what point(s) in the effort; using what method(s); and through the teeaaiverage
claims representations [10] of the various tools and services, which cap3luliyid be
leveraged, etc. This is depicted in Figure 2.

Code CWEs a capability
Review claims to cover

Static
Analysis
Tool A
& Most

Static Important
Analysis
Tool B

Weaknesses
(CWEs)

Pen
Testing
Services

Which static analysis
tools and Pen Testing
services find the CWEs
| care about?

Figure 2: Matching Coverage Claims to Your Organization’s Needs

This information can assist project staff in planning their assuranediastiit will better enable
them to combine the groupings of weaknesses that lead to specific technical inihettts
listing of specific detection methods. This provides information about the presespeciic
weaknesses, enabling them to make sure the dangerous ones are addressed.

Figure 1 conveys information associated with the “Software Assurané&a@p” portion of the
CWE web site. This area of the site is focused on providing help to projects on how they can
make use of the information about weaknesses to manage their software séoutty

Finally, the same type of information in this table could be used to produce an assaggioc

an executable code bundle, leveraging ISO/IEC 19770-2:2009 [11] as implemented faré&oftw
Identification (SWID) Tags [12]SWID Tags can contain assurance information to convey
which types of assurance activities and efforts were undertaken agaatsypds of failure

modes. The receiving enterprise could then review this tag and match that iitioragainst

their plan for how they will use the software and what failure modes theyastconcerned
about. This would be invaluable in determining if sufficient efforts were taken ia #ress.

[Note: This also supports ISO/IEC 15026 assurance cases.]

MANAGING RISKS ATTRIBUTABLE TO TAINT IN SOFTWARE AND HARDWA RE

Hardware follows the physical laws applicable to their composition, el@otharacteristics,
and construction. Statistical process variations, logical errors of desigecbanical
instabilities may not be originally understood, but can be studied and addressed nsiay ge
engineering and process improvement methodologies. However, it is clear thates@dils
from things other than these causes. As discussed above, software follows nodawshen
creators impose them and can fail due to individual implementation mistakesugtttihe
introduction of weaknesses or malicious logic.

Few software developers or systems engineering practitionersheatraining and experience to
recognize, consider, and avoid these weaknesses. Few (if any) tools or meeedwavailable

to review and test for all weaknesses in a systematic manner. Devel@pensehr provided

with criteria about what types of problems are possible, and what their preseitccenean to

the fielded software system and its users.

To manage these risks we cannot just expect to come up with the “right secquitgmesnts”.
We also need to provide a methodology that assists in gaining assurance throutiretiveggzt
evidence and showing how that information provides assurance and confidence W&tethe s
development process addressed the removal or mitigation of weaknesses that daald lea
exploitable vulnerabilities. The changes in revision 4 of National Institute nfl&tas and
Technology (NIST) Special Publication 800-53 [13] directly bring assurancehmseturity
posture equation.

MAKING CHANGE THROUGH BUSINESS VALUE

Key to a successful SCRM strategy (beyond good intelligence about }lsemisapproach to
engage industry hardware and software developers, manufacturers, and resdllessjwst the
“contractors” and “integrators”. If necessary appreciation of the prabéem requisite risk

mitigating behaviors are going to become a core part of the marketplacehese foundational
and ultimate sources of products are where the discipline has to reside. Aswheesadécurity
industry’s norms of behavior evolve, those who sell to governments, the criticalrindtares,
and the larger global ICT-consuming economy will leverage and adopt theseimaneis own
operations. All the various facets and aspects of the marketplace have their m@asbus
incentives and cost considerations that can be influenced. Given the right sewafionsj we
can all benefit from assured software-based products through a sanitizedd@y chain. That
will contribute to the assurance and confidence that products are fit for use ispibetines
mission and business environments.

Through their own upstream efforts to their parts and component suppliers, and dowrtstream t
their customers, the vendor communities must be motivated to control and manage tye quali
issues for the supply chain going to government as well as to the civili@aldnfrastructure

and broad consumer markets. This can be in the interest of both the producer industry and the
consumers if the right business value proposition can be found. Under that type of market, the
government customer can effectively become (almost) a "free ridefidiang of these broader
supply chain hygiene and assurance changes.

Not to be confused with classical “motivations” for business, aligning thensasiésts of the
business community with the interests of government and industry on concerns sauit’ as *
can transform the way everyone conducts their activities. While most cotgrmierests
cannot drive industry, it is possible to lead industry to a different way of “doing kasine
Collectively we can show sustained business value propositions to the varioupaagici
through either cost avoidance or market dynamics, which reward their behavignmeait
with the collective interests of all participants in our software-based egoadncritical
infrastructures.

For an example of behavior change in an industry motivated by a new perceived business
value, consider that many of the vendors currently doing public disclosures are dbiegesse
they wanted to include CVE [14] Identifiers in their advisories to their custoidergever, they
couldn't have CVE Identifiers assigned to a vulnerability issue until therpuwindisly available
information on the issue for CVE to correlate. The vendors were motivated to include CVE
Identifiers due to requests from their large enterprise customers whedihat information so
they could track their vulnerability patch/remediation efforts using cowgiallgravailable tools.
CVE Identifiers were the way they planned to integrate those tools. Basieatommunity
created an ecosystem of value propositions that influenced the software product vascal|
as the vulnerability management vendors) to do things that helped the communithas,a w
work more efficiently and effectively.

Similarly, large enterprises are leveraging CWE Identifiers todioate and correlate their
internal software quality/security reviews and other assurance eRoota. that starting point,
they have been asking the Pen Testing Services and Tools community to includdezyitiens
in their findings. While CWE Identifiers in findings was something that othetited as good
practice, it wasn’t until the business value to Pen Testing industry playdessmase that they
startedadopting them and pushing the state-of-the-art to better utilize them.

While motivating business interest usually comes down to incentives and percapboihs
market share possibilities, aligning self interests can be an altap@atach to changing things

that are both sustainable and win-win for suppliers and custoifieese types of symbiotic
situations are most certainly available in the various parts of the SCRMngfeakpace and they
present a topic that we collectively need to explore for opportunities and commornsbénedr
the past 15 years the community has explored many different ways to inflndasty using a
wide variety of standards. Community repositories, languages, acceptable upagecss
standards are being considered in terms of the best fit for the variety ofmliffguations faced
within the community; and to-date, these have substantively changed the glotghidiFy in
positive and effective ways.

CONCLUSION

The software and hardware fields need to holistically approach the questions amhpgi¢ne
and quality activities that provide assurances that products are fit fomtiegided use. Negative
impacts to the mission can be just as deadly and unmanageable in the field frednl@int
software-based products regardless of intent (from malice or negl)g&¥itiein the military,
taint considerations can be addressed as part of the 'fitness for usa'iorppeoigram protection
planning (PPP) as can the risk based remediation strategies for addsefiswage
vulnerabilities. Use of CWE and the consideration of the technical impacts twedreof
weaknesses can lead to as a guide to reviewing and organization’s hygaticegralong with
the information about which detection methods are best suited for gatherirenassabout the
presence or absence of exploitable vulnerabilities, can help when managing és@asgecance
activities in a manner that others will understand and can verify. Until both malaiduson-
malicious aspects of taint are dealt with in ways that are visible ancabéithere will be a
continued lack of confidence and assurance in the delivered capabilities and thekajppliat
sourced and services them.

ACKNOWLEDGEMENTS

The summary work contained in this article is based on the discussions with a number of
individuals at MITRE and throughout the industry; a special thanks is given for thdatatrs

of the CWE Team members and those working Supply Chain Risk Management, including Joe

Jarzombek, DHS Director for Software & Supply Chain Assurance, who provided inpw to thi
article. The U.S. Department of Homeland Security (DHS) is acknowledgkd apdnsor of

this work. The MITRE Corporation operates the Homeland Security System Enggnaed
Development Institute under contract HSHQDC-09-D-0001 for the Departmewinoéleind
Security.

REFERENCES

] “ISO/IEC TR 24772:2013 Information technology -- Information technology --
Programming languages -- Guidance to avoiding vulnerabilitiggagramming languages
through language selection and use”, International Organization tEord&dization,
(http://standards.iso.org/ittf/PubliclyAvailableStandards/c061457_IBO TR _24772_201
3.zip)

21 “National Defense Authorization Act for Fiscal 20Bblic Law 112-239, Section 933",
Jan. 2013 (http://www.gpo.gov/fdsys/pkg/PLAW-112publ239/pdf/PLAW-112publ239.pdf)

B3] “Definition of Taint”, Merriam-Webster Dictionary, Dec. 2013 (httwww.merriam-
webster.com/dictionary/taint/)

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

“Threat-Classification-Glossary”, The Web Application SecurityConsortium
(http://projects.webappsec.org/w/page/13246980/Threat-Classificationa@lpss

“Secure Code Starts With Measuring What Developers Know”, Irdbom Week, Dec. 19,
2013 (http://lwww.informationweek.com/security/application-security/secade-starts-
with-measuring-what-developers-know/d/d-id/1113154)

“The Common Weakness Enumeration (CWE™) Initiative”, MITRE Corpamati
(https://cwe.mitre.org/)

“Common Weakness Enumeration - Enumeration of Technical Impacts”,REMIT
Corporation, (https://cwe.mitre.org/cwraf/enum_of _ti.html)

“Requirements Challenges in Addressing Malicious Supply-Chaieats$ir, Paul R. Popick,
and Melinda Reed, INCOSE Insight, July 2013 (http://www.acq.osd.mil/sé/docs
ReqChallengesSCThreats-Reed-INCOSE-Vol16-1s2.pdf)

“Program Protection and System Security Engineering”, Qffidhe Deputy Assistant
Secretary of Defense (ODASD) Systems Engineering, Janua29l4
(http://www.acq.osd.mil/se/initiatives/init_pp-sse.html)

“Common Weakness Enumeration - Coverage Claims Representation”, BEMITR
Corporation, (https://cwe.mitre.org/compatible/ccr.html)

“ISO/IEC 19770-2:2009 Information technology -- Software asset mareagem Part 2:
Software identification tag”, International Organization for tarflardization,
(http://www.iso.org/iso/home/store/catalogue_tc/catalogue detaildsimumber=53670)
“Software Identification (SWID) Tags”, TagVault.org, (http://tagvanrty/swid-tags/)

“NIST Special Publication 800-53 Revision 4 - Security and PrivacyrGlentor Federal
Information Systems and Organizations”, National Institute ohdétads and Technology,
(http://dx.doi.org/10.6028/NIST.SP.800-53r4)

“The Common Vulnerabilities and Exposures (CVE®) Initiative”, MITRI®rporation,
(https://cve.mitre.org/)

	Non-Malicious Taint: Bad Hygiene is as Dangerous to the Mission as Malicious Intent

