

 M T R 1 4 0 4 4 3 R 2

M I T R E T E C H N I C A L R E P O R T

 Methods for Evaluating
Text Extraction Toolkits:
An Exploratory Investigation

Contract No.: W15P7T-13-C-A802
Project No.: 0714G01Z-HB

Approved for Public Release.
Distribution Unlimited.
Case No. 15-0185.
©2015 The MITRE Corporation.
All Rights Reserved.

Timothy B. Allison
Paul M. Herceg
January 22, 2015
	

ii

MITRE Department
And Project Approval:

 Jeffrey M. Siems, Project Leader

Approved for Public Release. Distribution Unlimited.
Case No. 15-0185. ©2015 The MITRE Corporation.

All Rights Reserved. 1

Methods for Evaluating Text Extraction Toolkits:
An Exploratory Investigation

Timothy B. Allison, Paul M. Herceg

The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA

Abstract

Text extraction tools are vital for obtaining the textual content of computer files and for using the electronic text in a wide variety
of applications, including search and natural language processing. However, when extraction tools fail, they convert once reliable
electronic text into garbled text, or no text at all. The techniques and tools for validating the accuracy of these text extraction tools
are conspicuously absent from academia and industry. This paper contributes to closing this gap. We discuss an exploratory
investigation into a method and a set of tools for evaluating a text extraction toolkit. Although this effort focuses on the popular
open source Apache Tika toolkit and the govdocs1 corpus, the method generally applies to other text extraction toolkits and corpora.

Keywords: validation; evaluation; text extraction; text extraction toolkits; computer files; electronic text; reliable electronic text; Tika; Apache;
garbled text; mojibake; content extraction

1. Introduction

Numerous applications need access to the
normalized textual content of computer files,
including Web and corporate search engines, email
filters, parental control software, applications for the
blind, smart phone applications allowing hands-free
operation, summarization tools, information
extraction engines, transliteration tools, and machine
translation engines [1]. These applications need
reliable electronic text—a topic that Herceg and Ball
[2] discuss extensively. For example, a search engine
must extract text correctly from a document for that
document to be queried and found by a user. A
machine translation engine must extract text correctly
from a document for it to generate an accurate
translation of the document in another language. A text
extractor, or text extraction toolkit, is the component
that converts a file’s textual content into a normalized
text rendition that can be used by the aforementioned
applications. However, developers often naïvely trust
the accuracy of these tools and use them, without
validation, in their file processing pipelines. Accuracy
is only one part of performance; another is the ability
of a tool to operate automatically on batches of files
without human intervention. Text extractors are
famous for improperly converting files, producing
unusable garbled text, or mojibake [3]. Even if
developers endeavored to validate a text extraction
toolkit, such validation is challenging and labor
intensive, and the industry provides no evaluation
method or tools. This paper discusses an exploratory

step toward filling this industry gap. This paper
presents a method and a set of tools for evaluating a
leading open source text extraction toolkit called
Apache Tika (http://tika.apache.org/). Secondarily,
this paper provides results from applying the method
to compare the performance of Tika 1.5 and a
prerelease version of Tika 1.7. Furthermore, we
recommend actions for follow-on work so that the
method and set of tools can be streamlined and made
more useful.

2. Method

In this section we discuss a few methods for
evaluating text extraction toolkits, including relevant
software and corpus resources. Then we explain the
particular method we explored in order to compare the
performance of Tika 1.5 with a prerelease version of
Tika 1.7. As we will show, the method we selected
revealed several issues that we logged with an open
source project—issues that would have otherwise been
undetected for some time.

2.1. Text Extraction Tools

Wrapping a text extraction toolkit so that it can
operate on a batch of files is essential for evaluating
the performance of a given toolkit on many files. Tika
provides no such wrapper. So, we developed one,
called tika-batch. In addition, we designed this
wrapper to be resistant to Tika failures (e.g.,
encountering problematic files), and provided a
structured output format (i.e., JSON file with fields for

Approved for Public Release. Distribution Unlimited.
Case No. 15-0185. ©2015 The MITRE Corporation.

All Rights Reserved. 2

metadata and document content in primary files and
attachments). The value of this wrapper extends well
beyond an evaluation of Tika. This wrapper can be
used directly in a file processing pipeline, for example,
in the search engine pipeline discussed in Herceg,
Allison, and Ball [4].

Next, we developed a comparison tool that
generates a number of statistics that reveal differences
in text extraction toolkit output. Consider the
following scenario. A system administrator maintains
a search engine that uses Tika to batch-convert a set of
files into text-only renditions (e.g., using Tika 1.5).
The system administrator observes that Apache has
released a new version of the Tika toolkit (e.g., Tika
1.7). The system administrator is faced with the
decision to upgrade, or keep running the installed
version. Herceg [5] discusses the importance of
evaluation for these kinds of technology decisions.

The following sections discuss how we used
development versions of tika-batch and the
comparison tool to evaluate Tika 1.5 versus a
prerelease version of Tika 1.7, which we call Tika 1.7-
SNAPSHOT.

2.2. Data

As a first step, we chose to use the publicly
available govdocs1 corpus (Garfinkel et al. [6]). There
are nearly 1 million files in this corpus. After removing
the files that the creators of the corpus identified as
containing malware, there were 985,172 files,
comprising roughly 470GB of data when unzipped.
The creators of this corpus gathered these files from
web servers in the .gov domain in 2009. The files
include a range of formats. Table 1 shows the top 10
most common file extensions.

Table 1. Top 10 file extensions in the govdocs1 corpus

File extension Number of
documents

pdf 231,009

html 214,264

jpg 109,094

txt 78,178

doc 76,507

xls 62,577

ppt 49,600

gif 36,279

xml 33,451

ps 22,012

It should be noted that this corpus is showing its
age. The corpus contains only a limited quantity of the
more recent Microsoft Office formats: 215 PPTX, 163
DOCX and 37 XLSX files. However, govdocs1 is an
invaluable resource that allows developers and
researchers across the world to collaborate on an open
corpus. Readers are encouraged to perform their own
evaluations with a representative set of their own local
data.

Given the source of the corpus, it is not surprising
that the corpus is comprised mostly of English
documents. In Table 2, we present the results from
running a popular language identification package
(https://code.google.com/p/language-detection/).

Table 2. Top 10 languages automatically identified in the govdocs1
corpus

Language
Code

Number of Documents
Identified as that Language by
Language-Detection Package

English 737,182

German 8,157

French 3,856

Spanish 3,822

Albanian 2,038

Italian 1,233

Portuguese 989

Vietnamese 908

Polish 852

Somali 673

2.3. Hardware, Software, and Configuration

For the evaluation, the authors used a 64-bit, 8 CPU
virtual machine with 8GB of RAM. The operating
system was Red Hat Enterprise Linux Server release
6.5 (Santiago), running Java 1.7.0_40-b43. For each
run of a Tika version, we configured tika-batch to run
with 10 file processors (10 threads).

There are a number of methods and measures that
can be applied to evaluate the performance of a text
extraction toolkit. The differing methods vary in the
type of insight offered and in the cost to run the
evaluation. Some common methods of evaluation
include:
1) Functional Tests – run the extractor against a

corpus and count:
a) The estimated “single-thread time” – the sum

of the times taken to process every document
(if two documents were processed in two
threads, and each took one second, the “single-

Approved for Public Release. Distribution Unlimited.
Case No. 15-0185. ©2015 The MITRE Corporation.

All Rights Reserved. 3

thread time” would be two seconds),
b) The elapsed real time – the time it took from

beginning to end according to a clock (if two
documents were processed in two threads, and
each took one second, the total clock time
would be one second),

c) The number of permanent hangs – how many
documents triggered the text extractor to enter
an apparently permanent hang,

d) The number of fatal errors – how many
documents triggered an error that required
shutting down the process and restarting,

e) The number of caught exceptions – how many
documents caused the text extractor to throw an
exception.

2) Comparison of Output with a Truth Set (i.e.,
ground truth) – manually extract content from a
corpus and build a truth set, or an example for
each file of what the text extraction toolkit should
generate. There are various methods that one can
use to compare the “truth file” to the extracted
file.

3) Post-hoc Analysis – select a random sample of
extracted documents and manually review the
output.

4) Comparative Analysis of Functional Tests,
Exceptions, Attachments, and Content –
automatically compare the execution success and
output of one tool with that of another. Using the
same methods used for the truth set evaluation,
identify:
a) Comparison of the aforementioned functional

tests,
b) The number of “new exceptions” – files which

threw an exception in the more recent version
of the extractor that did not cause an exception
in the earlier version of the extractor,

c) The number of files with fewer attachments in
the more recent version of the extractor than in
the earlier version,

d) The number of files that have substantive
differences in their extracted text between one
tool and another.

Although time and resource constraints limited the
breadth of methods we could explore on this project, it
was reasonable for us to select methods that applied to
the use case presented in Section 2.1. As a result we
chose to implement a comparative analysis of
functional tests, exceptions, attachments, and content
(4).

For item (d) of the comparative analysis, we
determined that it would be unreasonable for a human

to review the huge quantity of file differences that
would occur. Therefore, we developed a heuristic filter
that would pinpoint the Tika 1.5 and Tika 1.7-
SNAPSHOT document pairs that contained
substantive differences in extracted content. From this
subset, one could select individual files for human
review (e.g., a random sample).

The heuristic filter identified document pairs that
had the highest probability of containing substantive
differences. A key part of this filter was the use of a
simple measure called the Dice coefficient (Manning
and Schütze [7]). Specifically, we used the Dice
coefficient between the content extracted from
Tika 1.5 and the content extracted from Tika 1.7-
SNAPSHOT. For tokenization, we relied on an
Apache Lucene analyzer that included the
ICUTokenizer and the ICUFoldingFilter.

Let us say that Tika 1.5 extracted “a b b c c d d e”
from a given file and Tika 1.7-SNAPSHOT extracted
“a b c d f”. Borrowing technical terms from the field
of corpus linguistics, we would say that the text
extracted by Tika 1.5 had 8 “tokens” and 5 “unique
tokens” (i.e., types). Tika 1.5’s text has the following
unique tokens: “a b c d e”, and Tika 1.7-SNAPSHOT
has “a b c d f”. We calculated the Dice coefficient as
2 times the number of shared unique tokens divided by
the sum of the unique tokens in both strings. In this
case it would be 2*4/10, or 0.80. The Dice coefficient
scales the similarity score between 0.0 and 1.0, with
1.0 being perfect similarity.

Dice coefficient applies to this evaluation because
it approximates an answer to the question of: “if I were
to search for a single term in a document, would that
document be retrieved if I used one version of the text
extraction toolkit versus the other?” The Dice
coefficient focuses on the presence or absence of terms
in a document (would the document be retrieved or not
for a given term) versus other measures that focus on
“token” overlap.

We chose to concatenate the content text from
embedded documents with the extracted content text
from each main document. Therefore, if the earlier
version of Tika was not extracting as many embedded
documents as the later, we might expect to find a Dice
coefficient of less than 1.0.

We applied the Dice coefficient in the heuristic
filter that strategically identified the Tika 1.5 and Tika
1.7-SNAPSHOT document pairs with the highest
probability of containing substantive differences.
Specifically, we selected Tika 1.5 and Tika 1.7-
SNAPSHOT document pairs that had all of the
following criteria:

Approved for Public Release. Distribution Unlimited.
Case No. 15-0185. ©2015 The MITRE Corporation.

All Rights Reserved. 4

1) The same number of attachments
2) More than 30 unique tokens in either of the

documents
3) Less than a 0.90 Dice coefficient, or the

documents differed in more than 100 unique
tokens
We selected the above criteria for the following

reasons. We chose the first condition because we
would expect a lower Dice coefficient if two
documents had a different number of attachments. We
chose the second condition because we are not
interested in documents with only a few unique
tokens; and documents with only a few unique tokens
might have inflated differences in Dice coefficients
(for example, if each document in a pair only has two
unique tokens and they only have one unique token in
common, the Dice coefficient will be 0.33). We chose
the final condition to identify documents where there
may be an important difference between the text
extracted by Tika 1.5 versus Tika 1.7-SNAPSHOT.

We anticipated that evaluating on such a large data
set would yield too many files to manually review.
Therefore, we further selected a very small subset of
document pairs for manual inspection. This human
review revealed the fine-grained differences between
Tika 1.5 and Tika 1.7-SNAPSHOT.

3. Results

In this section we present the results from applying
our exploratory text extraction toolkit evaluation
method.

The total estimated “single-thread time” for
processing the corpus was 42 hours for Tika 1.5 and
nearly 36 hours for Tika 1.7-SNAPSHOT. The
elapsed real time was 5 hours for Tika 1.5 and slightly
less than 4.5 hours for Tika 1.7-SNAPSHOT.

There were 8 out-of-memory errors for Tika 1.5,
and 5 files that caused permanent hangs. For Tika 1.7-
SNAPSHOT, there were 6 files that caused out-of-
memory errors and 6 that caused permanent hangs.
Note that the number of out-of-memory errors vary
depending on the run; if, during one run, two large files
are processed at the same time, together they might
cause an error, whereas, if they were not processed
simultaneously, there might not be an out-of-memory
error.

Table 3 shows the number of exceptions that the
comparison tool found when trying to read the output
of the extraction process. This can happen if there is a
zero byte file or if a writer/parser was interrupted
while writing the JSON file. Note that there were
conspicuously more PDF exceptions for Tika 1.7-

SNAPSHOT, but there were fewer exceptions for all
other extensions.

Table 3. JSON exceptions by file extension

File extension Tika 1.5 Tika 1.7-
SNAPSHOT

pdf 44 57

ppt 10 4

txt 10 6

doc 2 6

kmz 2 0

xls 2 0

csv 1 2

html 1 1

pps 1 1

ps 0 1

unk 0 1

Table 4. Caught exceptions, Tika 1.5 vs. Tika 1.7-SNAPSHOT by
file extension

File extension Tika 1.5 Tika 1.7-
SNAPSHOT

xls 2,824 2,828

log 1,253 1,253

ppt 2,195 1,191

doc 847 795

pdf 644 123

xml 417 417

html 161 161

pps 28 8

unk 20 18

kml 19 19

txt 8 6

jpg 5 5

pptx 3 3

rtf 3 2

tmp 2 2

text 2 0

docx 1 1

sgml 1 1

NO_SUFFIX 1 1

TOTAL 8,434 6,834

Table 4 shows the number of caught exceptions for

the two versions of Tika. For Tika 1.7-SNAPSHOT,
there was a noticeable reduction in caught exceptions

Approved for Public Release. Distribution Unlimited.
Case No. 15-0185. ©2015 The MITRE Corporation.

All Rights Reserved. 5

in PPT files and PDF files.
We found an abundance of exceptions related to

Tika’s XML parser, which only processes compliant
XML. If a file contains non-compliant XML, the
parser throws an exception and does not return any
text. Nearly all of the exceptions for the following file
extensions were actually XML parse exceptions:
LOG, XML, KML, and HTML. For Tika 1.7-
SNAPSHOT, these XML exceptions accounted for
more than 25% of all of the observed exceptions.

We were also interested in identifying files that had
exceptions in Tika 1.7-SNAPSHOT but did not have
exceptions in Tika 1.5 (i.e., new exceptions). Table 5
shows that new exceptions occurred at a very low
frequency.

Documents of various formats can have embedded
documents. Typical container files include ZIP files
or TAR files, but files can also be embedded in RTF,
PDF, DOC, PPT, XLS and other Microsoft Office
formats. We found that there was only one DOC file
that had fewer attachments with Tika 1.7-SNAPSHOT
than with Tika 1.5. However, there were several files
that had more attachments with Tika 1.7-SNAPSHOT
than with Tika 1.5, as shown in Table 6. In other
words, Tika 1.7-SNAPSHOT was more successful
than Tika 1.5 at extracting text from attachments.

Table 5. New exceptions in Tika 1.7-SNAPSHOT

File
extension

Number of files with exceptions in Tika
1.7-SNAPSHOT but not in Tika 1.5

xls 6

ppt 4

doc 2

pdf 2

xml 1

Table 6. Number of files with more embedded documents
extracted in Tika 1.7-SNAPSHOT than in Tika 1.5

File extension Number of files

pptx 188

rtf 182

pdf 30

docx 10

doc 10

xlsx 8

zip 4

text 1

According to our method, we applied a heuristic
filter to identify and count the number of files that
showed substantive differences in the extracted
content. Table 7 shows the number of files that have
the following criteria: the same number of
attachments, greater than 30 unique tokens in either of
the documents, and a similarity score of less than 0.90
or a unique token count that diverges by more than
100.

Table 7. Files that met the heuristic filter for potential manual
review.

File extension Number of files

pdf 618

xls 101

java 95

html 6

gz 4

doc 1

Figure 1. Text extracted with Tika 1.5 from 130178.pdf

We selected a few of these documents for detailed
inspection, in order to determine if the content was
better or worse with Tika 1.7-SNAPSHOT. During
manual review of the files identified by the heuristic,
we found differences that indicated new problems with
Tika 1.7-SNAPSHOT’s PDF parser (i.e., regressions
in Apache PDFBox). The version of PDFBox used in
Tika 1.7-SNAPSHOT appeared to regress in at least
two ways from the version of PDFBox used in Tika
1.5. First, some files were truncated with Tika 1.7-

Approved for Public Release. Distribution Unlimited.
Case No. 15-0185. ©2015 The MITRE Corporation.

All Rights Reserved. 6

SNAPSHOT. Second, Tika 1.7-SNAPSHOT appeared
to regress in character mapping. Figures 1 and 2 depict
an example. Figure 1 shows the text extracted from
130178.pdf with Tika 1.5, and Figure 2 shows the text
extracted with Tika 1.7-SNAPSHOT. Notice that
Figure 2 is full of mojibake.

Figure 2. Text extracted with Tika 1.7-SNAPSHOT from
130178.pdf

This detailed inspection had an immediate positive
impact on the Apache Tika and PDFBox projects. We
opened issues with the PDFBox project for each of the
aforementioned findings: PDFBox-2376 and
PDFBox-2377. We also opened issue TIKA-1419.
These published issues and ongoing collaboration
using the govdocs1 corpus allowed a committer on the
PDFBox project to discover other causes for
regression and to make fixes to PDFBox. These
contributed to an upgrade to PDFBox 1.8.8, which is
tracked on TIKA-1442. The details of these posted
issues can be searched at
https://issues.apache.org/jira/i#browse.

One hundred one XLS document pairs had low
Dice coefficient scores. A review of three of these XLS
files showed an improvement in Tika 1.7
SNAPSHOT’s Microsoft Office parser (Apache POI)
in comparison with Tika 1.5. Specifically, Tika 1.5’s
parser (the older version of the Microsoft Office
parser), was incorrectly adding underscores to some
numbers.

Further review of files with low Dice coefficient
scores led us to compressed GZ files. Manual review
of one of these files revealed that, again, the low score
was due to regressions in Tika 1.7 SNAPSHOT’s PDF
parser.

Still further review of low scoring document pairs
revealed a file type identification improvement in Tika
1.7 SNAPSHOT. We reviewed one of the HTML files
(487828.html), and found that it was an FDF file (PDF
font descriptor file), not an HTML file. Tika 1.7-
SNAPSHOT correctly identified it as an FDF file,
whereas Tika 1.5 identified it as an HTML file.

To summarize, using the evaluation method we
found that Tika 1.7-SNAPSHOT regressed in PDF
parsing ability, improved in XLS parsing ability, and
threw fewer exceptions for both PDF files and PPT
files. Furthermore, this evaluation method revealed
that the strict Tika XML parser is problematic. Users
of Tika might consider alternatives to this parser (e.g.,
the more lenient Tika HTML parser).

4. Summary

Text extraction toolkits are vital components of a
number of popular software applications. Developers
need objective measures of a toolkit’s performance
before deciding to embed it in their larger software
application. Therefore, text extraction toolkit
evaluation tools and methods must be developed. In
this paper we discussed some common methods to
evaluate text extraction toolkits, and presented the
specific method that we used to evaluate Tika 1.5
versus a prerelease version of Tika 1.7. The method
involved a comparative analysis of functional tests,
exceptions, attachments, and content. Furthermore, we
used a heuristic filter in order to strategically identify
the subset of output document pairs that had a high
probability of containing substantive differences. This
filtering allows the human review to be focused on the
most revealing document pairs.

The application of this evaluation method revealed
several regressions in Tika’s PDF parser, and we were
able to bring these issues to the attention of the
PDFBox project team. These postings and follow-on
collaboration using the govdocs1 corpus resulted in a
positive ripple effect on the open source project, with
PDFBox developers identifying and posting more
issues. This particular benefit to an open source project
indicates the usefulness of the evaluation method for
text extraction toolkit regression testing. Overall for
the govdocs1 corpus, Tika 1.7-SNAPSHOT had fewer
exceptions than Tika 1.5, especially with PDF files
and with PPT files. If the fixes are made in PDFBox
before Tika 1.7 is released, then, overall, the changes
in Tika 1.7 versus Tika 1.5 would be largely positive,
at least for the govdocs1 corpus.

Approved for Public Release. Distribution Unlimited.
Case No. 15-0185. ©2015 The MITRE Corporation.

All Rights Reserved. 7

The results of this study apply to the govdocs1
corpus. As noted, this corpus is aging, and nearly all
of the documents are in English. The authors strongly
encourage readers to carry out the above types of
evaluation on a representative sample of their
documents to identify potential limitations in the text
extraction component or to identify strengths and
weaknesses when comparing two text extraction
toolkits or two different versions of the same text
extraction component.

We believe that the evaluation method outlined
here can be built into a new component for Tika. Such
a component can follow the model of another popular
open source project: Solr. Solr’s administration user
interface provides several features, including the
evaluation of queries and indexes. The authors plan to
develop and contribute a similar tool, tika-eval, that
will enable users to carry out evaluations of Tika and
other text extraction toolkits.

5. Future Work

During work on this exploratory evaluation effort,
we identified actions that would improve the overall
method in both the short term and in the longer term.
In the short term we plan to pursue developing a
publicly available text extraction evaluation toolkit
(e.g., tika-eval). In the toolkit we plan to include
automatic calculation and reporting of functional test
and comparison statistics. Also, a simple user interface
would help developers strategically select and review
document pairs with a high probability of substantive
differences. Recall that the process of determining
whether differences are good or bad is labor intensive,
involving manual review of file content (i.e.,
document pairs). This toolkit will be instrumental in
guiding the review of document pairs with substantive
differences. Additionally it is targeted to enable
random sampling after the heuristic filter is applied,
and provide a calculation of confidence intervals.

A single metric to identify text extraction failures
is elusive and requires research. Longer term plans
include investigating metrics for automatically
identifying when a text extractor has failed to extract
useful text from a document. Ideally, these metrics
would be language and document format agnostic.
Developers could use these metrics to improve
parsers, and integrators could use these metrics in
thresholds to determine whether or not to process a
document.

It is our hope that the work described here will (a)
encourage the continued development of corpora

similar to that of govdocs1, preferably publicly
available, in order to leverage the effort of open source
developers, and (b) encourage Tika users to actively
submit trouble reports and patches to the Tika project.

References

1. Herceg, P. M. The content extraction technology gap:

Accessing the textual content of computer files. Technical Report

MTR090437. McLean, VA: The MITRE Corporation. December 7,

2009.

2. Herceg, P. M. & Ball, C. N. Reliable electronic text: The

elusive prerequisite for a host of human language technologies.

Technical Report MTR100302. McLean, VA: The MITRE

Corporation. September 30, 2010. Retrieved 10/17/14 from

http://www.mitre.org/sites/default/files/pdf/11_0690.pdf.

3. Mojibake. In Wikipedia. Retrieved 10/17/14 from

http://en.wikipedia.org/wiki/Mojibake.

4. Herceg, P. M., Allison, T. B., & Ball, C. N. A MITRE search

prototype using Outside In and Lucene. Technical Report

MTR090085. McLean, VA: The MITRE Corporation. March 30,

2009.

5. Herceg, P. M. Defining useful technology evaluations.

Technical Report MTR070061R1. McLean, VA: The MITRE

Corporation. September 13, 2007. Retrieved 10/17/14 from

http://www.mitre.org/sites/default/files/pdf/08_0038.pdf.

6. Garfinkel, S., Farrell, P., Roussev, V., & Dinolt, G. Bringing

science to digital forensics with standardized forensic corpora.

Digital Investigation, 6, S2-S11. 2009. Retrieved 10/20/14 from

http://www.sciencedirect.com/science/article/pii/S1742287609000

346.

7. Manning, C., & Schütze, H. Foundations of statistical natural

language processing. Cambridge, MA: The MIT Press. 1999.

