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ABSTRACT

Quantum error correction requires encoding quantum information into a quantum error correction code and measuring error
syndromes to detect and identify possible errors. Quantum fault tolerance typically assumes that syndrome measurements
are applied after every logical gate at great expense both intime and number of qubits. Here we demonstrate that not only
is this not necessary, but that we may achieve greater accuracy when applying syndrome measurements less often. Our
simulations are performed within the [[7,1,3]] quantum error correction code but may be applicable to a broad range of
codes.
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1. INTRODUCTION

Quantum error correction (QEC)1–3 is an essential component of hoped for realistic quantum computers. QEC consists of
three basic parts: encoding quantum information into a QEC code, measuring error syndromes to detect and identify the
error that occurred and, if an error did occur, applying an appropriate recovery operation. Syndrome measurements (SM)
are applied often at great expense in terms of implementation time and number of qubits. In fact, standard approaches to
quantum fault tolerance (QFT), the computational framework that will allow for successful quantum computation despite
a finite probability of error in basic computational gates,4–7 assumes SM are applied after every operation. Here, we
demonstrate that applying SM after every operation is not necessary and in fact should not be done. Applying SM less
often can provide immense savings in time and qubits and willgenerally output a more accurate final state. We support our
assertion via numerical simulations of multiple single-logical-qubit operations on a qubit of quantum information encoded
in the [[7,1,3]] QEC code.8

In order to keep quantum information stored in a QEC code protected from error we must implement logical gates
within the encoding. This greatly restricts the possible gates that can be performed. Nevertheless, universal quantum
computation can be performed within many QEC codes if we utilize the gate set Clifford gates plus theT -gate, a single-
qubitπ/4 phase rotation. For Calderbank-Shor-Steane (CSS) codes such as the [[7,1,3]] code, the ‘logical’ Clifford gates
can be implemented bit-wise, but ‘logical’T -gates requires interaction between the data qubits and a specified ancilla state.

To implement an arbitrary operation we must determine the proper combination of Clifford andT -gates. The question
of performing a single-qubit rotation (within prescribed accuracy) was originally examined in9, 10 and is now an area
of intense investigation.11–17 The primary goal of these explorations has been to design circuits within ǫ of a desired
(arbitrary) rotation while limiting the utilization of resource-heavyT -gates. As an example,RZ(.1) can be implemented
with accuracy better than10−5 using 7816 or 5617 T -gates, interspersed by at least as many single-qubit Clifford gates.
QFT would suggest that SM be applied after each of the more than 100 gates needed at a cost of thousands of additional
qubits and hundreds of time steps.

The tenets of QFT guarantee successful quantum computation, but at the cost of a great number of qubits and gates. Re-
cent work has explored the consequences of relaxing some of these strict rules while still achieving high fidelity gates.18–20

A few studies have specifically addressed the question of performing SM less often than after every gate.21–25 They demon-
strate that applying SM less often will consume less resources, while still enabling successful quantum computation and,
in general, achieving higher fidelity.

The following argument demonstrates that there is no fundamental need to apply SM after every logical gate. Let us
use as our example the [[7,1,3]] QEC code. Measuring the syndromes of this code will allow us to correctly identify and
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correct an error on a single physical qubit. Were errors to have occurred on two (physical) qubits the SM will (generally)
misidentify the error. For this example, we begin with a single qubit state perfectly encoded in the [[7,1,3]] QEC code.
We then apply Clifford gates that are imperfectly implemented: causing an error on each qubit with probabilityp ≪ 1.
After one Clifford gate the probability that an error occurred on one qubit is then7p−O(p2). The probability that an error
occurred on two qubits is21p2 − O(p3). Given thatp is small we can reasonably assume that, at most, only one qubit
will have an error. That error can be identified by SM and corrected by an appropriate recovery operation. If we were
now to implement a second Clifford gate, without performingSM in between, the probability that an error occurred to one
qubit increases to14p− O(p2) and the probability that errors occurred to two qubits increases to84p2 − O(p3). Again,
the probability of errors on two qubits is second order inp and if we were to now apply SM and a recovery operation we
will almost certainly correct the state of the system. Aftern gates without SM the probability of an error on one qubit is
7n−O(p2) and on two qubits21(n+2

(

n
2

)

)p2. Yet again, the probability that two errors occur remains oforderp2 and SM
will correct the single-qubit errors. Given that QEC will correct an error of one qubit and the probability of errors on two
qubits is small clearly QEC is not needed until the end of the gate sequence. This is because at no point will the probability
of errors on two or more qubits be of orderp (a similar argument can be made when including a two-qubit Clifford gate
such as a controlled-NOT gate, this will be explored elsewhere). T -gates are not implemented bit-wise. Nevertheless, as
we demonstrate below, the rules of QFT ensure that the probability of an error occurring on two qubits is of orderp2. Thus,
even if our gate sequence includesT -gates, assuming the error probability is small enough, there is no reason to apply SM
until the end of the entire sequence.

So why is it assumed that SM are applied often? The reason is that our error probability is not that low. If we do not
apply SM often enough the probability that errors will occuron two qubits will become too high. This will either cause
the SM at the end of the gate sequence to be too high, or will cause strong degredation of fidelity even if the SM may be
successful. Of course, if SM were implemented perfectly andwe had infinite resources, we should apply SM as often as
possible. Given that this is unrealistic we are left to ask, how often should SM be applied? Constant application of SM
will be costly in time and qubits and, because they are imperfect, may introduce additional errors. Not applying SM often
enough may allow error probabilities to grow too quickly.

Our explorations will be conducted via simulations of logical single-qubit gates performed on quantum information
encoded in the [[7,1,3]] QEC code in a nonequiprobable Paulioperator error environment26 with non-correlated errors. In
this error model different Pauli errors occur with different arbitrary probabilities. Each individual physical qubitthat takes
part in a gate, measurement, or initialization undergoes aσj

x error with probabilitypx, σj
y error with probabilitypy, and

σj
z error with probabilitypz, whereσj

i , i = x, y, z are the Pauli spin operators on qubitj. Qubits not taking part in a gate
operation, initialization, or measurement are assumed to be perfectly stored.

In our simulations we begin with an arbitrary single-qubit state,|ψ〉 = cosα|0〉+eiβ sinα|1〉, perfectly encoded into the
[[7,1,3]] error correction code. We then apply of sequence of gates. The sequence is made up of composite gatesA = HPT
andB = HT , whereH is the Hadamard gate andP is a phase gate. These composite gates are form the basic building
blocks for longer gate sequences capable of implementing arbitrary single qubit gates. The exact simulations of each gates
is as follows. Implementing a Clifford gate,C on the [[7,1,3]] QEC code requires implementingC† on each of the 7 qubits.
The first step in performing the logicalT -gate is the construction of the ancilla state|Θ〉 = 1√

2
(|0L〉 + ei

π

4 |1L〉), where

|0L〉 and|1L〉 are the logical basis states on the [[7,1,3]] QEC code. Bit-wise CNOT gates are then applied between the
state|Θ〉 and the encoded state with the|Θ〉 state qubits as control. Measurement of zero on the encoded state projects
onto the qubits that had made up the|Θ〉 state the encoded state with the application of aT -gate.

To ensure fault tolerance in the construction of|Θ〉 requires the following steps: (1) A logical zero state is encoded by
applying error correction to 7 qubits all initially in the state|0〉.4 We use Shor state ancilla for syndrome measurements.5

(2) A seven qubit Shor state5 in constructed and proper verifications are applied. (3) Seven controlled-ZPX gates:

C(ZPX) =









1 0 0 0
0 1 0 0
0 0 0 ei

π

4

0 0 e−iπ
4 0









, (1)

are applied each between a qubit of the Shor state and a qubit of the logical zero state with the Shor state qubits as control.
(4) Measurement of the Shor state (with even parity outcome)completes the projection and the construction of the logical
state|Θ〉. Circuits for these steps are shown in Figs. 1 and 2. Our simulations follow the method described in.20



Figure 1. Implementation of [[7,1,3]] QEC codeT -gate.

Figure 2. Left: Circuit for phase syndrome measurement on the [[7,1,3]] QEC code. Right: Four qubit Shor state construction with one
verification.

SM are performed via the Shor state ancilla. Shor states appropriate for the [[7,1,3]] QEC code are four qubit GHZ
states with a Hadamard gate appended for each qubit. The construction of the necessary Shor states is now described and,
in our simulations, is done in the non-equiprobable error environment. We start with four qubits assumed to be noisily
initialized in the state|ψi〉 =

1√
2
(|0〉 + |1〉)|000〉. The construction requires three CNOT gates and a verification step to

test the parity of the qubits and ensure no error has taken place. The construction is shown in Fig. 2.

As shown in Fig. 2 bit-flip and phase-flip SM each require threemeasurements to properly locate and identify potential
errors. In order to adhere to the rules of QFT, these six SM must be repeated until the same SM is read out twice to ensure
that no errors happened during the SM themselves. In our simulations we have assumed that the same SM is read out the
first two times. In addition, we assume that the SM indicates no error has occurred. Were the SM to indicate error, a (noisy)
recovery operation would have to be applied with some cost tothe accuracy of the implementation.

To determine how often SM should be applied during a gate sequence we simulate the implementation of 20 randomly
chosen composite gates (comprising 50 total gates):

U = ABBBAAAABBABABABBBAA, (2)

with each gateH , P , andT and all associated ancilla construction, implemented in the non-equiprobable error environ-
ment. We then formulate 7 SM application schemes: applying QEC after every gate, (q = 50, whereq is the number of
QEC applications), after every composite gateA andB (q = 20), after every two composite gates (q = 10), after every 5
composite gates (q = 4), after each half of the sequenceU (q = 2), after the entire sequence (q = 1), and not at all (q = 0).
Every physical gate of the QEC implementation, including Shor state construction,27 is also done in the nonequiprobable
error environment. Each scheme is simulated for error environments of different values ofpx, py andpz. Our initial state
is the basis state|0〉. Other initial states and gate sequences were explored and give similar results.



Table 1. Second line: infidelity of final state after 50 noisy gates with noisy SM applied after each as a function of depolarization strength
p = px = py = pz. Lower lines: fractional increase or decrease of infidelityfor different SM application schemes compared to SM
after every gate.

q p = 10−9 p = 10−7 p = 10−5 p = 10−3

50 4.50× 10−8 4.50× 10−6 4.54× 10−4 8.27× 10−2

20 1.46× 10−7 7.52× 10−7 7.55× 10−5 7.85× 10−3

10 1.62× 10−7 2.73× 10−7 2.80× 10−5 4.97× 10−3

4 2.34× 10−7 −1.97× 10−7 −1.89× 10−5 1.52× 10−3

2 2.20× 10−7 −2.73× 10−7 −2.65× 10−5 9.88× 10−4

1 2.96× 10−7 −3.41× 10−7 −3.32× 10−5 5.12× 10−4

0 −1.02 −1.02 −1.01 −.544

Each of the SM application schemes will be compared for cost and accuracy. The cost is straightforward. Each SM
application comes at a cost of 12 Shor states totalling at least 60 qubits (4 per state and one for verification) and at least12
time steps. We leading to a final state,ρf , of the 7 qubits. We determine the accuracy of the simulated implementations
by comparing the final seven-qubit state,ρf , with the final state after perfectly applied gates,ρi via the state fidelity
F (ρi, ρf ) = Tr[ρiρf ]. In addition we will find it useful to utilize the infidelityI(ρi, ρf ) = 1 − F (ρi, ρf ). We note that
this fidelity measure gives very similar results to the single logical qubit fidelity because the errors affect the entirestate
space more or less uniformly.

In this paper we look concentrate on a depolarizing environmentp = px = py = pz. Other environments are explored
elsewhere.24, 25 Results of our simulations are shown in the Table. The secondline of Table reports the infidelity of the
output state when QEC is applied after every gate,I50. The lower lines show the fractional change,D, of the infidelity
when using other QEC application schemes:

D(I50, Iq) =
I50 − Iq
I50

(3)

for q = 20, 10, 4, 2, 1, 0. A positive fractional change means a higher fidelity when using less QEC. Negative fractional
change means the fidelity is higher when applying QEC after every gate. We note, however, that even if applying QEC
after every gate gives the highest fidelity, this does not mean it is the optimal choice of QEC application scheme. If the
fractional change,D(I50, I1) is small one may achieve an almost optimal fidelity while saving a factor of up to 50 in time
and number of qubits, perhaps a worthwhile tradeoff.

From the Table we see that the optimum accuracy is achieved byapplying SM after every composite gate (q = 20).
This also provides a 60% savings in time and number of qubits when compared to applying SM after every gate. The case
of q = 10 also provides better accuracy than applying SM after every gate. This demonstrates that applying (noisy) SM
more often does not translate to higher fidelity. Forq < 10 we find that the fidelity is lower than when applying SM after
every gate. Nevertheless, the reduction in accuracy by a fewparts in106 may be worthwhile given that it comes with a
savings in resources of up to 98%.

We now look at the infidelities themselves as a function of error probabilites and number of gates. We concentrate on
the case when QEC is applied after every gate and note that deviations from this for the other QEC schemes are extremely
small. In a depolarizing environment the infidelity increases by an order of magnitude for every order of magnitude increase
in error probability up top = 10−4, after which the increase is slightly faster.

In a depolarizing environment when QEC is applied after every gate, the infidelity increases linearly as a function
of gate number as shown in Fig. 3. When QEC is not applied afterevery gate, the infidelity is lowest after aT gate and
increases after application of anH orP gate. This behavior will be explored elsewhere. When QEC is applied the infidelity
is lowered practically to that of the scheme when QEC is applied after every gate. The linear fit for infidelity for an error
probability ofp = 10−3 is given by8.1 × 10−4t + .045 wheret is the gate number. Forp = 10−5, 10−7, and10−9, the
fits are given by8.3× 10−8t+4.5× 10−4, 8.3× 10−12t+4.5× 10−5, and8.3× 10−16t+4.5× 10−7. To achieve better
insight, we define a critical fidelity,Fc. Output states with lower fidelity will be considered unacceptable. Based on the fits
we can determine how many gates can be performed while the output state fidelity remains belowFc. AssumingFc = .9
we find that for error probabilityp = 10−3 69 gates can be performed. Forp = 10−5, 10−7, and10−9, the number of
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Figure 3. Fidelity as a function of gates in the depolarizingenvironment forp = 10
−3, 10−4, 10−5, 10−6 (top to bottom) and for QEC

implementation methodsq = 1 (·), q = 2 (⋄), q = 20 (◦), q = 50 (×). The dashed line is a least squares linear fit to fidelity when
q = 50.

gates is1.1× 107, 1.1× 1011, and2.5× 1015. In other words, for every order of magnitude decrease in error probability,
we find about a two order magnitude increase in the number of gates that can be performed for a givenFc (similar trends
occur for other values ofFc).

In conclusion, our study casts doubt on the assumption that one should apply SM after every logical gate. Our simula-
tions demonstrate that applying Shor state SM on information encoded in the [[7,1,3]] QEC code after every logical gate
will generally not maximize the output state fidelity. In a depolarizing environment it is best to apply QEC after every
compositeA andB gate. In addition, the difference in fidelity between the scheme where QEC is applied after every gate
and a scheme where QEC is applied only once after 50 gates is extremely minimal. It may be far more practical to apply
SM less often and gain a 50-fold savings in time and number of qubits.

Our analysis points to additional trends that are importantfor aspects of quantum fault tolerance. First, we have
determined the change in fidelity for the depolarizing environment as a function of error probability. Importantly we have
calculated the number of gates that can be applied in a depolarizing environment before reaching a given critical fidelity and
shown how that number changes with error strength. Finally,we have seen how the fidelity changes with time depending
on which gates and when SM are applied. While these simulations were done with a specific choice of QEC code and SM
the results promise to be important for explorations of other QEC choices. Further work will explore other QEC codes and
strategies with the goal of tailoring an optimal error correction and SM approach to a given error environment.
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