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Abstract 
In the Human Language Technology (HLT) domain, analytic results extracted from raw 
document sources are captured in varied models and formats due to the depth of what can be 
revealed and the diversity of interpretation. However, some common model and format must be 
followed to allow for multiple analytics to operate together in workflows and enable both the 
communication between analytics and the fusion of parallel or complementary results. This data 
integration problem is exacerbated when placing an emphasis on extracting knowledge from text, 
as the data model must be both adaptable and extensible to handle current and emerging content 
extraction capabilities and technologies. This paper describes a common interchange format and 
model designed to coordinate the extracted information from raw document sources in order to 
generate knowledge. The approach described adheres to the principles of adaptability and 
extensibility. It also provides the means to represent the annotation data that act as the reference 
for the knowledge and maintain provenance about these analytic results. While the data model 
and format described were designed for the HLT domain, the process used to develop them can 
be applied to other domains as well (e.g., image processing, signal processing). 
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1 Introduction 
The Human Language Technology (HLT) domain encompasses a wide variety of analytic 
techniques that can be applied across raw document sources to extract or identify content 
artifacts or provide analytic results. While the results of the implementations of these techniques 
are manifold and useful, they nevertheless exhibit some significant limitations. Due to the 
complexity and scope of HLT, there is no universal model and representation for extracted 
content. Further, there are many extant taxonomies for analytic results that have different 
definitions for their expected content, and they do not easily align. Nonetheless, these 
taxonomies represent a necessary starting place for building a knowledge model that can be lifted 
from extracted content and associated annotations. This initial heterogeneity presents a 
significant technical challenge. 

In complex HLT systems there is often a need to synthesize results from multiple discrete 
analytics arranged in workflows addressing higher-order problems. A Common Interchange 
Model (CIM) can act as a lingua franca between different analytics, aiding integration of analytic 
results expressed in varied models and formats. Having a CIM allows analytic results to be 
mapped consistently and also gives analytics relying on minimally processed data the capability 
to reconstitute their required input in a lossless fashion from the CIM. Given the universality that 
a CIM implies, a natural question arises as to whether or not analytic results can be elevated into 
direct assertions of knowledge for a world model of interest. 

This paper describes a model and format that addresses this question for an HLT architecture 
designed to populate knowledge bases with facts extracted from the content of raw documents 
(i.e., largely unstructured text). In addition to generating knowledge from these analytic results, it 
is crucial to preserve the original annotation and provenance regarding the analytic processes in 
order to provide traceability and confidence in the system results, while maintaining a clear 
definition of what constitutes knowledge co-referenced across textual mentions and elevated 
from document-centric annotation. This ensures knowledge can be isolated from the annotation 
for downstream processes that operate only on assertions of knowledge outside of the context of 
specific mentions. A further design constraint levied on this architecture and the CIM is that it be 
created with free and open-source elements to make it easily reproducible and low-cost.  

Described below is the relevant background, including both a survey of potential and related data 
models and an overview of the analytic architecture supported by the proposed CIM and its 
companion Common Interchange Format (CIF). Then the development, structure, and 
implementation decisions with respect to the common model are presented. Finally, there is a 
discussion of the future planned work. 
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2 Background 
The MOSAIC architecture, described in greater detail in (Winder et al., 2011; Winder et al., 
2013), is founded on a philosophy of adaptable and extensible design that is interoperable with 
new and existing analytics. It provides a framework that loosely couples these discrete analytics 
and organizes them into workflows so they can function in concert and have a common store for 
their data. MOSAIC is application-agnostic and its subcomponents (an executive, a data bus, the 
analytic layer) can be substituted, exchanged, or modified as necessary. Separation of documents 
and analytic artifacts from the execution was key to this loosely coupled design. Because it was 
intended to support a wide variety of analytics, the lack of cohesion with respect to the native 
analytic data models and formats requires attention. Analytics are often developed independently 
without the intent to integrate, essentially creating a variety of representations that needs to be 
resolved before allowing communication between analytics or fusion of their results. Thus, there 
is an essential need for a common interchange model and format, whether it is derived from an 
existing format with sufficient model coverage and representational flexibility or is newly 
generated to serve this purpose. 

This naturally leads to an examination of existing formats and data models from which to choose 
appropriate candidates for the roles of format and model. Given the need for a representation that 
is compatible with some ultimate knowledge base that can express first-order logic, the most 
significant option examined in service of both roles was the Web Ontology Language (OWL)1 
family of languages for knowledge representation, which are the current accepted web standard 
for ontological development. Our attention was primarily given to OWL 2 (Motik et al., 2009). 
In addition to providing definitions for base level classes, object properties, data properties, and 
individuals, it is also compatible with other Semantic Web standards, such as XML RDF2 
(Resource Description Framework), which more closely align to what has been termed format 
here. RDF is founded on a linking structure of statements that represent a relationship between 
two individuals, where the statements are usually referred to as triples, providing a simple rule 
for structuring information or knowledge, as appropriate. There are alternatives to these 
representations such as N3 (Notation 3),3 which has the advantage of being more concise and 
human interpretable than XML serializations of RDF. While these formats are typically founded 
on triple relationships, applying a name to the relationship to create named graphs, or quads, is 
also used in extensions to the RDF syntax such as TRIX4 or TRIG5 to allow for a more 
convenient and compact reification syntax and a reduction in the number of tuples employed. 
Other languages suitable for representing the modeling expressiveness desired include Common 
Logic (CL) and F-Logic (frame logic) (Kifer et al., 1995). As with N3, there is an emphasis with 
F-Logic of making readable statements with a simple syntax. 

One must populate the data model with specific classes and properties reflecting the domain of 
what must be captured. Specific individuals and assertions needed for common referents by 
                                                 
1 http://www.w3.org/TR/owl2-xml-serialization/#Example_Ontology_.28Informative.29 
2 http://www.w3.org/RDF/ 
3 http://www.w3.org/TeamSubmission/n3/ 
4 http://www.w3.org/2004/03/trix/ 
5 http://www4.wiwiss.fu-berlin.de/bizer/TriG/ 

http://www.w3.org/TR/owl2-xml-serialization/#Example_Ontology_.28Informative.29
http://www.w3.org/RDF/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/2004/03/trix/
http://www4.wiwiss.fu-berlin.de/bizer/TriG/
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analytics, such as geographic place names or well-known people, may be added as referents to a 
MOSAIC seed Knowledge Base (KB). The content of the CIM’s ontology and accompanying 
seed KB may be generated newly for each use of MOSAIC, but one can leverage previous 
efforts to make comprehensive knowledge representations.  

Serving as an example of an extensive formal ontology, the Suggested Upper Merged Ontology 
(SUMO) (Niles & Pease, 2001; Pease et al., 2002) had its genesis in merging together multiple 
ontologies of concepts that are common across knowledge domains, or upper-level ontologies. It 
has evolved from this starting state. This breadth of coverage makes it deserving of significant 
attention when considering that the ultimate content of the knowledge base should not be unduly 
bound to any particular knowledge domain. FrameNet (Baker et al., 1998) is another example; 
one more driven from a linguistic background. FrameNet is organized on the idea of semantic 
frames that express the concepts conveyed by sentences, where frames express particular classes 
of events and relationships and also capture their particular participants’ roles. 

Examining models of knowledge that have a basis in what HLT analytics extract from raw 
documents, one openly available model is the Automatic Content Extraction (ACE) model and 
its ACE Pilot Format (APF).6 This offers a representation and taxonomy for various entities, 
relations, and events considered important and recognizable to automated content extraction 
systems. The ACE model embodies some SUMO and FrameNet elements, making it feasible to 
bridge these models’ representations. The ACE competitions, which ran for most years between 
2003 and 2008, sought to evaluate state-of-the-art systems for content extraction against a 
common output set (Doddington et al., 2004). The relevance of APF’s output format and model 
to content extraction makes it a convenient candidate upon which to develop a primary 
knowledge base, especially when it will be populated with knowledge discovered by HLT 
analytics.  

APF includes a method for annotation that points back into the document and identifies from 
where its entities, relations, and events are derived. It is not the only existing format that attempts 
to capture HLT annotation. Existing architectures for tightly-integrated components often have 
their own mandated internal data format. One example is the Unstructured Information 
Management Architecture (UIMA) that makes use of Common Analysis System (CAS) (Gotz & 
Suhre, 2004) data structures, which store the subject of analysis (such as a text document), the 
analytic results of annotation and indices to these results, and a schema for interpreting the 
structure of analytic results. Another example format is GrAF (Ide & Suderman, 2007), which 
merges linguistic annotation based on sources such as the Penn TreeBank, PropBank, and others 
into a single, traversable graph of annotation, and has been demonstrated to be capable of 
consuming mappings from other formats (Ide & Suderman, 2009). In addition to formats driven 
by competitions and academia, most automated content extraction systems have their own 
unique, and often proprietary, formats. It bears stating plainly that neither CAS nor GrAF are 
domain or ontological models, but rather simple data models that allow for arbitrarily complex 
structures without any means to express model constraints or axioms. They lack the semantic 
expressiveness that OWL-based models offer, and while there are semantics, they do not include 

                                                 
6 An overview of ACE and guidelines for APF: https://www.ldc.upenn.edu/collaborations/past-projects/ace   

https://www.ldc.upenn.edu/collaborations/past-projects/ace
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consistency checkers or reasoners, which can help in making a KB’s schema and content 
interpretable, consistent, and queryable. 

Producing an interchange model emphasizing issues in HLT and Natural Language Processing 
(NLP) remains an active area of research. A recent contribution of note is the NLP Interchange 
Format (NIF) (Hellman et al., 2013), which addresses challenges in comparing or combining 
NLP tools not inherently designed to interoperate. NIF is principally defined by a core ontology 
and supporting ontologies for common NLP terms and concepts, and it is accessible by way of 
REST services. The result enables integration of NLP applications that are heterogeneous, 
distributed, and loosely coupled. The emphasis of NIF’s core ontology is document annotation 
and delineation of natural language structures in text, but it can be enhanced with existing 
knowledge ontologies, such as DBPedia, to expand the robust underlying NLP model. The 
discussion below explores how NIF and our own model relate. 
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3 Methods 
3.1 Design Philosophy 
The philosophy behind the CIM and its expression in CIF is driven by certain fundamental goals 
for its intended use. Paramount among these is the need to both include and maintain a strict 
separation between the three interconnected categories of 1) extracted or derived knowledge, 2) 
original annotation, and 3) provenance regarding the origin of these other two categories with 
respect to their source documents. The model must be extensible and adaptable as it is 
unreasonable to expect a static model will encompass everything analytics will identify in 
documents, especially as new strides are made in analytic development. The redundancy of 
information in many annotation formats (where extents and types were often expressed more 
than once) has been minimized here, encouraging conciseness. Additionally, as recipients of the 
final knowledge need it to be increasingly fine-grained, the importance of the extensibility of the 
model is once again emphasized. This need for extensibility implies the model should be as 
simple and regular as possible. A common model must endeavor to achieve uniqueness in its 
semantics and format, which is a danger as it stands in opposition to the multiple raw HLT 
analytic formats that may have completely different approaches to representing the same 
concept, entity type, relationship type, or annotation to the underlying document. 

This last point is the most salient when considering selection of an existing model. There is no 
uniformity among HLT analytic output and a great deal of ambiguity or differences when their 
models are compared to one another. While rich existing models can form the basis for the 
common data model, one cannot be chosen and used as is by itself. We must create a model 
which can span, to the greatest degree possible, the analytics’ different representations.  

Other crucial considerations were the type of knowledge we wished to accumulate and what 
knowledge the analytics were able to produce, both of which could evolve as new analytics were 
developed or new types of knowledge became relevant for the final use cases. Therefore it was 
important to choose a model that was easily extensible to accommodate new requirements and 
capabilities, for instance the need to reason over knowledge and axioms. Ultimately, we chose 
OWL 2 to model the knowledge and annotation schema of CIM.  

When selecting a language to express our format, the difficulty in directly appropriating an 
existing technology is somewhat lessened as there are several extensible and flexible languages 
available that match the driving philosophy here. The language chosen was TRIG, which is N3 
using named triples, or quads, to encode efficiently individual statements that make up the 
knowledge, annotation, and provenance. Fundamentally, this named triple format consists of four 
part statements that break down into name, subject, predicate, and object. This simple format can 
support a rich model of allowable classes, object properties (which capture relationships), and 
data properties. What is key here are the named triples as they allow for statements to made 
about statements, which permits us to express not only relationships between defined classes and 
individuals but also express properties of the statements. We found quads are a more convenient 
format to express these properties than explicit reification with triples, though both are 
functionally equivalent. While there is also an implementation of our CIM in F-Logic, we choose 
to demonstrate examples using N3. 
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3.2 Model Layers: Knowledge, Annotation, and Provenance 
We first define the difference we have suggested between the knowledge, annotation, and 
provenance layers. Knowledge refers to individuals and relationships that express the content 
found in the raw source document but are in themselves divorced from specific reference or 
context to that document. Annotation refers to the locations in the raw source document from 
where the associated knowledge is mentioned. Provenance refers to preserved information about 
the knowledge and annotation statements, namely when and by what analytic system these 
statements were produced along with confidence values that express an ideally normalized 
measure of accuracy of the statement. 

The content of the knowledge and annotation in the data model in terms of classes and 
relationships took inspiration from both SUMO and APF. Within the knowledge layer, the 
subject-predicate-object relationship interconnects knowledge elements and this interconnection 
can be reasoned over. Data properties (or properties that connect individuals of classes to literal 
values) preserve the strings drawn from the original text. Annotation is similarly self-connected, 
but its data properties outline character offsets in the original document where the basis for 
knowledge can be located.  

Predicates bridging annotation-to-knowledge, provenance-to-knowledge, or provenance-to-
annotation are connected to the names of the statements rather than the elements. That is to say, 
the names of the graphs will be the subjects and objects of these predicates, indicating that 
statements within the knowledge and annotation layer are related to one another. This pattern of 
reification makes a clear line of separation between statements that are internal to knowledge, 
annotation, and provenance layers and the properties that connect these layers. Notably, this 
facilitates the isolation of knowledge in use-cases where annotation or provenance are not 
deemed necessary.  

An annotation statement is connected to the knowledge statement for which it represents a 
mention. Usually, the annotation statement is linked to a statement defining the instance’s class. 
When a knowledge statement is directly based on an annotation, these two statements are 
connected instead. A typical example are statements that define an entity’s name, which is 
preserved in the knowledge and directly linked to its annotation. As part of our operating use 
case, every knowledge and annotation statement can have provenance properties attached. 
Provenance properties track the history of the statement’s generation by the analytics that 
produce them. This removes the need to create parallel and redundant annotation structures for 
mentions of each type of knowledge as, for example, is done in the APF format for entities, 
relations, and events. 

3.3 Common Format: Statement Basics 
The following are examples that provide a representative description of how knowledge and 
annotation information relate in the common interchange model and our standard format. Even 
though the smallest unit of knowledge is a named triple consisting of a name, subject, predicate, 
and object, this is used to represent what we consider the fundamental knowledge objects: 
entities, frames, and designators. There is also a special class of entities that represent time. 
Entities are the abstract and physical things or concepts that exist. Frames represent specific 
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existing contexts involving multiple participants that serve some role. Designators includes 
names and identifying terms for entities. Each of these classes are connected to one another 
through object properties, which specify direct relationships between individuals, the types of 
designators an entity has, or an entity’s role in a frame. 

Unique classes or individuals are signified by node identifiers. These typically are long strings 
that have a detailed namespace. In the examples below, we shorten for the sake of readable 
examples by using the colon to indicate a previously defined namespace. Uniquely identifying 
strings are also shortened for readability. 

3.3.1 Classes – Entities, Designators, and Time 
Entities in the CIM that are equivalent to individuals require a definition statement that specifies 
the class.  

<KSGP1_1> { <jane> a :Person . } 

Entities are treated as separate from their designators. The Designator class includes uniquely 
identifying terms such as addresses, URLs, and certain numbers (e.g. 
MotorVehicleLicenseNumber) but is open to any preserved alternate names of the entity. For 
certain important entity classes (e.g. person, region, organization, device, email account, phone 
account) there is typically at least one designator object. The inclusion of different classes of 
designators aligned to different important entity classes was made to allow for special 
relationships that only apply to those types of designators. An example is provided:  
<KSGPN1_1> { <janename> a :PersonAlternateName . } 
<KSGPN1_2> { <janename> :hasString “Jane Jones” . } 
<KSGPN1_3> { <jane> :hasPersonAlternateName <janename> . } 
Note that the name has a data property that indicates the string that encodes it, often lifted from 
the text by an HLT analytic. AlternateName is the default type, but the Alias or CanonicalName 
classes can also be used when appropriate. These are much more specific types, and should only 
be used when the relationship between the entity and the name reflects the corresponding 
semantics. An alias is a name that is intentionally intended to obfuscate the entity’s actual 
identity and the canonical name is the fullest form of the actual name of the entity. Names that 
are not known to be one of the more precise entity classes can be linked using the hasName 
object property or using hasAlternateName or hasCanonicalName as appropriate.  

Time entities in our CIM have special properties that make temporal references. These are data 
properties based on the TIMEX2 (Ferro et al., 2005) specification and include: 
hasAnchorDirection, hasAnchorValue, hasValue, hasModifier, hasNonspecific, hasSet, and 
hasTimeComment. This choice was made in favor of extractor representations and the 
expressiveness of TIMEX2, which can capture the ambiguity and nuances of natural language. 
Ideally, analytics would ultimately interpret and ground these results to a more semantically 
formal ontology for time references, with TIMEX2 only indicating the extractor references. 

3.3.2 ObjectProperty – Relationships 
Extracted relationships typically map to simple entity-to-entity object properties in the model. 

<KSGR1_1> { <jane> :memberOf <organization1> . } 
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Relationships can also have timestamps that modify them, saying when the relationship held.  

<KSGR1_2> { <KSGR1_1> :timeAtEnd <KSGT1_1> . } 

It is worth noting that this is an unfortunate occasion where knowledge is forced to attach to the 
name of the graph, something assiduously avoided elsewhere when possible. Ideally, 
relationships would instead be represented as an individual connected by way of object 
properties to their participants including the subject, object, and any related time information, but 
legacy issues—and the convenience of representing the end knowledge base form directly in the 
CIM—prevented the universal adoption of this convention. 

3.3.3 Frame – Events 
Frames represent larger contexts in which entities participate, including events. Frames share 
many features with entities in that they have a definition statement, but its defined knowledge 
element acts as a hub of roles involving other entities. This frame structure allows for a rich 
depiction of contexts or events, while specifying a data model allows for precise ontological 
typing and sets of valid object properties that constitute the roles of participating entities. An 
example frame is specified below: 

<KSGF1_1> { <meet1> a :MeetFrame . } 
<KSGF1_2> { <meet1> :hasAgent <jane> . } 
<KSGF1_3> { <meet1> :hasAgent <bill> . } 
<KSGF1_4> { <meet1> :hasPlace <region495> . } 

3.3.4 Designator Example – Phone and Email 
Typically important pieces of identifying information for entities with agency (in particular 
persons and organizations) include phone numbers and email addresses. It is worth making a 
small digression into specifics here to describe how these cases are handled. Phone numbers and 
email addresses are considered designators for phone accounts and email accounts respectively. 
Therefore they are indirectly connected with associated persons and organizations via the 
accounts which the persons or organizations use. Accounts can have multiple addresses or 
numbers as well as multiple users, so it makes sense to include them in the model. Example of 
this is specified below for email (although phone numbers and accounts follow the same pattern): 

<KSGEL1_1> { <emailaccount1> a :EmailAccount. } 
<KSGEL1_2> { <jane> :usesEmailAccount <emailaccount1>. } 
<KSGEL1_3> { <emailaddress1> a :EmailAddress. } 
<KSGEL1_4> { <emailaccount1> :hasEmailAddress <emailaddress1>. } 
<KSGEL1_5> { <emailaddress1> :hasString “janejones@mail.com” } 
This reveals that often there will be additional pieces of knowledge to generate in order to 
accurately capture certain relationships. HLT analytics typically work at a surface semantic level 
and directly assert a relationship between the apparent subject and object appearing in the text, 
rather than map directly to the desired representation of the knowledge base to be populated (e.g. 
it is more common to find a mention attaching a person to an email address rather than to an 
email account that has an email address). Any attempt to model information accurately needs to 
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maintain awareness of these leaps that are common in language, but do not reflect the actual 
relationships between the entities involved. 

3.3.5 Custom Types 
If there is no appropriate class in the common model for an entity identified by an analytic, the 
class will default Entity. A “custom type” can then be applied to this as a data property. While 
this is allowable in the model, it is intended as a temporary accommodation; ideally if such an 
individual needs to be represented, it should be explicitly added to the common model.  

<KSGE2_1> { <ent32> a :Entity . } 
<KSGE2_2> { <ent32> :hasCustomEntityType “SewingMachine” . } 

Similarly, if there is no appropriate object property for a relationship in the common model, the 
default object property is hasEntityRelationship.  

<KSGR2_1> { <jane> :hasEntityRelationship <organization2> . } 
<KSGR2_2> { <KSGR2_1> :hasCustomRelationshipType “BuysFrom” . } 

Finally, if there is no appropriate class for a frame in the common model, the default class is 
Frame.  

<KSGF2_1> { <frm73> a :Frame . } 
<KSGF2_2> { <frm73> :hasCustomFrameType “DanceCompetition” . } 
Each of these effectively acts as a placeholder for entities, relationships, or frames that will 
eventually receive an appropriate class or object property in the schema. 

3.3.6 Annotation Layer – Mentions 
Entities extracted by analytics typically have some reference to their original document acting as 
supporting evidence. Mentions can be examples of both names of the entity or referring nominals 
or pronouns. In the case of names, the mentions should be attached to the statements connecting 
the entity and the appropriate designator, as the mention refers directly to this. Since nominals 
and pronouns are not preserved at the knowledge layers, the knowledge statement graphs for 
these should refer to the general entity definition statement’s name. 

A typical mention structure will include at least one text extent that is defined by start and end 
offsets in the source text. This is the span of this specific entity textual mention. Multiple text 
extents can be attached to an EntityMention, one representing the head (or the core text) of the 
mention while the other is the full extent of the entity’s mention in the text. 

This format for representing annotation is derived from how APF represents markers to indicate 
where its extraction appears in the raw document. An example of an entity mention (for a name) 
follows: 

<RSGP1_1>  { <janeMention> a :EntityMention . } 
<RSGP1_2>  { <KSGPN1_3> :hasMention <RSGP1_1> . } 
<RSGP1_3>  { <janeMention> :hasHead :headExtent> . } 
<RSGP1_4>  { <headExtent> a :TextExtent . } 
<RSGP1_5>  { <headExtent> :hasOffsetStart “140” . } 
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<RSGP1_6>  { <headExtent> :hasOffsetEnd “150” . } 
<RSGP1_7>  { <janeMention> :hasExtent <extExtent> . } 
<RSGP1_8>  { <extExtent> a :TextExtent . } 
<RSGP1_9>  { <extExtent> :hasOffsetStart “140” . } 
<RSGP1_10> { <extExtent> :hasOffsetEnd “150” . } 
An example of an entity mention (for a nominal) follows: 
<RSGP1_11> { <janeNominal> a :EntityMention . } 
<RSGP1_12> { <KSGP1_1> :hasMention <RSGP1_11> . } 
<RSGP1_13> { <janeNominal> :hasHead <headExtent> . } 
<RSGP1_14> { <headExtent> a :TextExtent . } 
<RSGP1_15> { <headExtent> :hasOffsetStart “310” . } 
<RSGP1_16> { <headExtent> :hasOffsetEnd “315” . } 
<RSGP1_17> { <janeNominal> :hasExtent <extExtent> . } 
<RSGP1_18> { <extExtent> a :TextExtent . } 
<RSGP1_19> { <extExtent> :hasOffsetStart “290” . } 
<RSGP1_20> { <extExtent> :hasOffsetEnd “339” . } 
Relationships can also have mentions in the source text. They are captured by using a generic 
predicate (hasEntityMentionRelationship) between the entity mentions involved in the mention. 
This need not be marked as it can be recovered by examining the related knowledge. The full 
extent of the relationship is preserved at the mention level. Timestamps can modify these 
mentions, saying when the specific mention held. This is needed because relationships can have 
multiple mentions, and therefore which mention is the source of a timestamp must be maintained 
to preserve the full annotation. Examples of these follow: 

<RSGRM1_1>  { <janeMention>  
              :hasEntityMentionRelationship 
              <orgMention1> . } 
<RSGRM1_2>  { <KSGR1_1> :hasMention <RSGRM1_1> . } 
<RSGRM1_3>  { <RSGRM1_1> :timeAtEnd <KSGTM1_1> . } 
<RSGRM1_4>  { <relExtent> a :TextExtent . } 
<RSGRM1_5>  { <RSGRM1_1> :hasExtent <RSGRM1_4> . } 
<RSGRM1_6>  { <relExtent> :hasOffsetStart “444” . } 
<RSGRM1_7>  { <relExtent> :hasOffsetEnd “467” . } 
Frames can also have reference annotations. An example of frame mention follows:  

<RSGF1_1>  { <meetMention> a :FrameMention . } 
<RSGF1_2>  { <KSGF1_1> :hasMention <RSGF1_1> . } 
This mention connects to the appropriate entity mentions with the same role types as appear in 
the knowledge layer frame. 
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3.3.7 Document Seeds and Connections 
A seed TextDocument object representing the source document and connected to its original text 
serves as a single reference point to indicate that all entities, frames, and relationships appear in 
the same document. It also may have properties representing a zone of metadata and a zone of 
content; many source documents contain both. 

<TxtGraph_1>  { <Txt_1> a :TextDocument . } 
<TxtGraph_2>  { <Txt_1> :hasTextDocumentBody “…” . } 
<TxtGraph_3>  { <Txt_1> :hasDocumentFilePath “…” . } 
<TxtGraph_4>  { <Txt_1> :hasDocumentFileName “…” . } 
<TxtGraph_5>  { <TDB_1> a :TextDocumentBody . } 
<TxtGraph_6>  { <TDB_1> :hasString “…FULL TEXT…” . } 
<TxtGraph_7>  { <MDZ_1> a :MetadataZone. } 
<TxtGraph_8>  { <MDZ_1> :hasOffsetStart “0” . } 
<TxtGraph_9>  { <MDZ_1> :hasOffsetEnd “293” . } 
<TxtGraph_10> { <CNZ_1> a :ContentZone . } 
<TxtGraph_11> { <CNZ_1> :hasOffsetStart “294” . } 
<TxtGraph_12> { <CNZ_1> :hasOffsetEnd “34353” . } 
<TxtGraph_13> { <Txt_1> :hasMetadataZone <MDZ_1> . } 
<TxtGraph_14> { <Txt_1> :hasContentZone <CNZ_1> . } 

An example triple that connects a knowledge statement graph to the document follows. These 
statements are typically applied to the names of definitions of entities and frames or the names of 
relationship statements. 

<DocLink_1> { <KSGP1_1> :appearsInDocument <Txt_1> . } 

3.3.8 Provenance 
As stated above, provenance is attached to the names of statement graphs. There is no limitation 
on which statement graphs can have provenance, but typically provenance is applied to 
definitions of entities and frames, object properties or role triples, and statements that connect an 
entity, object property, or frame to a reference mention. Current provenance includes confidence 
values (values between 0 and 1), labels of which analytic produced a triple, labels of which 
version of an analytic produced a triple, and the date a triple was produced. 

<SGP1_1> { <KSGP1_1> :hasConfidence “1.0” . } 
<SGP1_2> { <KSGP1_1> :producedByAnalytic “Serif” . } 
<SGP1_3> { <KSGP1_1> :producedByAnalyticVersion “2.1” . } 
<SGP1_4> { <KSGP1_1> :producedOnDate “12/12/2010” . } 

The provenance information is quite weighty as practically all knowledge and annotation 
statements are accompanied by four standard provenance statements. Fig. 1A depicts the rough 
ratio of statement types broken into knowledge statements, annotation statements, and 
provenance statements. The vast majority of these are provenance, at a ratio of four provenance 
statements to one statement of another kind. The majority of the remaining statements are 
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devoted to preserving annotation information. Extracted and generated knowledge amounts to 
only 5.5% of all statements. 

Because of its weightiness, an alternative format for the provenance has been created that 
collapses the information into a single provenance statement that concatenates all four statements 
object values into a single string that can be parsed. This changes the typical distribution to 50% 
provenance, 36.25% annotation and 13.75% knowledge as shown in Fig. 1B. 

While bearing a resemblance to the provenance statements, the appearsInDocument object 
property has a somewhat narrower coverage of statements, intended to attach entities, object 
properties, and frames by their definition to the source document, but not the broader spectrum 
of statements.  

 

 

Fig. 1. Rough categorization percentages for the common interchange format. In (A) annotation and knowledge 
statements typically have four associated provenance statements each, which explains the 4-to-1 ratio between 
provenance and knowledge and annotation combined. In (B) a collapsed provenance statement reduces the 
overall ratio and amount of provenance. 
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3.3.9 Visualizing the Common Interchange Format 
While highly flexible and simple in fundamental units, the named graphs can easily become 
confusing as they interconnect to form a complex network of properties attached to node 
identifiers and graph names. Fig. 2 depicts how these elements typically interconnect, using a 
simplified subset of named graphs.  

In this example, derived from an ACE competition newswire document, there is an Person 
individual that has two alternate names as well as a business connection (captured using the 
hasBusinessConnection object property) to another Person. This Person individual has two other 
nominal mentions in a source document (only one of these mentions is fully expanded in the 
figure due to space restrictions). These mentions have heads and extents, where head is the 
shortest meaningful textual reference to the Person individual and extent is the full noun phrase 
representing the Person individual. The head and extent in turn refer to the character offsets that 
indicate where the mentions occur in the source document.  
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The legend defines each of the diagram elements that are used to convey statements in the named 
graphs of CIM as figures. Each shape represents an OWL statement. The class name or property 
name of each statement is shown directly above its shape. The graph name of the statement is 
shown in the upper half of a shape (here a truncated UUID). For instance class declarations, the 
lower half of the shape shows its individual’s name. For data properties, the literal value of the 
data property is presented in the lower half. A black triangle in the bottom right further identifies 
the data properties, as no further linkage is possible. In the case of object properties, the 
statement ties to individuals together and the conceptual link passes through the object property 
shape from the subject of the property to its object. 

Statements that are part of the knowledge layer are shown in green, while statements that are part 
of the annotation layer are shown in orange. Provenance statements are not shown in Fig. 2 due 

 
Fig. 2. Visual representation of the common interchange format (excluding the numerous provenance 
statements). Knowledge individuals and object properties are color-coded green and reference individuals and 
object properties are color-coded orange. Each individual is represented as having a class type, a graph name, 
and the individual’s name. Each object property also has a type and a graph name, and the lines passing through 
them indicate the subject and object directionality of these properties. Data properties are similar to object 
properties, but include their object as a literal string. 
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to size constraints, but bear in mind that each statement shown would have four provenance 
statements that describe the confidence, the analytic that produced the statement, the version of 
that analytic, and the time the statement was created. Fig. 3 includes provenance data properties 
for two of the statements to serve as examples.  

 
Appendix A lists the named graph statements used to generate Fig. 2.  

3.4 Common Interchange Model 
This section goes into further detail about the common interchange model (CIM) and how it is 
structured, defining the classes and object properties that make up its knowledge base so that 
analytic and adapter developers understand how to map their results consistently. This section 
will be subdivided into different tiers that represent the different types of information, with more 
detailed descriptions of subclasses and subproperties described after the higher-level distinctions 
are introduced.  

 
Fig. 3. Examples of the four typical provenance statements (the analytic that produced the statement, the version 
of that analytic, the date the statement was produced, and the confidence value) for two of the statements 
depicted originally in Fig. 2. Note that all knowledge and reference statements have similar provenance data 
properties.  
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It should be noted that this is an evolving model that is largely driven by two considerations: 1) 
the types of knowledge our available analytics are capable of extracting from text, and 2) the 
types of knowledge which should be captured for our use cases. Fortunately, it is still relatively 
easy to effect significant changes in the model. Many elements in the model are still under 
refinement or have not been fully populated, some acting as placeholders for future deeper 
modeling implementations. However, as analytics and interests mature, the model will mature as 
well. 

3.4.1 Coarse Divisions: Graph, ReferenceElement, and KnowledgeElement 
Classes in the CIM hierarchy represent statement names, subjects, and objects of statements. 
These are organized into a hierarchy that provides structure that includes inheritance (e.g. 
subclasses inherit the properties of their superclass).  

The highest level division in the CIM is between Graph, ReferenceElement, and 
KnowledgeElement. Graph is the superclass for classes that act as the names of the statements in 
our named graph format. This is a functional category that contains no content, but allows for 
easier bridging of content. ReferenceElement is the superclass for the classes that carry the 
content that directly relates knowledge to the source document annotation. KnowledgeElement is 
the superclass for the bulk of the CIM’s content, representing all classes of entities, designators, 
etc. that are used to populate the arguments of assertions to define what analytics discover in the 
documents, though this category is not necessarily limited to analytic results on documents being 
its basis. 

3.4.1.1 Graph and Subclasses 
The Graph class consists of three major subclasses: KnowledgeStatementGraph, 
ReferenceStatementGraph, and TabularGraph. Each of these is intended to represent the name of 
a different kind of named graph statement. KnowledgeStatementGraph is the class for statement 
names that reside at the knowledge layer of the CIM. ReferenceStatementGraph is the class for 
statement names that reside at the document annotation, or reference, layer of the CIM. 
TabularGraph is the class for statement names that contain tabular information collected from 
analytics that describe the source document. The first two of these classes represent the 
fundamental division in the CIM: 1) the knowledge layer, where assertions act as definitions or 
facts about classes and individuals of classes, and 2) the reference layer, where assertions point 
into the text of the source document such that the basis for asserting facts is preserved and can be 
examined. The last of these classes, TabularGraph, handles the special analytics that do not 
extract knowledge from the document, but instead provide analytic results describing features of 
the document itself.  

3.4.1.2 ReferenceElement and Subclasses 
The ReferenceElement class has three major subclasses: Document, Metadata, and Annotation. 
The Document class is at present split into three subclasses, representing different types of 
documents that are the source document from which knowledge and annotations are generated. 
These include TextDocument, AudioDocument, and ImageDocument. These represent documents 
that are textual, audio, or images, respectively. Metadata breaks down into subclasses of 
AnalyticMetadata and DocumentMetadata. Both of these are currently placeholders in advance 
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of a more formalized way of representing 
metadata as classes. Note that metadata here 
does not refer to the provenance described 
earlier.  

Fig. 4 depicts the class hierarchy of Annotation. 
This is divided into media-specific categories. 
Currently, only the TextAnnotation, which 
represents annotations on textual sources, has a 
deeper representation, where its subclasses are 
TextExtent, which represents sub-spans of the 
original document, and Mention, which 
represents the presence of a reference to a 
knowledge object in the original document and 
is divided into the major knowledge element 
types, including EntityMention, FrameMention, 
and TimeMention. TextExtent breaks down into 
the major interesting subdivisions of text, 
including Sentence and Paragraph as 
determined by grammar, format, and 
punctuation, as well as Zone and Token as 
determined by white-space and, typically, XML 
tags. 

All reference graphs consist of some 
combination of these elements. As described in 
the format, it is expected that a hasMention 
object property will connect the statement 
names of a knowledge element and its 
corresponding reference element, which is an 

individual of a subclass of Mention. This individual will then be connected to individuals of 
TextExtent by way of the hasHead (for the core reference text) or hasExtent (for the full extent) 
object properties. These in turn point to character offsets in the document to show their 
boundaries by way of the data properties hasOffsetStart and hasOffsetEnd.  

3.4.1.3 KnowledgeElement and Subclasses 
The bulk of the common interchange model’s complexity is found in the subclasses of 
KnowledgeElement, whose highest level subclasses are shown in Fig. 5. These subclasses are 
divided into five main categories: Entity, Frame, Designator, TabularElement, and 
MiscDataType. MiscDataType contains information about the common model itself as well as 
certain types that defy categorization in the present hierarchy, such as Penn Treebank bracket 
tags for syntax. TabularElement is currently a structure used to support storage of tabular results. 
A Table individual acts as the structure representing a table of data with potentially many 
attached DataEntry individuals. Each DataEntry individual has both a string primitive to store its 
value and a DataEntryLabel individual to serve as its tabular label. 

 

Fig. 4. Annotation hierarchy in the CIM 
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Entity is the most complex of these categories 
as most objects can be classified broadly as an 
Entity, falling into further classifications of 
PhysicalEntity, AbstractEntity, or Time. Of 
particular importance among the subclasses of 
PhysicalEntity is the Agent class, which 
indicates any PhysicalEntity that can take 
action, as these are usually among the more 
interesting entities. Designator contains various 
subclasses of names and identifiers for the 
different entity objects. A Frame contains 
various types of contexts which can have entity 
participants. 

A deeper discussion of the Entity subtree could 
be quite extensive. As suggested earlier, the 
structure of this subtree is heavily influenced by 
the Suggested Upper Merged Ontology 
(SUMO) and the type content by the Automatic 
Content Extraction Pilot Format (APF). The 
basic hierarchy here is split into entities that 
have physicality (PhysicalEntity), those that are 
abstract or concepts (AbstractEntity), and those 
that are subclasses of time (Time). 

The subtree of the Designator class includes all 
designators for the key namable Entity classes 
(in particular Person, Organization, Region, 
and Device), an Address class, and an Identifier 

class. Address breaks down into PhysicalAddress for addresses in real-world space and 
LogicalAddress for addresses in cyber-space. Identifier breaks down into specific uniquely 
identifying terms, such as EmailAddress and PhoneNumber. The other subclasses are for each of 
the major Entity types described and they are split into identifier, alternate names, and canonical 
name. Most names should map into the alternate category with canonical names being reserved 
only for cases where there is a high certainty of the name defining the Entity. Additionally, 
PersonDesignator has subclasses for PersonAlias and PersonTitle, which represents attachments 
to the person’s name based on birth, education, gender, or occupational role.  

The Frame class encompasses many different contexts in which Entity individuals will 
participate and be interrelated to one another. This allows for a hub from which to represent 
these complex contextual relationships. There is some hierarchical organization to its subtree, but 
it is mostly flat as the Frame subclasses are intended to be anchors to which the contextual 
relationships are attached.  

 

Fig. 5. Knowledge hierarchy in the CIM 



UNCLASSIFIED 
 

UNCLASSIFIED 
19 

 

3.4.2 Object Properties 
At the highest level, object properties in the CIM hierarchy represent the predicates of 
statements. Like classes, these have a hierarchical structure that includes inheritance of 
properties, where subproperties have a greater specificity of their superproperties in terms of 
domain and range. The following sections describe each of these high-level properties and their 
subhierarchies in greater detail.  

• hasAnnotation: hierarchy of predicates that relate different reference level classes. 

• hasEntityRelationship: hierarchy of predicates that connect entities to other entities. 

• hasEntityProperty: hierarchy of predicates that connect entities to properties or attributes 
they have. 

• hasDesignatorRelationship: hierarchy of predicates that connect designators to other 
knowledge elements. 

• hasFrameRole: hierarchy of predicates that describe a relationship an object entity has in 
the specified frame of context. 

• hasTimestamp: hierarchy of predicates that connect knowledge or reference statements 
for relationships or frame classes to time entities that describe when the relationship held 
or the frame context is temporally constrained. 

• hasTableObject: hierarchy of predicates that interrelates tabular data classes to one 
another. 

• hasEntityDocumentConnection: hierarchy of predicates that connect an entity to a source 
document. 

Certain object properties are not hierarchical, but do not fit into any of these particular 
categories, the most important of these being the properties that accommodate the preservation of 
annotation information. One such example is hasMention, the key predicate for connecting 
knowledge and reference elements in the common interchange model. The subject of this object 
property is a KnowledgeStatementGraph while the object is a ReferenceStatementGraph. This 
connects entities, relationships, and frames to their mentions. Another important example is 
hasEntityMentionRelationship, a reference layer predicate connecting two entity mentions 
captured in a relationship that appears in the knowledge layer. 

3.4.2.1 hasAnnotation 
Currently, hasAnnotation has three subproperties: hasHead, hasExtent, and hasAnchor. The 
property hasHead is used to connect an EntityMention to a TextAnnotation individual that 
represents core text that represents the entity. According to the APF definition from which this is 
derived, this would be the final word in the extent in the case of a nominal mention and would be 
the full proper name in the case of a named mention. The property hasExtent connects a Mention 
to a TextAnnotation that represents the entire noun phrase of an entity as well as the full extent 
necessary to capture a relationship or the context of a frame. Further, hasAnchor will connect a 
Frame to a TextAnnotation that represents the key word or phrase from which the frame’s 
context is being generated.  
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3.4.2.2 hasEntityRelationship 
Subproperties of hasEntityRelationship represent a relationship between two distinct entities. 
Although the top level property is purely structural and generic, the intent of the subproperties is 
to minimize ambiguity. Certain key subproperties and their subtrees are described here to give a 
picture of the scope of coverage. 

For relationships that indicate the subject is part of the object, whether geographically, 
organizationally, or physically (e.g., a subcomponent of a Device or a snippet of a Text object) 
then isPartOf or one of its more specific subproperties is used. More temporary relationships that 
indicate location and proximity make use of the hasPhysicalLocationRelationship with 
subproperties that indicate when subjects are at or near Region objects. To indicate a relationship 
between an Agent and some Artifact (i.e., a human-created item), any number of subproperties of 
hasAgentArtifactRelationship can be used to indicate the Agent is the manufacturer, owner, user, 
inventor, sender, or recipient of the Artifact. Encompassing a varied set of relationships of 
membership and affiliation that entities can have, hasAffiliation has several diverse subproperties 
that include citizenship, ethnicity, religion, residence, and language capability. 

Some of the most important relationships are subproperties of hasPersonRelationship, which 
covers relationships that feature largely Person to Person relationships. Example relationships 
here cover blood or marriage familial connections, business connections, personal relationships, 
and relationships by different communication methods. 

Some relationships defy the application of a specific type, but it is still useful to know that there 
is at least a contextual connection between the participants. For a generic relationship such as 
this between two knowledge elements, indicating they appeared in close proximity within a 
document, hasContextualRelationship is used.  

3.4.2.3 hasEntityProperty 
Subproperties hasEntityProperty represent a relationship where object is perceived to be a 
property of the subject. Subjects of these subproperties can be quite general in their expected 
types or quite specific, often an Agent or Person individual. A wide variety of properties are 
covered such as identifiers (e.g., names, unique identifying numbers, addresses, titles), statuses 
(e.g., employment status, educational level, legal and marital status) and physical features (e.g., 
age, height, weight, eye and hair color). 

3.4.2.4 hasEntityDocumentRelationship 
This category of object properties connect entities to source documents, and they break down 
into three main subproperties that include sourceReferencedIn, a relationship to attach a Text 
subject to the Document in which it appears, isAuthorOf, an authorship relationship with an 
Agent subject and a Document object, and appearsInDocument, a relationship that connects 
KnowledgeElement, ReferenceElement, or Graph subjects to a Document object. These different 
relationships could alternatively viewed as examples of provenance, but this representation was 
chosen given the sometimes immediate relationship between the content of the document and 
what produced it. 



UNCLASSIFIED 
 

UNCLASSIFIED 
21 

 

3.4.2.5 hasDesignatorRelationship 
This category of object properties covers relationships that have a Designator as the subject. Its 
subproperties represent Designator individuals that have been transliterated into other character 
sets, for example hasLatinTransliteration, hasChineseTransliteration, and 
hasCyrillicTransliteration.  

3.4.2.6 hasTimestamp 
The subclasses of hasTimestamp bridge a Frame or a relationship object property—where the 
graph of the relation is used as the subject—to a Time object. These relationships are directly 
derived from the eight timestamp definitions that appear in the relation and event timestamping 
guide for the ACE model.7 

• timeAtEnd: indicates the statement occurs or holds at the end of a Time. 

• timeAtBeginning: indicates the statement occurs or holds at the beginning of a Time. 

• timeEnding: indicates the statement ends at the object Time. 

• timeStarting: indicates the statement begins at the object Time.  

• timeWithin: indicates the statement occurs or holds within the object Time duration. 

• timeHolding: indicates the statement occurs or holds throughout the object Time duration. 

• timeBefore: indicates the statement occurs or holds before the object Time. 

• timeAfter: indicates the statement occurs or holds after the object Time.  

3.4.2.7 hasTableObject 
This is the category of object properties that specify relationships between tabular data entries. 
Its two subclasses are hasDataEntry, which connects a Table object to a DataEntry, and 
hasDataEntryLabel, which connects a DataEntry to a DataEntryLabel. 

3.4.2.8 hasFrameRole 
This category contains all the object properties that relate the different types of Frame classes to 
the Entity individuals that participate in their contexts. This is a fairly complex unstructured list, 
and the types appearing here were directly influenced by event roles in the APF and the specified 
participant roles in the event candidates in the METEOR, an analytic system for recognizing and 
reasoning over certain event classes (Taylor et al, 2009). A full description of each of these 
would be very detailed, therefore it is recommended at present to review the documentation of 
those two sources for further description on these as the definitions of the object properties here 
adhere to their documented meanings. 

3.4.3 Data Properties 
Data properties, as the term is used in this work, are properties where the value is a literal, often 
a string. In the CIM, there is not considerable hierarchical organization to the data properties, 

                                                 
7 http://projects.ldc.upenn.edu/ace/docs/English-TimestampingGuidelines_v3.pdf 

http://projects.ldc.upenn.edu/ace/docs/English-TimestampingGuidelines_v3.pdf
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which are the properties that relate individuals to literals, in particular string literals in this case. 
The most important data properties are listed below: 

• hasString: attaches a string literal to any Graph, KnowledgeElement, or 
ReferenceElement. This is the default manner by which content that is not hard-typed in 
the model’s representation is attached, typically in the knowledge layer to subclasses of 
Designator.  

• hasDataEntryValue: for DataEntry individual subjects, attaches the entry’s value and 
places it in the tabular structure. 

• hasConfidence: attaches a provenance confidence value to a statement that represents 
how likely it is that the statement holds. 

• producedByAnalytic: attaches provenance to a statement that specifies what analytic 
produced the statement. 

• producedByAnalyticVersion: attaches provenance to a statement that specifies what 
version of an analytic produced the statement. 

• producedOnDate: attaches provenance to a statement that specifies the date on which the 
statement was produced. 

• hasCustomEntityType: attaches an unmodeled entity type to an Entity individual. 

• hasCustomFrameType: attaches an unmodeled frame type to a Frame individual. 

• hasCustomRelationshipType: attaches an unmodeled relationship type to a generic 
hasRelationship statement. 

Remaining data properties are typically intended to preserve analytic annotation information that 
is not modeled as hard types in the CIM, such as hasAnchorValue and hasAnchorDirection for 
Timex-based data or hasModality for ACE relations. 
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4 Discussion 
This paper has presented ongoing work to develop a common interchange model, CIM, 
implemented in a flexible and extensible format, CIF. The aim is to represent the varied results 
generated across diverse HLT analytics performing content extraction from raw unstructured 
text. The ability to represent both knowledge and annotation drawn from these sources was a key 
goal of this development and led to the genesis of the CIM out of existing efforts in ontology 
(SUMO) and analytic artifact representation (APF). Using OWL to represent the model and 
TRIG named triples as a format allowed for the extensibility and flexibility sought while at the 
same time maintaining a known and established structure for data representation. A longer 
overview and description of the implementation of MOSAIC, which makes use of the CIM, 
featuring specific use cases can be found in (Winder et al, 2011; Winder et al, 2013). At the time 
this document was written, 28 different analytics, each with its own raw analytic artifact model 
and format, have been mapped into the CIM. This number is expected to grow as new analytics 
need to have their results legible by a knowledge base designed to store and make inference over 
the knowledge captured using the CIM.  

There is still a wide variety of future work required before we resolve all representational issues 
for the CIM, and it is unlikely that the CIM will converge to a point where there is no longer a 
need or desire to add new classes, object properties, and data properties, as the space of what 
HLT analytics are capable of producing is always in flux and expanding.  

The development of CIM and CIF began in 2010, and since that time significant solutions have 
emerged in the space of HLT and NLP, such as the NIF described in the background. The 
striking similarity of intent behind the NIF and our CIM and CIF suggests the NIF could provide 
an alternative robust underlying NLP model for our work. Alternatively, the CIM and CIF’s 
knowledge layer could serve in the capacity of background knowledge that boosts applications 
natively or adapted into NIF’s format. Ultimately, the community decides how to make use of 
provided capabilities, but there is potential for these models to benefit and enrich one another. 

Paramount among the long-term issues with respect to the CIM that should be addressed is 
creating a more cohesive and correct model of time. While TIMEX2 is a rich linguistic model of 
time, the current model treats time statements as data properties rather than attempting to map 
them to the specific time and date classes present in the CIM (e.g. Day, Month, Year). 
Generating this unified model of time is such a significant effort that it will be a long-running 
undertaking. In representing time, other existing methods apart from TIMEX2 that could be used 
include TimeML, which can also specify temporal expressions as related to events that appear in 
natural language (Pustejovsky et al., 2003). 

There are also some core difficulties in maintaining the integrity of the knowledge layer 
representation when it comes to time, especially when timestamps are attached to relationship 
statements. Because relationships are represented in the model as object properties, the only way 
to attach a timestamp to the relationship is by using the name as the subject, which violates how 
knowledge and annotation and provenance should distinguish themselves. This requires a change 
in either how relationships are represented (perhaps by instantiating them as individuals of a 
class that use object properties of hasSubject and hasObject to indicate their binary participants) 
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or redefining what relationships are (perhaps by considering any relationship that can have a 
temporal property to be more equivalent to an event or frame).  

One of the other considerations that has emerged is the efficiency concern. The overriding goal 
at the outset was to emphasize adaptability and extensibility, but as the model is populated and 
requires querying and reasoning, whether or not the representation is capable of handling these 
requests efficiently must be investigated. 

There are also many minor concerns to be handled in future iterations of the model as well, such 
as an elimination of redundancy in the types of object properties and classes (e.g., is it necessary 
to have a hasPersonAlternateName relationship over hasName when its subject and object are 
typed as Person and AlternateName, respectively?), a richer hierarchical representation (e.g., 
should the frames which represent events be subclasses of the class of event they represent?), and 
a re-characterization of what constitutes knowledge, annotation, and provenance in some cases 
(e.g., should an entity’s appearance in a document be treated as part of provenance?). 

Additionally, as the common model for the HLT domain is refined, the same process of 
developing a CIM and choosing a CIF can be applied to other domains (e.g., image/video 
processing, signal processing) where the ambiguities and restrictions witnessed here may or may 
not hold but a uniform representation is required. 
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Appendix A 
The following are the statements used to generate Fig. 2. The full unique knowledge element 
names are preserved here, while the figure shows only the final five characters of any node 
identifier due to size restrictions. 
<http://kbs.mitre.org/caf3f740-498e-4e9c-bdf1-1200ae5aa5ad> { 
<http://kbs.mitre.org/d569dc45-c44a-457d-8a83-c65a629713be_AFP_ENG_20030701.0247-E11> 
          a       ns0:Person .} 
<http://kbs.mitre.org/c1fda123-7a2e-4d2a-a2e9-665a2a90508a> { 
<http://kbs.mitre.org/0bfb0d84-3b97-4cf7-ad50-01a15f706b6a_AFP_ENG_20030701.0247-E9> 
          a       ns0:Person .} 
<http://kbs.mitre.org/e0616368-a420-4395-a9fe-1a3104022c6b> { 
<http://kbs.mitre.org/0bfb0d84-3b97-4cf7-ad50-01a15f706b6a_AFP_ENG_20030701.0247-E9> 
          ns0:hasBusinessConnection 
<http://kbs.mitre.org/d569dc45-c44a-457d-8a83-c65a629713be_AFP_ENG_20030701.0247-E11> .} 
<http://kbs.mitre.org/9e2b496c-dee1-40ea-8d5e-cb3b152a0da5> { 
<http://kbs.mitre.org/0bfb0d84-3b97-4cf7-ad50-01a15f706b6a_AFP_ENG_20030701.0247-E9> 
          ns0:hasPersonAlternateName 
                  <http://kbs.mitre.org/29677300-226d-4211-9755-202458ded142_NAM> .} 
<http://kbs.mitre.org/a24c2258-dc15-483b-9171-79b1f7729ad1> { 
<http://kbs.mitre.org/29677300-226d-4211-9755-202458ded142_NAM> 
          a       ns0:PersonAlternateName .} 
<http://kbs.mitre.org/e6ff7a8c-46fd-4ab1-afc2-66f3da0c6cc5> { 
<http://kbs.mitre.org/29677300-226d-4211-9755-202458ded142_NAM> 
          ns0:hasString "Vilor Struganọv" .} 
<http://kbs.mitre.org/007c44ad-de70-4645-840c-ec31aeb968d4> { 
<http://kbs.mitre.org/0bfb0d84-3b97-4cf7-ad50-01a15f706b6a_AFP_ENG_20030701.0247-E9> 
          ns0:hasPersonAlternateName 
                  <http://kbs.mitre.org/cbb1866d-0460-4aef-a296-b1a31f89916c_NAM> .} 
<http://kbs.mitre.org/edeef9f0-eab7-4e5e-907b-e7915fc73fd2> { 
<http://kbs.mitre.org/cbb1866d-0460-4aef-a296-b1a31f89916c_NAM> 
          a       ns0:PersonAlternateName .} 
<http://kbs.mitre.org/75f007f6-6cb1-4e67-a251-2888f5fef718> { 
<http://kbs.mitre.org/cbb1866d-0460-4aef-a296-b1a31f89916c_NAM> 
          ns0:hasString "Struganọv" .} 
<http://kbs.mitre.org/cf4c2f67-0dc2-4192-9240-b78a761c680a> { 
<http://kbs.mitre.org/c1fda123-7a2e-4d2a-a2e9-665a2a90508a> 
          ns0:hasMention <http://kbs.mitre.org/b620dd12-17a4-4c77 8782-5eee2d07c5b7> .}  
<http://kbs.mitre.org/b620dd12-17a4-4c77-8782-5eee2d07c5b7> { 
<http://kbs.mitre.org/9da998b2-998d-45b9-929e-0226b842100d_AFP_ENG_20030701.0247-E9-15> 
          a       ns0:EntityMention .} 
<http://kbs.mitre.org/4df37c6e-9133-464a-bc65-95387dcf19e7> { 
<http://kbs.mitre.org/c1fda123-7a2e-4d2a-a2e9-665a2a90508a> 
          ns0:hasMention <http://kbs.mitre.org/4e810189-ec06-4ae3-a868-e9e69d4aa15d> .} 
<http://kbs.mitre.org/4e810189-ec06-4ae3-a868-e9e69d4aa15d> { 
<http://kbs.mitre.org/405f7a65-3303-4b75-9e87-8a202e6dfc74_AFP_ENG_20030701.0247-E9-18> 
          a       ns0:EntityMention .} 
<http://kbs.mitre.org/f856f602-c842-4728-a5aa-17a0a858dccb> { 
<http://kbs.mitre.org/405f7a65-3303-4b75-9e87-8a202e6dfc74_AFP_ENG_20030701.0247-E9-18> 
          ns0:hasEntityMentionType 
                  "NOM" .} 
<http://kbs.mitre.org/c12ff6f9-f97b-4aa6-a216-3731c5efa3b8> { 
<http://kbs.mitre.org/405f7a65-3303-4b75-9e87-8a202e6dfc74_AFP_ENG_20030701.0247-E9-18> 
          ns0:hasEntityMentionRelationship 
<http://kbs.mitre.org/c7103f39-bc96-4e99-9f86-1d3ef4e33ea2_AFP_ENG_20030701.0247-E11-19> .} 
<http://kbs.mitre.org/5acdd82a-b151-4da1-aa18-66b149f8173e> { 
<http://kbs.mitre.org/405f7a65-3303-4b75-9e87-8a202e6dfc74_AFP_ENG_20030701.0247-E9-18> 
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          ns0:hasHead <http://kbs.mitre.org/ea84d876-dfa8-4b11-9434-c14fc4364a2e> .} 
<http://kbs.mitre.org/988197e0-4ef2-48e4-b4d2-b1b3681695fd> { 
<http://kbs.mitre.org/ea84d876-dfa8-4b11-9434-c14fc4364a2e> 
          a       ns0:TextExtent .} 
<http://kbs.mitre.org/739251a8-a473-4cf4-8a11-c9ad8578beeb> { 
<http://kbs.mitre.org/ea84d876-dfa8-4b11-9434-c14fc4364a2e> 
          ns0:hasOffsetStart "1021" .} 
<http://kbs.mitre.org/818c471a-1970-404c-89a5-9aa98e039eae> { 
<http://kbs.mitre.org/ea84d876-dfa8-4b11-9434-c14fc4364a2e> 
          ns0:hasOffsetEnd "1027" .} 
<http://kbs.mitre.org/1758fb16-b84e-419c-a514-c9769011bcd3> { 
<http://kbs.mitre.org/405f7a65-3303-4b75-9e87-8a202e6dfc74_AFP_ENG_20030701.0247-E9-18> 
          ns0:hasExtent <http://kbs.mitre.org/31fdf3d2-8125-426a-9287-7f4c7e26c68c> .} 
<http://kbs.mitre.org/5c723e4f-c345-49e4-897e-4795f46896d0> { 
<http://kbs.mitre.org/31fdf3d2-8125-426a-9287-7f4c7e26c68c> 
          a       ns0:TextExtent .} 
<http://kbs.mitre.org/e639404e-0a1f-4316-a59b-1d2e900c0921> { 
<http://kbs.mitre.org/31fdf3d2-8125-426a-9287-7f4c7e26c68c> 
          ns0:hasOffsetStart "1010" .} 
<http://kbs.mitre.org/db924345-1a45-4948-9bbd-462e0395f379> { 
<http://kbs.mitre.org/31fdf3d2-8125-426a-9287-7f4c7e26c68c> 
          ns0:hasOffsetEnd "1050" .} 
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