Approved for Public Release; Distribution Unlimited. Case Number 14-3463.

SLEAK: A Side-channel Leakage Evaluator and
Analysis Kit

Dan Walters, Andrew Hagen, and Eric Kedaigle
The MITRE Corporation
Bedford, Massachusetts 01730
Email: {dwalters,ahagen,ekern} @mitre.org

Abstract—Side-channel attacks (SCA) present a major threat
to secure embedded systems. Effective software countermeasures
against SCA are well known in theory, but in practice are difficult
to implement properly due to issues such as unexpected com-
piler transformations and/or platform-specific leakage sources.
Although several recent examples from industry and academia
show that SCA is becoming increasingly simple and inexpensive to
perform as an attacker, evaluating the security of a system against
SCA can still be expensive and time-consuming. Furthermore,
most evaluation techniques must be performed near the end of
the development schedule which adds significant risk.

In this paper, we present a new technique for testing software
for SCA vulnerabilities in a fast, inexpensive, and automated
manner. This testing could be applied to evaluate software-based
SCA countermeasures even without access to source code, as
may be the case with proprietary software libraries that are
delivered pre-built, and without the use of side-channel collection
equipment. Our implementation of the SLEAK tool demonstrates
the efficacy of this technique by detecting vulnerabilities in an
AES implementation that utilizes a masking countermeasure. We
discuss the advantages and limitations of our technique and we
conclude that it can be used to detect and understand the sources
of many common SCA vulnerabilities early in the development
schedule.

Keywords—Cryptography, side-channel attacks, masking, differ-
ential power analysis

I. INTRODUCTION

Over the last 15 years, it has been widely demonstrated that
electronic devices leak information about their internal state
as they perform computations. This leakage presents a major
security threat to embedded systems [|1]—[3]], particularly those
that perform cryptographic operations. Leaking information
can be observed through so-called “side-channels” such as
timing [4], instantaneous or static power consumption [5], [|6],
electromagnetic radiation [7]], and perhaps others that have yet
to be discovered. Through side-channel attacks (SCA), leakage
is exploited to compromise implementations of otherwise
secure algorithms.

While effective SCA countermeasures are well known, they
are difficult to test and verify for effectiveness. This is typically
done using penetration testing: attacking an actual system
with the countermeasure to see if it makes the attack more
difficult. There are several disadvantages to this approach.
First, it requires side-channel collection equipment, specific
tools for each target hardware platform, and expertise to
collect and analyze the data. Second, the results are often
inconsistent due to the myriad parameters that can drastically

affect the test results. These include the skill and experience
of the tester/attacker, the choice of side-channel, environmental
conditions (e.g. temperature and background EM noise), data-
collection equipment, and analysis techniques used. Even
highly-experienced testers cannot guarantee that all potential
vulnerabilities will be identified because new attacks and
analysis techniques are constantly emerging. Finally, penetra-
tion testing cannot evaluate individual software or hardware
countermeasures because it is difficult to isolate the effects of
one from the other when studying the system as a whole.

In this paper, we present an automated evaluation method
that addresses these challenges. That is, the proposed method
does not require physical hardware or side-channel collection
equipment and doesn’t require the user to understand how
to conduct a side-channel attack. Instead, we require only a
target binary (source code optional), which will be analyzed
as-is without making modifications or transformations that
could affect the results. Note that our technique is applicable
regardless of the countermeasures or algorithm implemented
by the target binary, and because the source code is not used
by our algorithm, we can evaluate any binary in the same
manner regardless of the programming language used to write
it. Because it also detects the worst-case information leakage,
its results are applicable across varying hardware platforms
and is capable of detecting vulnerabilities that originate from
complex platform-specific behavior, without the need for a
complex leakage model. We focus on evaluating the group of
software-based countermeasures collectively known as “mask-
ing” (e.g. boolean and arithmetic masking [8]]), though the
proposed method could also be applied to other randomization-
based countermeasures such as shuffling the execution order
of independent operations [9]], [[10].

In Section [I] we summarize related works and the con-
tributions that this paper makes to the state-of-the-art. Sec-
tion describes the technical details of our side-channel
vulnerability evaluation technique and Section |IV| presents our
proof-of-concept implementation, the SLEAK tool. Section [V]
explains results from experimental verifications and describes
vulnerabilities that SLEAK was able to identify in masked
implementations of AES. Section [VI| concludes the paper with
a summary of our contributions and an outline for future work.

II. RELATED WORKS

There are a number of related works that have helped
to inform and shape our approach. In 2010, Bai et al. [11]
proposed the use of hardware simulation tools to quickly

(©2014 The MITRE Corporation. All Rights Reserved.

evaluate hardware designs for DPA vulnerabilities by gener-
ating simulated power traces rather than collecting from real
hardware. In 2011, Bayrak et al. [12] outlined an analysis
technique based on mutual information that could be used to
identify vulnerable instructions by mapping samples from real
power traces to their corresponding instructions. This work
represented the first method that significantly deviated from
penetration testing and could therefore be applied in a semi-
automated manner. However, this approach still required real
side-channel traces and was therefore hampered by all the
challenges that arise from collecting side-channel data (as
discussed earlier). Additionally, it relied on the ability to map
each sample of side-channel data to the software instruction
that was being executed during that time. This mapping can
be challenging for many targets depending on their underlying
hardware and software stack.

More recent works have eliminated the need for side-
channel traces by performing the analysis solely on the data-
flow graph of the target program. For example, the 2013 work
of Bayrak et al. [13] presents a new tool, called “Sleuth,”
that converts the intermediate representation (IR) of the target
program to a data-flow graph, and then uses that graph to
generate satisfiability (SAT) queries. These queries can be
solved with a SAT solver to detect unmasked intermediate
values.

In 2014, Eldib et al. [|15] showed that intermediate values
could be partially masked and still leak information. Sleuth
does not detect vulnerabilities related to partial or biased
masking, so to address this limitation, Eldib et al. proposed
a technique for computing “quantitative masking strength”
(QMS) to give a numerical score to the side-channel resistance
of a countermeasure implementation.

Sleuth and QMS represent significant progress in auto-
mated SCA evaluation, however, both are limited in the type
of leakages that they can detect, and the type of programs
that they can analyze. The first limitation is largely due to
analyzing the target program at the IR-level. Since the IR
represents the program at an intermediate stage of compilation,
an analysis on the IR cannot detect any vulnerabilities that may
be introduced during the final stages of compilation. While
previous works have asserted that these final stages cannot
generate vulnerable machine-code from protected IR [[13]-
[15]], we show in Section [V] that this is not true. A second
limitation, due to the conversion of the program to a data
flow graph, is that the target program must be transformed
into a straight-line program that is free from conditional
branches. This process involves modifying the program by
loop unrolling, function in-lining, and other transformations
which could potentially introduce or eliminate vulnerabilities.
If any of these modifications are made to the target binary, the
analysis results may not reflect the true security of the fielded
system.

The goals of our method, then, are to analyze the target
binary without modification and to account for platform-
specific leakage sources without requiring real side-channel
data collection. We believe we’ve meet these goals, although
at the expense of higher computational complexity.

III. SIDE-CHANNEL VULNERABILITY ASSESSMENT

We propose the use of a full system simulator to analyze
platform-specific interactions that occur during program exe-
cution. More specifically, we use the simulator to determine
which intermediate values depend on secret inputs and how
these values are affected by the random inputs. Note that this
is fundamentally different from using a simulator to generate
power or EM traces because rather than attempt to model
the real-world side-effects of computation, we model only the
well-defined flow of data through system components. Since
physical leakage can originate from any system component
(registers, caches, memory, CPU flags, pipelines, and others)
we compute a vulnerability metric for each component at each
(simulated) clock tick. The vulnerability metric used is the
mutual information (MI) between the secret values used by
the target binary and intermediate values contained by system
components. This metric indicates the extent to which each
value in the system depends on a secret value. Note that this
information-theoretic metric was originally proposed for this
purpose by Standaert et al. [16].

A. Definitions

1) Target binary: The machine-code/executable program
under evaluation. Note that we directly analyze the unmodified
binary—we do not require that the program be branch-free.
However, the analysis does require that the target binary
provides an interface for setting all inputs.

2) Leakage model: A leakage model specifies the observ-
able information that leaks via side-channels. We model this
with a leakage function that takes the state of the machine as
input and returns a value (or set of values) that represents the
information that is observable from side-channels.

Our algorithm can be used with any arbitrary leakage
function, including general functions that make very few
assumptions about the specific way in which the hardware will
leak information. For example, the identity leakage function
takes the state of the machine as input and returns the entire
state as output (currently a vector of the values held by
the system registers). This function is both conservative and
generic because it assumes that the exact value held by any
individual component in the system will be revealed by a side-
channel.

3) Intermediate Value: The value or state of some system
component during the system’s execution of the target binary.
For example, the value held by Register-1 immediately after
executing an instruction of the target binary.

4) Mutual Information: MI is a measure of the mutual
dependence between two random variables (RV), measured in
bits. In any computing system, all values under consideration
are discrete, finite values and so are represented by discrete
RVs. For two discrete RVs, X and Y, the mutual information
is defined as

I(X;Y) =Y "> pla,y)log <p(“/))

S5 p(x)p(y)

where p(z,y) is the joint probability distribution of X and Y
and p(x) and p(y) are the marginal probability distributions
for each of X and Y.

(©2014 The MITRE Corporation. All Rights Reserved.

Given this definition, it is easy to see that if the random
variables are independent then

p(z,y) = p(z)p(y)

and the MI is exactly zero. Furthermore, it can be shown
that the MI of two random variables is always non-negative.
Intuitively, a zero MI indicates that no information about one
variable can be obtained from observing the other. Otherwise,
the greater the value of the MI, the more the two variables
depend on each other and the more information one reveals
about the other.

5) Leakage Location: A leakage location is an intermediate
value that leaks secret information: MI(V,S) > 0 for an
intermediate value, V, and secret value, S. A location is
specified by the associated component name (e.g. Register-3)
and point in execution time (e.g. clock tick 1 million).

6) Perfect Masking: Defined by Blomer et al. [17], an
intermediate value is perfectly masked if it is statistically
independent of the key. This definition is equivalent to stating
that the MI between the intermediate value and the key is zero.
The degree to which an intermediate value is not perfectly
masked is given by the magnitude of the ML

B. Algorithm

Pseudo code for our SCA evaluation algorithm is shown
in Algorithm [I] For each secret bit, we start by identifying
the intermediate values that depend on that bit by calling a
subroutine (IdentifyDependencies). Note that this first step is
optional; it is an optimization to reduce the number of interme-
diate values that are tracked and used in later calculations. In
SLEAK we implemented the IdentifyDependencies subroutine
by running the target twice (once with the secret bit set to 0 and
again with it set to 1) and contrasting the set of intermediate
values from the two runs. [1]

Once a set of intermediate values have been identified, we
calculate the MI between each intermediate value and each
bit of the secret input. To perform this calculation, the target
executable is run over all random input Value and a subset
of the possible public ones. This is done both with the current
secret bit set to zero, then again with it set to one. The set
of intermediate values for each run is called a trace. Traces
are used to calculate the mutual information and determine
the amount of dependence between intermediate values and
each secret bit. Those intermediate values with an MI greater
than zero are leakage locations that present potential SCA
vulnerabilities.

In order to run the target binary with the right set of
parameter values, the user must provide an interface to set the
inputs. Additionally, the user must indicate what the inputs
are used for by assigning each of them to one of three classes:
secret, public, or random. Public inputs are those that may
be revealed to an attacker without consequence, such as the
plaintext of a cryptographic algorithm. Secret inputs are meant
to be kept hidden from the attacker, such as a secret key.

1Of course, there are some scenarios where this technique may not capture
all possible dependencies in which case a more thorough dependency check
could be performed, or the optimization could be eliminated completely.

2If the random input space is too large to run over all possible inputs, a
random sampling can be used to calculate an approximation.

Random inputs are those that are used as a source of entropy
for masking or other side-channel countermeasures.

Algorithm 1 Calculate mutual information with secret for each
intermediate value

Input: Target: the executable binary under analysis

Input: Public: the input space for the Public class

Input: Random: the input space for the Random class

Input: SecretBits: the set of input bits that are of type Secret

Output: Mutual information values for each leakage location
1: for s € SecretBits do

2: L + IDENTIFYDEPENDENCIES(s)

3: 140

4 Let P be a simple random sample of Public

5: for pc P do

6: for all » € Random do

7: trace0; < RUNTARGET(p,r,s =0, L)

8: tracel; < RUNTARGET(p,r,s =1, L)

9: t—1i+1

10: end for

11: end for

12: for ce L do > Calculate MI for each dependency
13: values0 < (tracellclo, trace0[c]y, ..., trace0[c];—1)
14: valuesl < (tracel|clo, tracellc]y, ..., tracel[c];—1)
15: Record CALCMI(0]||T, valuesO||[valuesl)

16: end for

17: end for

C. Computational Complexity

This approach may have been previously overlooked as
being computationally infeasible due to the difficulty of com-
puting the full distributions of intermediate values. In this
section we show that in some cases, for practical cryptographic
algorithms, the exact distributions are computable, and in other
cases, a sufficient approximation can be reached.

Ideally, the mutual information would be calculated over
all possible public, secret, and random inputs. This calculation
quickly becomes infeasible if there are many possible inputs
and such is the case for cryptographic algorithms. However, as
discussed in [[12]], performing this calculation over a random
subset of inputs will yield results that closely approximate the
true result, provided that the subset is sufficiently large. Our
empirical studies, looking at AES implementations, have found
that this mutual information estimate will rapidly converge to
the true value, requiring only a small subset of the possible
input values.

This fast convergence is partly due to properties of cer-
tain cryptographic algorithms, and in particular, substitution-
permutation networks such as AES. To demonstrate this,
consider a common set of operations in AES: a secret and
public value XORed together and used as a lookup into an
s-box table. In this example, let the public value be denoted p.
The secret bits can be divided into the bit that is being tested,
denoted &', and the rest of the bits, &k, with the full secret value
being the XOR of the two parts: k' ® k. The result of the s-box
lookup can then be written as

sbox[(k' @ k) ® p] = sbox[k’ @ (k @ p)]

(©2014 The MITRE Corporation. All Rights Reserved.

M| Leakage

-
S

o

a

Register index
©
&

[

I |\||\||||\|||\ M \||H\|H||W\|||\| Mmm |||||W|\||\||\ 02
i |

o

Fig. 1: Leakage timeline for each register

Thus, as long as the subset of chosen inputs result in the
values of k @ p spanning a sufficiently large subset of the
possible values, the mutual information of the s-box output
will closely approximate that from a full sweep of the inputs.

IV. THE SLEAK TooL

Our proof-of-concept implementation of this algorithm
is the Side-channel Leakage Evaluation and Analysis Kit
(SLEAK). SLEAK uses Gem5 [18], an open-source, full-
system simulator, to emulate the execution of the target binary.
While we focused on this particular simulator in our tests,
our approach could also be used with any other simulator
— provided that it supports an interface for inspecting the
state of the simulated machine during program execution.
Gemb5 provides this access to all components of the simulated
machine’s state, including the registers, memory, and caches.
While all of these components can be analyzed as sources of
side-channel vulnerabilities, our initial prototype only analyzes
registers.

To analyze the large quantity of information it produces,
SLEAK includes a number of visualization tools. Below are
examples of the visualizations we used in our verification
studies.

A. Leakage Timeline

Leakage timeline plots provide a high-level view of system
leakage over time. The example plot in Figure [I] shows the
leakage detected over the course of execution of a simple
implementation of AES-256. Leakage was identified from each
element of the platform’s internal state—in this case, each
register. The register index is given on the Y-axis and the CPU
tick on the X-axis. No shading (white) represents no leakage
(MI=0) while black represents full leakage (MI=1) and shades
of gray indicate partial leakage. This summary view shows
which specific components of the machine state are leaking
information and at what point during execution.

B. Leakage Highlighting

In addition to reporting the MI of each leakage location,
SLEAK stores the value of the program counter (PC) at each
tick. This information is used to create a mapping from leakage
locations to the instructions that caused them, which is then
visually presented to the user as shown in Figure 2] This view

0x897c 1 0.000000 0.000000 0.000000 753b strb r3, [r7, #20]

0x8984 1 0.000000 0.000000 0.000000 60bb str r3, [r7, #8]

0x898c 1 0.000000 0.000000 0.000000 681a ldr r2, [r3, #0]
0x898e 1 0.000000 0.000000 0.000000 68bb Mr r3, [r7, #8]
0x8990 1 0.000000 0.000000 0.000000 18d3 adds r3, r2, r3

0x8994 1 0.000000 0.000000 0.000000 2b00 cmp r3, #0
0x8996 1 0.000000 0.000000 0.000000 d1dd bne.n 8954
0x8998 1 0.000000 0.000000 0.000000 693a dr r2, [r7, #16]
0x899a 1 0.000000 0.000000 0.000000 687b Mr r3, [r7, #4]

Fig. 2: Assembly view highlighting leaking instructions

shows a section of disassembled binary with instructions that
leak secret information highlighted in red. Each instruction line
begins with the program counter and the number of times that
instruction was executed. Since the same instruction can be
executed at multiple points, and its operands may be different
each time, this view reports the minimum, maximum, and
average MI values that yielded by that instruction across all
ticks. Looking at the highlighted assembly, it is possible to
identify the most vulnerable sections of the program and, if
the binary was compiled with debugging enabled, the problems
can be traced to the high-level source code.

V. EXPERIMENTAL RESULTS
A. Verification against Hardware

To verify our approach we conducted several experimental
studies to compare results from SLEAK to results based
on side-channel measurements on physical hardware. These
studies demonstrated that SLEAK accurately predicts side-
channel leakage and can identify the source of a side-channel
vulnerability for a given target binary.

The hardware platform used in our experimental studies
was a BeagleBone Rev A6; a small Linux board with a
720MHz ARM Cortex-A8 processor running Angstrém Linux.
This is a common development board for hobbyist work and
prototyping. The Cortex-A8 processor core is used in many
system-on-chips (SoCs) and consumer devices (e.g. smart-
phones), and more generally, the Cortex architecture is used in
several mobile processors such as the Qualcomm Snapdragon
and Samsung Exynos. The widespread use of this architecture
makes it an interesting and relevant platform for embedded
security research.

As explained in Section [Tl SLEAK can use a generic
leakage model. We used this model to conduct most of our
tests. When this generic model is used, SLEAK’s results
represent the worst-case leakage scenario. In an attempt to
verify these results we chose to analyze the EM side-channel
since it is widely believed to be more powerful than others [7],
[19], [20] and because collection of EM data does not require
any physical modifications to the target system.

The EM probe used in our collections was a Langer EM V-
Technik near-field magnetic probe with a frequency range
from 30MHz to 3GHz. The probe was positioned to maximize
the EM energy observed during normal processing on the
target system. We used a Detectus AB EMC-scanner to help
identify this placement. The EM traces were collected with
a 14-bit ADC running at 400 MS/s, and later filtered with

(©2014 The MITRE Corporation. All Rights Reserved.

Number of register writes.

100
80
60
40
20 ,j\

1000 2000 3000 4000 5000 6000 7000
Tick

Fig. 3: Predicted EM Leakage

EM Power (mW)
- ~ w IS «
——
e

) NTHIM T

0.0 0.1 0.2 0.3 0.4 0.5

)

Fig. 4: Average Measured EM Trace

a 2MHz bandpass filter centered around S0MHz. This band
was chosen based on the strength and structure of EM signals
observed during cryptographic processing. We used a GPIO
pin on the BeagleBone to trigger our collections and ensure
that samples within each trace could be mapped to the proper
CPU instructions. This precise triggering also greatly improved
trace alignment, which would otherwise be a significant source
of noise. To further reduce noise and environmental effects,
we collected and averaged 10,000 traces for each test. The
following sections describe the results of these tests.

1) Leakage Patterns: Since the initial implementation of
SLEAK is focused on leakage from registers, the first test was
to check whether the EM radiation from the Cortex-A8 was
affected by register writes. To perform this test we used an
unprotected AES implementation [21]] so that leakages would
not be hidden by side-channel countermeasures. The compiled
binary for this implementation was run on the BeagleBone
platform while measuring its EM emanations. This same
binary was then run in the GemS5 simulator while SLEAK
tracked the number of register writes performed over a sliding
time window. The results from these measurements are shown
in Figure [3| and Figure [d Note that the simulator-based predic-
tions of leakage patterns, relative leakage strength, and timing
are all strongly correlated with actual EM measurements. This
correlation provides a strong indication that the simulator
used by SLEAK is accurately modeling the execution of the
binary and that register updates are a significant source of the
observed EM leakage.

— No Mask

0.40 — Masked 13%
— Masked 25%
0.35 Masked 50%
— Masked 75%
0.30 Masked 100%

Mutual Information (bits)
°
S
i3

150 200 250 300
Time (ns)

Fig. 5: EM Leakage of S-Box Lookups

2) Masking Strength: To verify SLEAK’s measurement
of various masking strengths, we developed a custom test
program that performs an s-box table lookup on a secret
input value. This table lookup operation was protected with
a boolean masking countermeasure. We generated multiple
versions of this program with different levels of masking
strength by adjusting the distribution of the mask values. For
example, if the mask is set to a constant value, the operation
is effectively unmasked. At the other extreme, if the mask is
drawn from a uniform random distribution of all possible 8-
bit mask values, then the operation is perfectly masked. For
effective masking strengths between these extremes, the mask
is drawn from a non-uniform random distribution. In this way,
we generated programs with six different degrees of masking
strength. Each program binary was analyzed with SLEAK and
with a traditional analysis of EM side-channel data, which was
collected while running the target binary on the BeagleBone
system. The mutual information between the EM data and the
secret value used in the s-box lookup is shown in Figure [5] As
expected, the effectively unmasked version yielded the most
information leakage and mask distributions closer to uniform
random produced progressively less leakage.

Figure [6] shows a comparison of SLEAK’s MI results (X-
axis) to the real EM leakage measured on hardware (Y-axis.)
In this comparison, SLEAK used the generic leakage model
described in Section [[lI-A2] which is hardware agnostic and
produces the worst-case scenario leakage predictions. Conse-
quently, the predicted leakage from SLEAK is generally higher
than the measured leakage and has an exponential relationship
with it. This relationship highlights one of the advantages of
using SLEAK for vulnerability testing: the difference between
perfectly masked (MI=0) and a mask with significant bias is
exploitable, yet it is challenging to detect from measured EM
leakage.

Figure [/| shows the same plot, but with SLEAK using a
hamming-weight leakage model instead of the generic model.
In this case, the predicted leakage is highly correlated to the
measured leakage (p = 0.976) and has a linear relationship.
Note that while this leakage model produces very accurate
predictions for this particular hardware platform, it may be
less accurate for other platforms.

3) Key Extraction: To verify that the leakage detected by
SLEAK is exploitable, we performed a partial key extraction
on the unprotected implementation of AES-256 running on the

(©2014 The MITRE Corporation. All Rights Reserved.

*e Measured
0.45 -~ Empirical (y = 0.00001e"9.985x + 0.138)

Mutual information from measured EM
o
W
s

0.15 e

,,,,,,,,,,,,,,,,,,

0.10

0.0 0.2 0.4 0.6 0.8 1.0
Mutual information from SLEAK

Fig. 6: Comparison between MI calculated with real EM
measurements and MI from SLEAK using a generic leakage
model

0.5 eee Measured
-~ Empirical (y = 0.2755x + 0.1390

L.

o
ks

Mutual information from measured EM
o o
N @

°
o

0.0 0.8 1.0

0.2 0.4 0.6
Mutual information from SLEAK

Fig. 7: Comparison between MI calculated with real EM
measurements and MI from SLEAK using a hamming weight
leakage model

BeagleBone. We first analyzed the implementation in SLEAK,
which identified the leakage locations shown in Figure[I} Next,
we mounted a side-channel attack at one of those leakage loca-
tions. We used a first-order correlation EM analysis (CEMA)
attack, as described by Quisquater and Samyde [22]]. The result
is summarized in Figure [8| The incorrect key hypotheses are
shown in gray and the correct key byte is shown in black.
After roughly 2,000 traces, the key hypothesis represented by
the black plot correlates significantly more than any other,
revealing that it is the correct key. This successful attack
demonstrates that the SCA vulnerabilities identified by SLEAK
can be exploited through the EM side-channel, and used to
extract bytes of the secret AES key.

B. Countermeasure Analysis

To verify the efficacy of SLEAK for real-world counter-
measure analysis, we used it to analyze two different AES
implementations with countermeasures: /) an implementation
from the DPA Contest v4 [23]; and 2) a custom boolean-
masked version of AES. The DPA contest implementation uses
a modern and sophisticated masking countermeasure called
rotating s-box masking (RSM) [24]. Our custom version uses
boolean masking and was intended to be completely secure
against the register-based leakage detected by our current
implementation of SLEAK. However, SLEAK identified un-
expected vulnerabilities in both implementations. In the time

0.5

Correlation
o °
w S

o
N

0.1

1000 2000 3000 4000 5000 6000 7000
Number of traces

Fig. 8: The maximum correlation for each guess of an AES
key-byte plotted against the number of traces. The correct
guess is plotted in black and incorrect guesses in gray.

since the RSM countermeasure was released, a number of
vulnerabilities have been exposed and documented [25[]-[29].
Therefore, we focus on the vulnerabilities that we found
exclusively through the use of SLEAK. The following sections
explain the source of these vulnerabilities and how they were
identified. Pl

1) Low-Entropy Mask: The RSM countermeasure is a low-
entropy masking scheme (LEMS). That is, the number of
discrete mask values are a subset of the possible intermediate
values that it protects. In particular, RSM uses only 16 mask
values, hence the mask entropy of this scheme is 4 bits,
while it is used to protect 8-bit intermediate values. Although
it is well-known that any LEMS is only partially masked
and therefore potentially vulnerable, their reduced entropy
allows for more efficient implementations and so presents
a trade-off between security and performance. As a result
of the low-entropy mask, SLEAK detected several leakage
locations throughout the RSM implementation. Though these
leakages are not surprising, it is worth pointing out that since
SLEAK provides an approximation of the amount of leakage
at each location, it is easy to ignore the locations with an
acceptable level of leakage and investigate only those with
higher-than-expected leakages. This technique allowed us to
use SLEAK to search for more critical vulnerabilities in our
RSM implementation.

2) Mask Cancellation From Register Updates: The second
type of vulnerability that was identified in the RSM-protected
version of AES manifests when leakage is a function of the
two sequential values held in the same register. For example,
if the initial register value is denoted v; and the value being
written is denoted vy, then the value that is leaked is the delta
between them: v; @vy. SLEAK can detect these vulnerabilities
by calculating the MI of all three values for each register (the
initial, final, and delta). In this implementation of RSM, there
are leakage locations where the initial and final register values
themselves do not leak any information, but where the delta
of the register does.

3For our testing, we ported the RSM code to run on the BeagleBone’s ARM
processor — the original code targeted an AVR processor. Consequently, the
vulnerabilities identified may not apply to the traces provided by the DPA
contest, since they were collected on an AVR platform.

(©2014 The MITRE Corporation. All Rights Reserved.

‘aesSmartDaia shest Bt 0 Laskage

Leakage location 2267
Tick: 13698000 Register: 2
MI: 1.000000

PC: Oxc3ce

Assembly Listing:

c3ca: 68fb Idr 3, [r7, #12]
c3cc: 781b Idrb 13, [r3, #0] € New value of r2 (mask index)

c416: 18d3 adds r3,r2,r3

c418: 781a Idrb 12, [r3, #0] €0ld value of r2 (state byte)
c4la: f107 add.w ip, 17, #64 ;0x40

C context:
// subBytes
for(i=0; i<16; ++i){
idx = (((. +dummy idx[i]) % 16)*256);
tmp[dummy idx[i]] = *(aes_sbox0+({idx + (state—)_])));
}

Fig. 9: Using SLEAK to identify the source of leakage

This vulnerability would likely go undetected by an anal-
ysis of the target at the IR-level because at that level, the
compiler has not yet determined which registers will be used
to store intermediate results. Therefore, it is impossible to
determine at the IR-level which two values will be placed into
the same register to create a vulnerable register delta.

Figure 9] shows SLEAK’s output for one of these locations
and the assembly and C contexts of the leaking instruction.
At this leakage location, the register contained the starting
mask index (the random value that provides the mask entropy)
and was overwritten with a masked value. This caused the
delta to be dependent on both the mask and the masking
index, effectively allowing an attacker to see both values
simultaneously. From an information theory perspective, the
value of this leakage location is equivalent to v & m é m for
an intermediate value, v and mask m. Since m @ m is the
identity, the mask is canceled out and v is exposed.

Mapping the offending assembly instruction to the IR or
to the original, C source code, as in Figure [J] there is no
indication that this collision could occur. The fact that it did
occur was wholly dependent on the register allocation chosen
by the compiler backend. By analyzing the actual binary
instead of higher-level representations, SLEAK is able to detect
such problems.

3) Intrinsic Functions: Our custom implementation of AES
uses boolean masking, which removes most of the leakage, but
not all. When we analyzed this implementation with SLEAK, it
still detected leakage locations that occurred within a memcpy
call. In the LLVM IR of the binary, memcpy is a single intrinsic
function, which is a built-in function that LLVM expands at a
later compilation stage, shown below.

call void @llvm.memcpy.p0i8.p0i8.i32(

b138: 1drb 10, [rd, #9]

bl13c: ldrb r2, [rl, #8]!

b140: orr 10, r2, rO, 1sl #8
bl44: 1drb r2, [rl, #2]

b148: 1drb rl1, [rl, #3]

bld4c: orr «rl, r2, rl, 1sl #8
b150: orr 10, rO, rl1, 1sl #16
bl154: str 10, [sp, #12]

Fig. 10: Memcpy Assembly (partial listing)

i8x %2, i8x %3, i32 16, i32 1, il false)

Figure 10 shows a portion of the expansion for this single
line of IR into several ARM assembly instructions. The instruc-
tions that leak are highlighted in gray. This code loads multiple
bytes into one register and writes them all to memory at once.
While this is a good performance optimization, it potentially
nullifies the masking countermeasure. Before being written, the
register contained four intermediate values, all masked with the
same mask. Effectively, this code creates a 32-bit value that
still uses a mask with only eight bits of entropy. Like the mask-
cancellation vulnerability, there was no indication in either the
C source or the IR that this vulnerability existed. It is important
to notice that the implementation of an intrinsic function can
be significantly different across different target platforms. In
general, intrinsic functions cannot be evaluated for leakage at
the IR-level because they are a blackbox; the fully-compiled
binary must be analyzed to ensure that the lowering| of
intrinsic functions does not introduce vulnerabilities.

VI. CONCLUSION

In this paper, we proposed and demonstrated, for the first
time, the use of a full-system simulator to analyze software for
side-channel vulnerabilities. Our algorithm demonstrates how
to perform this analysis in an automated way such that it can be
used by software developers without expertise in side-channel
security. Furthermore, we have shown that our technique for
approximating the mutual information is a practical approach
that avoids calculating this metric exactly (which would be
computationally infeasible).

Our proof-of-concept implementation, SLEAK, produces
results that account for platform-specific leakage character-
istics and compiler effects without the need for physical
hardware or side-channel traces. Though the prototype focuses
only on registers, SLEAK can be extended to evaluate other
leakage sources, such as memory and caches. Our experimental
verifications of SLEAK indicate that it correctly discerns
between different levels of mask strength to identify inter-
mediate values that can leak information. It also accurately
identifies the system components that generate leakage and
when it occurs. By tracing these leakage locations to their
corresponding assembly and source code instructions, we show
that there are real-world cases where high-level code and IR is
secure, but has vulnerabilities introduced during the compiler’s
final stages.

4”Lowering” is the proper term for expanding intrinsic functions.

(©2014 The MITRE Corporation. All Rights Reserved.

SLEAK and other automated software evaluation tools can
help reduce the cost of verifying the security of software
implementations. This testing can be performed early in the
development cycle when it is easier to fix vulnerabilities. The
development of automated tools, such as SLEAK, to assist
with security testing is increasingly important in the face of the
ever decreasing cost and difficulty of performing side-channel
attacks.

Future work consists of evaluating other leakage sources,
extending our technique to check for security against multi-
variate attacks, and to identify fault attack vulnerabilities.

REFERENCES

[1] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability
of fpga bitstream encryption against power analysis attacks extracting
keys from xilinx virtex-ii fpgas,” Cryptology ePrint Archive, Report
2011/390, 2011, http://eprint.iacr.org/.

[2] C. Paar, T. Eisenbarth, M. Kasper, T. Kasper, and A. Moradi, “Keeloq
and side-channel analysis-evolution of an attack,” in Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2009 Workshop on, Sept 2009,
pp. 65-69.

[3] J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede,
“Power analysis of atmel cryptomemory recovering keys from
secure eeproms,” in Topics in Cryptology ~ CT-RSA 2012, ser.
Lecture Notes in Computer Science, O. Dunkelman, Ed. Springer
Berlin Heidelberg, 2012, vol. 7178, pp. 19-34. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-27954-6_2

[4] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, ser. Lecture Notes
in Computer Science, vol. 1109. Springer, 1996, pp. 104-113.

[5]1 P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO °99. London, UK,
UK: Springer-Verlag, 1999, pp. 388-397. [Online]. Available:
http://dl.acm.org/citation.ctm?id=646764.703989

[6] J. Giorgetti, G. Scotti, A. Simonetti, and A. Trifiletti, “Analysis of
data dependence of leakage current in cmos cryptographic hardware,”
in Proceedings of the 17th ACM Great Lakes Symposium on VLSI,
ser. GLSVLSI ’07. New York, NY, USA: ACM, 2007, pp. 78-83.
[Online]. Available: http://doi.acm.org/10.1145/1228784.1228808

[71 K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Cryptographic Hardware and Embedded Systems
CHES 2001, ser. Lecture Notes in Computer Science, e. Ko, D. Nac-
cache, and C. Paar, Eds. Springer Berlin Heidelberg, 2001, vol. 2162,
pp- 251-261.

[8] T. Messerges, “Securing the aes finalists against power analysis
attacks,” in Fast Software Encryption, ser. Lecture Notes in Computer
Science, G. Goos, J. Hartmanis, J. van Leeuwen, and B. Schneier, Eds.
Springer Berlin Heidelberg, 2001, vol. 1978, pp. 150-164. [Online].
Available: http://dx.doi.org/10.1007/3-540-44706-7_11

[9] C. Herbst, E. Oswald, and S. Mangard, “An aes smart card
implementation resistant to power analysis attacks,” in Applied
Cryptography and Network Security, ser. Lecture Notes in Computer
Science, J. Zhou, M. Yung, and F. Bao, Eds. Springer Berlin
Heidelberg, 2006, vol. 3989, pp. 239-252. [Online]. Available:
http://dx.doi.org/10.1007/11767480_16

[10] M. Rivain, E. Prouff, and J. Doget, “Higher-order masking and shuffling
for software implementations of block ciphers,” in Cryptographic
Hardware and Embedded Systems - CHES 2009, ser. Lecture Notes
in Computer Science, C. Clavier and K. Gaj, Eds. Springer
Berlin Heidelberg, 2009, vol. 5747, pp. 171-188. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04138-9_13

[11] X. Bai, Y. Wang, Y. Wang, and X. Hu, “A power analysis attack
software simulation platform design and its applications,” in 2010 2nd

International Conference on Computer Engineering and Technology,
vol. 6, 2010.

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(©2014 The MITRE Corporation

A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne,
“A first step towards automatic application of power analysis
countermeasures,” in Proceedings of the 48th Design Automation
Conference, ser. DAC 11. New York, NY, USA: ACM, 2011, pp. 230-
235. [Online]. Available: http://doi.acm.org/10.1145/2024724.2024778

A. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth:
Automated verification of software power analysis countermeasures,”
in Cryptographic Hardware and Embedded Systems - CHES 2013, ser.
Lecture Notes in Computer Science, G. Bertoni and J.-S. Coron, Eds.
Springer Berlin Heidelberg, 2013, vol. 8086, pp. 293-310. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-40349-1_17

G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi, “Compiler-based
side channel vulnerability analysis and optimized countermeasures
application,” in Proceedings of the 50th Annual Design Automation
Conference, ser. DAC "13. New York, NY, USA: ACM, 2013, pp. 81:1-
81:6. [Online]. Available: http://doi.acm.org/10.1145/2463209.2488833

H. Eldib, C. Wang, M. Taha, and P. Schaumont, “Qms: Evaluating
the side-channel resistance of masked software from source code,” in
Proceedings of the The 51st Annual Design Automation Conference
on Design Automation Conference, ser. DAC ’14. New York,
NY, USA: ACM, 2014, pp. 209:1-209:6. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2593193

F.-X. Standaert, T. Malkin, and M. Yung, “A unified framework for
the analysis of side-channel key recovery attacks,” in Advances in
Cryptology - EUROCRYPT 2009, ser. Lecture Notes in Computer
Science, A. Joux, Ed. Springer Berlin Heidelberg, 2009, vol.
5479, pp. 443-461. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-01001-9_26

J. Blmer, J. Guajardo, and V. Krummel, “Provably secure masking
of aes,” in Selected Areas in Cryptography, ser. Lecture Notes in
Computer Science, H. Handschuh and M. Hasan, Eds. Springer
Berlin Heidelberg, 2005, vol. 3357, pp. 69-83. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30564-4_5

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1-7, Aug. 2011. [Online]. Available:
http://dot.acm.org/10.1145/2024716.2024718

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The
em side-channel(s),” in Revised Papers from the 4th International
Workshop on Cryptographic Hardware and Embedded Systems, ser.
CHES ’02. London, UK, UK: Springer-Verlag, 2003, pp. 29-45.
[Online]. Available: http://dl.acm.org/citation.cfm?1d=648255.752713

J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, and G. Sigl, “Localized
electromagnetic analysis of cryptographic implementations,” in Topics
in Cryptology ~ CT-RSA 2012, ser. Lecture Notes in Computer
Science, O. Dunkelman, Ed. Springer Berlin Heidelberg, 2012,
vol. 7178, pp. 231-244. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-27954-6_15

(2013, Nov.) Aes and combined encryption/authentication modes.
[Online]. Available: http://brgladman.org/oldsite/ AES/index.php

J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Smart Card
Programming and Security, ser. Lecture Notes in Computer Science,
I. Attali and T. Jensen, Eds. Springer Berlin Heidelberg, 2001,
vol. 2140, pp. 200-210. [Online]. Available: http://dx.doi.org/10.1007/
3-540-45418-7_17

(2014, Sept) Dpacontest v4. [Online]. Available: http://www.dpacontest.
org/home/

M. Nassar, Y. Souissi, S. Guilley, and J.-L. Danger, “Rsm: A small and
fast countermeasure for aes, secure against 1st and 2nd-order zero-offset
scas,” in DATE, 2012, pp. 1173-1178.

(2014, Sept) Dpacontest v4 - hall of fame. [Online]. Available:
http://www.dpacontest.org/v4/hall_of_fame.php

S. Kutzner and A. Poschmann, “On the security of rsm - presenting 5
first- and second-order attacks,” in Constructive Side-Channel Analysis
and Secure Design, ser. Lecture Notes in Computer Science, E. Prouff,
Ed. Springer International Publishing, 2014, pp. 299-312. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-10175-0_20

X. Ye and T. Eisenbarth, “On the vulnerability of low entropy masking

. All Rights Reserved.

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-27954-6_2
http://dl.acm.org/citation.cfm?id=646764.703989
http://doi.acm.org/10.1145/1228784.1228808
http://dx.doi.org/10.1007/3-540-44706-7_11
http://dx.doi.org/10.1007/11767480_16
http://dx.doi.org/10.1007/978-3-642-04138-9_13
http://doi.acm.org/10.1145/2024724.2024778
http://dx.doi.org/10.1007/978-3-642-40349-1_17
http://doi.acm.org/10.1145/2463209.2488833
http://doi.acm.org/10.1145/2593069.2593193
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-540-30564-4_5
http://doi.acm.org/10.1145/2024716.2024718
http://dl.acm.org/citation.cfm?id=648255.752713
http://dx.doi.org/10.1007/978-3-642-27954-6_15
http://dx.doi.org/10.1007/978-3-642-27954-6_15
http://brgladman.org/oldsite/AES/index.php
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
http://www.dpacontest.org/home/
http://www.dpacontest.org/home/
http://www.dpacontest.org/v4/hall_of_fame.php
http://dx.doi.org/10.1007/978-3-319-10175-0_20

schemes,” in Smart Card Research and Advanced Applications - 12th
International Conference, CARDIS 2013, Berlin, Germany, November
27-29, 2013. Revised Selected Papers, 2013, pp. 44-60. [Online].
Available: |http://dx.doi.org/10.1007/978-3-319-08302-5_4

[28] A. Moradi, S. Guilley, and A. Heuser, “Detecting hidden leakages,”
Cryptology ePrint Archive, Report 2013/842, 2013, http://eprint.iacr.
org/,

[29] L. Lerman, S. Medeiros, G. Bontempi, and O. Markowitch,
“A machine learning approach against a masked aes,” in Smart
Card Research and Advanced Applications, ser. Lecture Notes in
Computer Science, A. Francillon and P. Rohatgi, Eds. Springer
International Publishing, 2014, pp. 61-75. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08302-5_5

This technical data was produced for the U.S. Government under Contract No. FA8702-14-C-0001, and is subject to the Rights
in Technical Data-Noncommercial Items Clause (DFARS) 252.227-7013 (NOV 1995)

(©2014 The MITRE Corporation. All Rights Reserved.

http://dx.doi.org/10.1007/978-3-319-08302-5_4
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-08302-5_5

	Introduction
	Related Works
	Side-channel Vulnerability Assessment
	Definitions
	Target binary
	Leakage model
	Intermediate Value
	Mutual Information
	Leakage Location
	Perfect Masking

	Algorithm
	Computational Complexity

	The SLEAK Tool
	Leakage Timeline
	Leakage Highlighting

	Experimental Results
	Verification against Hardware
	Leakage Patterns
	Masking Strength
	Key Extraction

	Countermeasure Analysis
	Low-Entropy Mask
	Mask Cancellation From Register Updates
	Intrinsic Functions

	Conclusion
	References

