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Parallel Extensions to Single-Path
Delay-Feedback FFT Architectures

Brett W. Dickson, and Albert A. Conti

Abstract— Pipelined Fast Fourier Transform (FFT)
architectures, which are efficient for long instanes (32k points
and greater), are critical for modern digital communication and
radar systems. For long instances, Single-Path Detdeedback
(SDF) FFT architectures minimize required memory, vhich can
dominate circuit area and power dissipation. This pper presents
a parallel Radix-2> SDF architecture capable of significantly
increased pipelined throughput at no cost to requied memory or
operating frequency. A corresponding parallel coeftient
generator is also presented. Resource utilizationesults and
analysis are presented targeted for a 45nm silicoon-insulator
(SOI) application-specific integrated circuit (ASIC) process.

Index Terms— FFT, high throughput, low-power, parallel,
Radix-22, Single-Path Delay-Feedback

|I. INTRODUCTION

of words of memory grows exponentially [6]. Forsthieason,
long FFTs can be dominated by memory with respect t
resource utilization and power dissipation. Podissipation
can be further compounded when implementing in aced
silicon technology nodes. Excessive power dissipativill
occur if the memory has not been optimized for &emk
current since the active silicon area for the mema
proportional to its size. For these reasons, optimgi long
FFT instances usually involves focusing on the mimation

of required memory.

Single-Path Delay-Feedback FFT architectures hdnee t
most efficient memory utilization for pipelined FFT
processors [4]. Due to the exponential growtlthef number
of memory words required with respect to the nundfegfFT
stages (or the logarithmic growth of butterfly atwiddle
modules required with respect to the number of BBihts),

HE Fast Fourier Transform (FFT) is an efficienthere will always be a point at which memory dortisa

Talgorithm for computing the Discrete Fourier Tramgf
(DFT) [1]. The FFT is a common digital signal presimg
function used across a multitude of application dms

circuit area and power dissipation. For this reaS®F FFT
architectures are always optimal for long FFT insé&s [10,

11].

Modern communication systems such as Orthogonal!n this paper, we propose parallel extensions & 3DF

Frequency Division Multiplexing (OFDM) rely on thagh-
speed computation of the FFT. Radar systems alpdog the
FFT for matched filtering and Doppler processing.
Pipelined FFT processors compose a sub-class
architectures that are computationally efficienthardware.
These processors are capable of processing aretrnipted
stream of input data samples while producing aastref

FFT architecture [9] to significantly improve thghput
without incurring an increase in memory or opegtin
frequency. While many of these techniques are &gual
gpplicable to other SDF FFT architectures such adix2
SDF [6] and Radix-4 SDF [7], discussion is focusedthe
challenges and tradeoffs associated with the R2di®DF
processing and twiddle generation.

output data samples at a matching rate. A variety o 1he parallel extensions presented in this papeease the

architectures for pipelined FFT processing havenlpgeposed
[5-9]. The desire for more precision, longer FFTsda
increased power efficiency has motivated archir@attu
innovations aimed at hardware reuse and the ovwediiction
in the number of adders, multipliers and words afhmory
required to implement FFT algorithms.

As a function of the number of stages in pipelir€er
architectures, the lower bound for butterfly andidtie
modules grows linearly while the lower bound foe tumber
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number of butterflies and twiddle modules proparéibto the
parallelization while maintaining memory size ofetfFT.
This results in highly efficient throughput rateghna minimal
increase in area and power for large FFTs.

This paper will present results demonstrating thes and
power savings achieved by parallel extensions uaidpnm
SOl process. The benefits in terms of area andggner
efficiency become more apparent as the number it
the FFT grows.

Applying the parallel extensions outlined in thagppr allow
for lower clock frequencies (inversely proportionab
parallelization) and in the case of ASIC impleménotzs,
more leakage-efficient memories can be leveragedewh
maintaining pipelined throughput performance. Rsswill
show that lowering the clock rate and increasingalpgism
by the same factor does not change the throughpgbed=-FT
processor and has a negligible impact to areafgel FFTs.
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The remainder of this paper is structured as fatom

line at a given butterfly stage 8" for DIT architectures and

Section Il the Radix2 SDF FFT architecture is reviewed; 21082 N-1-m for DIE architectures. The width of the memories

Section 1l describes the proposed parallel archital

is dependent on the bit width of the | and Q imrgarnples and

extensions to the SDF FFT; in Section IV the prepos any internal bit growth maintained through the pipe

architectural extensions are compared to previppsoaches;
finally Section V presents performance and wdtiian results
targeted for a 45nm SOI ASIC. Final conclusionsdreavn in
Section VI.

Il. RADIX-2* SDFFFT ARCHITECTURE

SDF FFT architectures make use of
implemented using memory and shift registers todeiodata
at each butterfly stage. Delay-lines of length are required
for all m from O tolog,(N) — 1 whereN is the number of
FFT points the SDF FFT processor is capable of cuimg.
This requirement is due to the data shuffling ni¢ to the
decimate-in-time (DIT) and decimate-in-frequency IKD
algorithms.

It should be noted that the total memory requireiemay
differ between the two algorithms even when commuuthe
same number of FFT points with equivalent data heidSDF
FFT architectures may allow bit growth to occurbatterfly
additions which requires growth in the widths df ttelay-line
memories through the pipeline. For DIF architecturdata

delay-linewidths increase linearly as delay-line memory deptécrease

exponentially. This means that restraining bit gtow DIF
FFT processors results in minimal savings as coetptr the
potential impacts of quantization. On the otherdchanternal
bit growth can have a significant effect for DIT TFF
processors. In DIT implementations, delay-line mgmbit
widths will increase linearly while depths
exponentially. If possible, samples should be tinad after

The Radix-2 SDF architecture is a hybrid of Radix-2 SDFoutterfly additions to minimize memory in DIT pijreds.

increase

and Radix-4 SDF designs [9]. The simplicity of tRadix-2 ~ Memories used to implement delay-lines for SDF FFT
two-point butterfly structure is maintained whilalp needing Processors do not require random access. A stfargtard
log,(N) — 2 twiddle multiplies as is the case in Radix-4seduential access scheme in which read and writegps are

architectures. This flexibility is achieved by ugia second
type of butterfly structure that performsj multiplications
through sign inversion and real-imaginary samplaging.
This simplification eliminates half of the complenultipliers
required for Radix-2 SDF implementations.

simultaneously incremented for each pair of compiata
samples requires a delay-line with a single duat-tatic
random-access memory (SRAM). For SRAMs with a sing|
address port, two memories, each with one-halhtimaber of
required words, can be used with a similar scheRead and

Fig. 1 shows Radix?2SDF pipelines for both DIF and DIT Write address pointers will alternate between oremury

implementations. DIF SDF architectures require #unad
ordered input stream to generate a bit-reversegubstream.
Contrarily, DIT implementations expect bit-reversatut
samples and produce natural-ordered output sampleis.
symmetry is often exploited in systems that tramefalata,
perform processing in the frequency domain, ane teply
an inverse transform. For large block sizes, incoapng
additional memory buffers for data reordering aostly in
area and power.

m=log,N-3 i=logN-2 m=logN—2 m=log,

Fig. 1. (a) Radix-2DIF SDF Pipeline, (b) Radix?DIT SDF Pipeline

A. Delay-Lines

From Fig. 1, wheren corresponds to the butterfly index

and i corresponds to the twiddle generator index, it ban
seen the memory requirements at each butterflyesthffer
between DIT and DIF implementations. The depth déky-

instance and the other as they increment allowiagiaries to
be written to and read from in ping-pong fashiomm®
additional silicon overhead is involved when a &nigstance
of memory is replaced by two of half the size, this is
minimal for large instances of memory. Fig. 2 déepidelay-
lines implemented using both dual-port (a), anglsiport (b)
SRAMSs.

wr_data rd_data
— wr_data rd_data —— wr_en
—>»| wr_en | address
——| rd_en ?
wr_addr
rd_addr
counter
L wr_data rd_data
wr_en
counter
address
(a) (b)

Fig. 2. (a) Delay-line implemented as dual-port RAKb) Delay-line
implemented as two single-port ping-pong RAMs

B. Butterflies

Butterfly circuitry at each stage combines datacihare
n/2 samples apart where is equal to2™ for DIT and
2log2 N-1-m for DIF architectures, angh is the incrementing
butterfly stage number. What is important to note the
context of subsequent discussions is that contigudata
samples are not combined through processing mrgduals 1.
This remains true for butterfly circuitry with amgdix. While
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butterflies with radices beyond two need to combista
samples from multiple delay-lines, this is res#éttto non-

Delay Line

In the Radix-2 SDF architecture, two unique types of

contiguous data samples for algreater than one. ”

butterfly structures are used (BF1 and BF2). Thel BF
butterfly, which is identical to those used in Radi SDF ‘

pipelines, computes a 2-point DFT. As previousbted, the

©

depth of the delay-lined| is a function of the number of ‘

X
o

points in the transformN) and the stage numbern). Fig. 3  x ~ >(

shows the BF1 structure from the proposed desigerevihe

EN_BF1_SUM level signal is negated everygycles. During N rI_ ‘ \/\6

the firstd samples when EN_BF1_SUM is low, multiplexorf' S
direct the input data to the feedback registers ti@nnextd — ‘ }/_\

cycles after EN_BF1_SUM is asserted high, the mpleltors [ \T/ 2|

are switched and the butterfly addition is perfodntbetween

the input data and feedback output. This periodaress is
continued untilV samples have been processed.

Delay Line

EN_BF2_SUM EN_BF1_SUM

Fig. 4. Butterfly 2 (BF2) Architecture

C. Twiddle Generation
<] In the Radix-2 SDF architecture, a twiddle multiplication
’( stage is implemented after every two butterfly sgagit every
- twiddle stage, a complex hardware multiplier is dus®

| N L multiply each data sample by a corresponding coxnple
)\4‘/ L twiddle coefficient of unit magnitude. The produst then
% truncated down to the bit width of the data strelbefore
| \@ entering the subsequent butterfly stage. The dlguorused to
X S generate the twiddle coefficients is as follows ][1Zhe

Xy

—j2mk

5
oo

O’
EN_BF1_SUM k = Sp * (x - a):
Fig. 3. Butterfly 1 (BF1) Architecture sy * (x — 2a),

s3 * (x — 3a),
The BF2 structure, shown in Fig. 4, has some atluigd to

perform a+j multiplication without the need of a multiplier. 0o
Like the BF1 function, the BF2 directs the input tiee 2 x4
feedback line for the first cycles while EN_BF1_SUM and ¢ 14
EN_BF2_SUM are both low. For the neHt/2 samples, 3 x4t
EN_BF1_SUM is active while EN_BF2_SUM remains zero.
The result is the same as the summing state ofBfie and
operation. For the final/2 cycles, both EN_BF1_SUM and
EN_BF2_SUM are high which causes in | and Q inpuj = Y
samples to be swapped and the | sample to be wegate G
multiply-by-j  operation). Finally, EN_BF1 _SUM and
EN_BF2_SUM are both negated to return to the ingiate.
This routine is repeated until a full block of déh samples)
has been processed.

WE=en,;, x=01,.

twiddle factors at stagé where0 <i <log, N — 2 is given
by the seW; = {Wk} where:

N
Y2

1; c=0123
0<x<a
a<x<2a

2a <x <3a @)
3a <x <4a

)

®3)

The equation shows that for any twiddle stagethere are
four different statesn) which use a unique step sizg, ) to
rotate the unit circle. The step size for eachestatconstant

resulting in a linear progression around the uiitle. IFFT
implementations use the same step sizes as forward
transforms, however the coefficients traverse thie aircle in
the opposite direction which requires a negatiorthef step
size or phase increment.

The combination of simple butterfly processing and
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sequential access memories provides opportuniiesxploit
additional parallel processing per stage to ineeasgerall
throughput performance. The following sections iaetl
methods for increasing performance through parhfetiware
as well as the challenges and trade-offs assocwitéddoing
so.

. PARALLEL RADIX-22 SDF

This section will present novel modifications t@ tRadix-
2? SDF pipeline (outlined in Section 1) which allofeor
complex samples to be processed in parallel toease the
overall throughput of the processor. The extensitissussed
for the proposed design presume that the paraltediz factor
(P), which corresponds to the number of data samioldse
processed concurrently, will always be a power wb.t
Assuming a constant clock rate, the throughputhef EFT
pipeline is directly proportional the number of gl
samples processed per second. Likewise, the latexugyred
to process a full FFT block is inversely proportibtio the
parallelism.

Parallelization does not affect the critical pathihe circuit;

able to mimic the operation of both the BF_1 and BF
Because there is no feedback state, the BF1 operadi
performed when EN_BF2_SUM is low and the BF2 openat
is executed once it is asserted.

Xo, — /-'_—_\ Xo,
X1,

1'_ — x
) 9 :

‘{ : xl’

EN_BF2_SUM

Fig. 5. No-Feedback Butterfly (BF_NF) Architecture

hence increasing does not impact the maximum achievable This new butterfly architecture is required whempkes

clock frequency. Additionally, the memory requirertee of
the delay-lines in a SDF architecture are independd
parallelization. Because the control logic for egudrallel
butterfly is identical, the feedback outputs carcbecatenated
and written to one SRAM in a single transaction.PAgrows,
the depth of the delay-lines is reduced while thdthvis
increased by the same factor. While the shapeeofrtémories

that are delayed in time are processed on the skok edge.
For a given parallelism, the number of non-feedbsizges
(butterfly stages that implement BF_NF) required tire
pipeline is equal tdog, P. For DIF implementations, the non-
feedback stages appear at the end of the pipeleseas they
show up at the beginning stages of DIT designsaBse each
BF_NF processes two samples per clock, the numlber o

will change, changing® does not alter the aggregate numbeBF_NF required per non-feedback stagg 2.

of bits that must be stored per delay-line.

One of the advantages of a parallel SDF FFT arctite is
the ability to trade additional arithmetic hardwdoe lower
operating frequencies or higher throughput. It pdes system
architects a larger design space and the powailto &n FFT
processor to best fit underlying implementationhtedogy.
This does not come without cost. There are maagewffs to
consider. For example, all non-delay-line logic luging
butterflies, twiddle generators and complex mukig must
be duplicated for each additional sample to be gssed in
parallel. The remainder of this section will dissuthe

considerations that need to be taken into accounénw

increasing the parallelization factor of the Ra#fixSDF
pipeline.

A. No-Feedback Butterfly
To account for parallelization, the depth of eaelay-line

is decreased by a factor Bf For anyP greater than one, there

comes a point in the pipeline where the depth efdélay-line
is less than one which indicates a traditional R&dbutterfly
is no longer necessary. In this case, a third tfpbutterfly
architecture is required. In this no-feedback Wtijt§BF_NF)
shown in Fig. 5, the delay-line of the conventiobatterfly is
abandoned. Instead of using a delay-line to alignaperands
of the adders, the BF_NF accepts two time delageatbtes on
the same clock period and generates two output lsamipor

inclusion in the Radix2SDF pipeline, the BF_NF must be

Fig. 6 depicts a parallel-by-2 Radix-8DF DIF pipeline
with the BF_NF butterfly at the final stage. Forradkel
implementations, the input data stream is brokenintp P
parallel streams each of which is defined by a umiiglentifier
P4, between 0 an@ — 1. Each parallel data streamy(, ) is
indexed using this identifier. In the case of Fég.the upper
half of the pipeline which processes thgstream has &;,,
of 0, whereas the lower halfPy,, of 1. This paper will follow
the convention that a loweP,;, value corresponds to an
earlier sample in time.

—

Fig. 6. Radix-2 SDF DIF Parallel-by-2 Architecture

B. Data Reordering

In parallel FFT architectures, it is necessarydorder the
data streams in the non-feedback butterfly sta§exe there
are only P/2 BF_NF instances per non-feedback stage, a
second identifier(f;,,) is used to distinguish the index of a
given non-feedback butterflyBF_NF,,, ). Because multiple
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time-delayed samples are processed in the samingigtage,
the processor must supply each BF_NF instance thi¢h
appropriate data streams to match the delay oftsethat
stage. The proposed design achieves this by ingdkim data
streams to the inputs of each BF_NF using the violig
formulas. For a given butterfly stager where m is
incremented from O ttog, N — 1, the indices of the two input
data streams?;,, andP;4,, ) for a givemnf;,, is as follows:

log, N—m  for a DIF pipeline

n= {m for a DIT pipeline )

d = 2" )

P = {nfidx if nfig, <d ©)
4o T (2 * nfiax) — mod(nfiay, d) ifnfiax = d

P = {nfidx +d if nfig, <d %
X1 7 (2 * Nfigy) — mod(fige, d) +d  if nfig, =d

Though other methods may exist for indexing théada
streams, the important feature of (4)-(7) is tht inputs to
each BF_NF are always offagtsamples in time. Fig. 7 shows
the last four stages of a parallel-by-8 RadixEF pipeline
where the last three stages are implemented ageedback
stages. Conversely, a DIT implementation would ieqgthe
BF_NF instances at the beginning of the pipelirtee fwiddle
generators for the parallel pipeline, which aredésed in the
following section, are not shown in Fig. 7.

pr—
n=2d=4

o
BF_NF,
(BF2)
4

X
E
1

n=1d=2

Xo
_'l BF_NF, |
P (BF1)

n=0d=1

xo i
BF_NF,
(BF2)

X1 X

i

E

-

0

E X
T BF_NF, B BF_NF,
(BF2) H (BF1)
X5 X3

X X2
| Brn
(BF2)
x3 x;

00 00 ©

BF1

BF_NF,

(BF2) |

x2 X EN X

| ::| BENF, | BF_NF, I:
(BF1) (BF2)

6 X X5 X5

BF1

:

E
x:

&

X6 ] 3 X5 X X
_ BF_NF, | BF_NF, I— _| BF_NF, ':_’
(BF2) (BF1) (BF2) —
% %7

.

x7 BFL

— —
Fig. 7. Data Reordering for RadiX-8DF DIF Parallel-by-8 configuration

As P increases, more and more of the Radistages will
consist of BF_NF butterflies. It is interesting rtote that in
addition to duplicating hardware at each stageugpsrt the
processing of multiple samples per cycle, the &echire

5

twiddle coefficients at a given twiddle stage. Fomparallel
implementation, each twiddle stage demands multiple
coefficients per clock cycle. In the proposed desi§
coefficient generators are required per twiddlgetaach of
which produce a subset of the necessary twiddiefaat that
stage. The following set of equations define thedde
factors required at a giveR,,. The twiddle factors for the
P4, data stream at stagevhere0 < i <log, N — 2 is given

by the seW; = {W)} where:

—j2mk

WE=en; x=01.,-=-1 ¢=0123
0, 0<x<a
{sl*(x_a)-i'(Pidx*sl): a<x<?2a
T ) sy x(x —2a) + (Pigx * S2), 2a <x<3a (8)
k53*(x_3a)+ (Piax * S3), 3a<x<4a
0
2% P x4l
Se =Y 14p x4 ©)
3% P x4
N
a=-— (10)

For parallel twiddle generation, the number of e
factors produced per generata) (s decremented by a factor
of P while the step sizes{) grows by the same factor.
Additionally, an offset based ap,, must be applied at each
twiddle generator which corresponds to R, * s;) term
when calculating.

For pipelined FFT architectures, there are a warift
methods that can be used to generate the twiddieréa
including ROM-based lookup tables, CORDIC functi@mi
recursive multiplication. Similar to the memory vg@ments
for the butterfly delay-lines, the number of twiddfactors
required per stage grows exponentially as the nurkitd
points is increased. In efforts to reduce the mgmor
requirements of long FFTs, the recursive multigiaa
approach was applied since the size of the cirdsit
independent of the number of twiddle factors thegchto be
generated. The recursive multiplier architecturg@lémented
in the proposed design is shown in Fig. 8.

proposed also relies on a fusion of SDF and theemor

traditional signal flow graph (SFG) style FFT prssiag. The
inclusion of the SFG processing stages is repredéantFig. 7.

C. Parallel Twiddle Generation
The formulas presented in (1)-(3) produce the satiple
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Pigx*Si
w. idx*So
N

Pidx*sy
wy*
N

Pigx*Sy
Wy*
N

A4 Y Y A4

Pidx*s:
w. idx*>3
N

Wy°
Wit
Wy?
W2

X

A4 Y_VY Y

-

MUX_COUNT

Fig. 8. Recursive twiddle generation architecforeparallel implementations

To implement recursive twiddle generation for adiRe&?
SDF architecture, a minimum of eight complex valoesst be
calculated and stored. Each twiddle generator reguihe
offset (W, “***) and step sizeW,*) for all four of the step
size states, which correspond d¢ofrom (8)-(10). When the
generator is started, the switch is connected ¢oothitput of
the offset mux, and the offset is read out direcilige initial
offset is also fed as an operand to a complex pligtiwhich
multiplies the offset by the step size. After tlirstfcycle, the
switch is connected to the output of the complextiplier
which outputs the second twiddle coefficient. Thesult is
then fed back to the multiplier to generate thetnesxddle
value. This process continues untijl from (10), coefficients
are generated, after which MUX_COUNT is incremerded
the process starts over for the next step size.stat

In efforts to limit quantization error, the pre-cputed
offset and step sizes contain additional error hitéch are
carried
truncated at the output of the twiddle generatdre fiumber
of additional bits is a function of the maximum rhen of
consecutive multiplies at a given twiddle stagee Tbunding
module used to truncate the output is not showirign 8.
Alternative designs which account for pipelining tie
multiplier are feasible; however additional offsetsd step
sizes must be pre-computed and stored.

IV. PRIORWORK

Parallel processing is inherent
implementations. The ideas presented here focusiaia-
parallel processing on a per stage basis with #weefit of
increasing throughput performance while sustainipgimal
memory requirements.

Li and Meijs proposed a data-parallel SDF FFT aechire
[3] which restructures the signal flow graph intee and odd
sections. By separating data and then recombiminige final
stage, the processing clock frequency can by reblligea
factor of two while maintaining throughput performea. This
method increases control complexity and is not adial
beyond a factor of two without additional re-ordauffers

optimal level for pipelined implementations.

Ayinala, Brown, and Parhi proposed a data-par&iBIF
architecture [2] which restructures the signal flgnaph to
reuse hardware based on the assumption that the sigmal
contains only real data. The architecture propdsezhpable
of processing two real data samples per clock cyboles
doubling the throughput performance but not thea date or
processing rate as compared to standard SDF FFT
architectures.

The main distinction between the proposed desighpaior
work is the proposed design is scalable to anyllefe
parallelism assuming sufficient resource availgbilEach of
the reviewed designs does not extend parallelisyorizk a
factor of two. The proposed design also offersemdeal of
configuration flexibility. For example, the FFT gth,
transform type (FFT vs. IFFT), algorithm (DIF vsIT), data
type (real vs. complex) and scheduling of intefmialgrowth
are all programmable parameters that can be uskdldo the
design to a desired application space and hardplati®rm.

V. RESULTS

Numerous parallel configurations of the RadixSDF DIT
pipeline were synthesized to observe the effeczaddllelism
on the throughput, area and power dissipation efdincuit.
The design was targeted for IBM’s 45nm silicon-astilator
(SOI) ASIC process using a standard voltage thtds{8VT)
cell library from ARM. The synthesis runs were cdeted
using Design Compiler version E-2010.12-SP1 from
Synopsys.

The various delay-line memories were provided bM I8s
hard IP. In the proposed design, the delay-linesewe
architected as two single-port memories accesseal pimg-
pong fashion as discussed in Section II.A. The |pistt

throughout the computation and subsequentigmbers used in the proposed implementation weECBRN

and SRAM1DCSN.

In many cases, the word length required by theydéate
exceeded the maximum allowable width of the IBM roees
which was 288 bits. In such instances, multiple mees of
equal depth were instantiated allowing the datadworspan
several memories at equivalent addresses.

As mentioned in Section Ill, as parallelism incesgsthe
shapes of the delay-lines change but the numbigitofio not.
If one assumes the area per bit and power perobibet

to pipelined FFTonstant, it would be expected that the power areh a

consumed by the delay-lines should remain consfamta
given FFT configuration across multiple parallel
implementations. However, this is not the case rinaatual
ASIC implementation. Arbitrarily sized memories anet
always an option. Often, memories conforming taibsst of
viable dimensions must be chosen from an IP veridarases
where the word width exceeds this threshold, migltip
memory instances are required. In addition to thta crray,
each memory instance also contains control andddetagic
that is replicated per instance. This can leadighdr power
and area utilization for the same number of bitkisTis

which would increase the required memory beyond thespecially apparent for larger valuesPofwhere the memories
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are growing width-wise and shrinking depth-wisectsoddly

7

throughput of the FFT to indicate a measure of afficiency.

shaped memories require the concatenation of nhltipThe results can be seen in Fig. 10.

conforming SRAM macros.

The remainder of this section will discuss how ased
power are affected by changing the parallelism (dmd the
throughput) of the pipeline. The experiments foduse larger
FFTs where the delay-line memories dominate resour
utilization.

A. Area

Even when accounting for different memory instanc
requirements for different parallel implementatioitss clear
that the circuit area penalty for increasing patain is
dominated by the FFT logic and not the delay-linenrories.
Fig. 9 shows a 64k-point DIT FFT synthesized at RBfz for
five different values ofP. The FFT maintains precision by
growing a single bit at each butterfly. The chosgut data
width is 18 bits resulting in a 34 bit output woithe “FFT
Logic Area” refers to all circuit components thag aot delay-
lines including butterflies, complex multiplierswitidle
generators, counters and other control. “FFT Membmnya”
includes all delay-line memory instances and thssociated
control.
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Fig. 9. Area (urf) vs. Parallelism for 64k-point DIT FFT
output

, 18 bit inp 34 bit

What is obvious from Fig. 9 is that & increases, the
growth in FFT logic area is exponential. On theeothand,
the increase in memory area as a result of coratiten
memory instances is much less severe since thiertotaber
of memory bits has not changedg%). For theP = 1 case,
the throughput of the FFT processor is 250 Megagesrper
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Fig. 10. Area Efficiency expressed in #iMSps as a function of Parallelism
for various FFT lengths

While all of the FFTs improve area efficiency thgbu
parallelization, what is obvious from the curveshav larger
FFTs improve their area efficiency at a much greatte than
smaller FFTs. This is due to the fact that for $emaFFTs,
logic dominates area while memories dominate andarger
FFTs. For example, d@ = 1, the 1k FFT requires 808 drof
silicon to process 1 MSps. However, wheris increased to
16, the area requirement to process 1 MSps drop82auni
resulting in a 2X improvement in area efficiencyheT
efficiency gain through parallelism is even greafer the
256k FFT. TheP = 1 configuration requires roughly 36,000
un? of silicon to process 1 MSps while that numberpsrto
just 3,700 urh at P = 16. In this case, the improvement in
area efficiency is close to 10X.

The results from Fig. 10 show that in general, #nea
efficiency of the Radix2 SDF pipeline increases as
parallelism increases. It is evident that this abseristic is
more pronounced for longer FFTs where delay-linenony
requirements dominate area utilization.

B. Power

The synthesis experiments also provided insighd hdw
power dissipation is distributed within the RadX-3DF
pipeline and how that distribution is affected baradlelism.
Fig. 11 shows the power dissipation of a 64k-p&Hht FFT
with full bit growth (18 bit input, 34 bit output)To attain
dynamic power numbers, a global toggle rate of %3was

second (MSps) while foP = 16, the throughput is 4 GSps. applied during synthesis. The toggle rate was deted by
Alternatively, the area of th@ = 16 circuit is only 2.9X generating a Switching Activity Interchange Forn(SAIF)
(times) greater than that &= 1. These results show that forfile from actual simulation results which used ramdinput

the proposed parallelization techniques, a 16X ease in
throughput only requires a 2.9X increase in aredHis given
FFT configuration.

To observe how parallelism affects different FFEesj
synthesis experiments were conducted sweepglngcross
different FFT lengths. The circuit area was theridd#id by the

data as stimulus to simulate a worst-case scef@ariynamic
power. In all cases, a clock rate of 250 MHz wasus

The results show that the main driver of poweridatson
in a Radix-2 SDF FFT is dynamic power from the FFT logic
portion of the pipeline. ForP =1, the dynamic power
dissipation from the FFT logic accounts for aboalf lof the
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total power. However, this percentage growsPasicreases.
This is because the power dissipated by the FFIt lmyighly
doubles each timeP doubles while the memory power
increases at a slower rate since the number of mefits
remains constant.
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M FFT Memory Dynamic Power
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FFT Logic Leakage Power

- ) )
1000.00 FFT Logic Dynamic Power
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Fig. 11. Power (mW) vs. Parallelism for 64k-poinfTO-FT, 18 bit input, 34
bit output at 250 MHz

p=1

Similar to the area analysis, energy efficiency aakkzyed
across various FFT lengths to observe how powesipdison
is affected by parallelism. To do this, differefTFsizes were
synthesized at 250 MHz and power dissipation waerded.
Though increasing parallelism will increase theatqtower
dissipated, higher parallelizations process samglies higher
rate. For example, & = 1, the throughput will be 250 MSps

8

3

2.5

~

Power Efficiency (J/Mega-Sample)

256k FFT

1
64k FFT

05
16k FFT

4k FFT

1k FFT

p=1 p=4 P=16
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Fig. 12. Energy Efficiency (Joules per Mega-Samms) a function of
Parallelism for various FFT lengths at 250 MHz

C. Core Clock Frequency

An alternative application of parallelism is clogduction
to decrease dynamic power dissipationP Ifs increased, the
core clock frequency can be reduced by the santerfatile
maintaining the overall throughput of the systenowdver,
there are area vs. power tradeoffs to consider wiereasing
the parallelization factor and reducing the cloater

For example, a 64k-point DIT FFT with 18 bit in@rtd 34
bit output was synthesized at 400 MHz with= 1 and also at
200 MHz with P = 2. Both configurations have equivalent
throughputs of 400 MSps. In the =1 case, the resulting
circuit required 2.30 mfof area and dissipated 448 mW of
power. On the other hand, tlie= 2 configuration was 2.66

while at P =16 it will be 4 GSps. To calculate energy 2 and consumed 401 mW. In this case, doubliAgand

efficiency (J per sample), the power disspation tfgyavas
divided by the FFT throughput (MSps) to determinawh
much energy is required to process each sample.

The energy efficiency curves are shown in Fig. 1
Naturally, larger FFTs will dissipate more powearhsmaller
FFTs on a per sample basis since the hardwaretisteus
much larger. On the other hand, energy efficienan be
improved through parallelism, and this behavior ni®re
apparent in larger FFTs. For example, in the 1k E&3e, the
P =1 structure requires .35 J/MSample while the= 16
structure requires only .2 J/MSample. This sugg#sis the
engergy used to process each sample can be redyedabut
43% when going fronP? = 1 to P = 16. For the 256k FFT,

halving the clock frequency leads to a 15.5% aneaense,
however the total power dissipation decreased b$%0The

2comparison of the two FFT instances used in thpegrment

Can be seen in Table I.

If targeting a low-power design, it may make setosmcur
the area penalty to save power by increasing éisaii. The
power savings that can be achieved by increagingnd
reducing the clock rate are more apparent at higher
frequencies where the dynamic power dominates tutaler
dissipation.

TABLE |I: AREA AND POWER COMPARISON OF400MSPSFFT CONFIGURATIONS

increasing parallelism frorR = 1 to P = 16 results in close

to a 65% reduction in the amount energy used papka The

improvement in energy efficiency can be attributedhe fact
that larger FFTs are dominated by memory, and theep
dissipated in the memories grows at a slower fz@ does

throughput as parallelism increases.

Parallelism 1 2
Clock Rate (MHz) 400 200
Throughput (MSps) 400 400
Area (mn) 2.3 2.66
Logic Area 0.31 0.55
Memory Area 1.99 2.11
Total Power (mW) 448 401
Logic Dynamic 230 211
Logic Leakage 13 23
Memory Dynamic 129 89
Memory Leakage 76 78

D. ASC Implementation

Two versions of the proposed design were recently
implemented as part of a pulse-compression radalicagion.
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Both a 64k FFT and 64k IFFT, each with=2, were [5]
integrated as part of a signal processing chipetard for
IBM's 45nm SOI ASIC process. The FFT was compute[%]
using the DIF algorithm and maintained precisiorabgwing
full bit growth. The IFFT used the DIT algorithm dan
contained some internal scaling logic in effortslitait bit
growth. The IC was sent for fabrication in Augus2611 and
completed testing in 2012 at MITRE’s VLSI Laborat@and
IC test facility. Implementation details of the tweFT
instances can be seen in Table II.

(7]

(8]
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TABLE II: CONFIGURATION DETAILS OF FFT AND IFFT FORA5NM ASIC
IMPLEMENTATION

64k FFT 64K IFFT
Number of FFT points 65536 65536 (1]
Algorithm DIF DIT
Parallelism 2 2
Input Word Width (bits) 10 18 [11]
Output Word Width (bits) 26 30
Operating Frequency (MHz) 200 200
Maximum Throughput (MSps) 400 400 [12]
Power (mw) 192 365
Area (mm?) 1.3 2.4
VI. CONCLUSION
[13]

This paper has proposed a set of extensions thdteased
to apply parallelism to the Radi¥BDF FFT pipeline. The
proposed methods are flexible and allow &bpoint FFT and
IFFT computation such that is a power of two. Additionally,
both the DIF and the DIT algorithms are supporfdthough
the stated extensions apply specifically to theiRall SDF
algorithm, similar techniques could be used forpatelined
SDF FFT implementations. The proposed extensionmose
no restrictions on the overall throughput of theTFéircuit
given adequate resource availability.

1 i
Synthesis experiments were conducted to analyze ho‘fv e
of a multi-cor
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