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How Often Must We Apply Syndrome M easur ements?

Y. S. Weinstein
Quantum Information Science Group, MITRE, 200 Forrestal Rdnceton, NJ 08540

ABSTRACT

Quantum error correction requires encoding quantum inébion into a quantum error correction code and measurirg err
syndromes to detect and identify possible errors. Quanswit tolerance typically assumes that syndrome measutsmen
are applied after every logical gate at great expense bdimeand number of qubits. Here we demonstrate that not only
is this not necessary, but that we may achieve greater ancwtaen applying syndrome measurements less often. Our
simulations are performed within the [[7,1,3]] quantumoercorrection code but may be applicable to a broad range of
codes.
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1. INTRODUCTION

Quantum error correction (QEEY is an essential component of hoped for realistic quantunpetens. QEC consists of
three basic parts: encoding quantum information into a Q&f2cmeasuring error syndromes to detect and identify the
error that occurred and, if an error did occur, applying aorapriate recovery operation. Syndrome measurements (SM)
are applied often at great expense in terms of implementétice and number of qubits. In fact, standard approaches to
quantum fault tolerance (QFT), the computational framéwvtbat will allow for successful quantum computation despit

a finite probability of error in basic computational gatesassumes SM are applied after every operation. Here, we
demonstrate that applying SM after every operation is noesgary and in fact should not be done. Applying SM less
often can provide immense savings in time and qubits andyeiierally output a more accurate final state. We support our
assertion via numerical simulations of multiple singlgit@l-qubit operations on a qubit of quantum informationered

in the [[7,1,3]] QEC codé.

In order to keep quantum information stored in a QEC codeeptet! from error we must implement logical gates
within the encoding. This greatly restricts the possibleegdhat can be performed. Nevertheless, universal quantum
computation can be performed within many QEC codes if wézeatihe gate set Clifford gates plus tliegate, a single-
qubitz/4 phase rotation. For Calderbank-Shor-Steane (CSS) codksastthe [[7,1,3]] code, the ‘logical’ Clifford gates
can be implemented bit-wise, but ‘logical-gates requires interaction between the data qubits anekcifigg ancilla state.

To implement an arbitrary operation we must determine theg@rcombination of Clifford an@’-gates. The question
of performing a single-qubit rotation (within prescribedcaracy) was originally examined%a° and is now an area
of intense investigatioh™’ The primary goal of these explorations has been to desiguitsrwithin e of a desired
(arbitrary) rotation while limiting the utilization of resirce-heavyl'-gates. As an exampl&z(.1) can be implemented
with accuracy better thah0—> using 78° or 56'7 T-gates, interspersed by at least as many single-qubib@iiffates.
QFT would suggest that SM be applied after each of the more1b8 gates needed at a cost of thousands of additional
qubits and hundreds of time steps.

The tenets of QFT guarantee successful quantum computhtibat the cost of a great number of qubits and gates. Re-
cent work has explored the consequences of relaxing sorhesé strict rules while still achieving high fidelity gatés°
A few studies have specifically addressed the question ébeing SM less often than after every gate?® They demon-
strate that applying SM less often will consume less ressjhile still enabling successful quantum computatiah an
in general, achieving higher fidelity.

The following argument demonstrates that there is no furetdah need to apply SM after every logical gate. Let us
use as our example the [[7,1,3]] QEC code. Measuring thersymels of this code will allow us to correctly identify and
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correct an error on a single physical qubit. Were errors te@fwecurred on two (physical) qubits the SM will (generally)
misidentify the error. For this example, we begin with a &ngubit state perfectly encoded in the [[7,1,3]] QEC code.
We then apply Clifford gates that are imperfectly impleneehtcausing an error on each qubit with probability 1.
After one Clifford gate the probability that an error oc@dion one qubit is thefp — O(p?). The probability that an error
occurred on two qubits i81p? — O(p?). Given thatp is small we can reasonably assume that, at most, only oné qubi
will have an error. That error can be identified by SM and cdee by an appropriate recovery operation. If we were
now to implement a second Clifford gate, without perform8ig in between, the probability that an error occurred to one
qubit increases ta4p — O(p?) and the probability that errors occurred to two qubits iases t4p? — O(p?). Again,

the probability of errors on two qubits is second ordep iand if we were to now apply SM and a recovery operation we
will almost certainly correct the state of the system. Aftegates without SM the probability of an error on one qubit is
7n—O(p?) and on two qubit@1(n+2(}))p?. Yetagain, the probability that two errors occur remainsraterp? and SM

will correct the single-qubit errors. Given that QEC willroect an error of one qubit and the probability of errors oo tw
qubits is small clearly QEC is not needed until the end of #ite gequence. This is because at no point will the probgabilit
of errors on two or more qubits be of ordefa similar argument can be made when including a two-qubifio@d gate
such as a controlled-NOT gate, this will be explored elseehd -gates are not implemented bit-wise. Nevertheless, as
we demonstrate below, the rules of QFT ensure that the pildipatb an error occurring on two qubits is of ordgt. Thus,
even if our gate sequence includégyates, assuming the error probability is small enoughietigeno reason to apply SM
until the end of the entire sequence.

So why is it assumed that SM are applied often? The reasoati®th error probability is not that low. If we do not
apply SM often enough the probability that errors will ocoartwo qubits will become too high. This will either cause
the SM at the end of the gate sequence to be too high, or wilecatrong degredation of fidelity even if the SM may be
successful. Of course, if SM were implemented perfectlywadad infinite resources, we should apply SM as often as
possible. Given that this is unrealistic we are left to asky loften should SM be applied? Constant application of SM
will be costly in time and qubits and, because they are ingo¢rfnay introduce additional errors. Not applying SM often
enough may allow error probabilities to grow too quickly.

Our explorations will be conducted via simulations of ladisingle-qubit gates performed on quantum information
encoded in the [[7,1,3]] QEC code in a nonequiprobable Regrator error environmetttwith non-correlated errors. In
this error model different Pauli errors occur with diffetanbitrary probabilities. Each individual physical quthiat takes
part in a gate, measurement, or initialization undergoes arror with probabilityp., og error with probabilityp,,, and

o’ error with probabilityp., Whereaf, 1 = x,y, z are the Pauli spin operators on qufitQubits not taking part in a gate
operation, initialization, or measurement are assumee foelfectly stored.

In our simulations we begin with an arbitrary single-quiits,|:)) = cos a|0)+¢% sin a|1), perfectly encoded into the
[[7,1,3]] error correction code. We then apply of sequerfgates. The sequence is made up of composite gatedd PT
andB = HT, whereH is the Hadamard gate ariélis a phase gate. These composite gates are form the basisguil
blocks for longer gate sequences capable of implementhityany single qubit gates. The exact simulations of eathgja
is as follows. Implementing a Clifford gat€, on the [[7,1,3]] QEC code requires implementifi§ on each of the 7 qubits.
The first step in performing the logicdl-gate is the construction of the ancilla staf = %(|OL> +€'T 1)), where
|0.) and|1.) are the logical basis states on the [[7,1,3]] QEC code. BSeVCNOT gates are then applied between the
state|®) and the encoded state with tft@) state qubits as control. Measurement of zero on the encddedojects
onto the qubits that had made up {8 state the encoded state with the application dtgate.

To ensure fault tolerance in the construction®j requires the following steps: (1) A logical zero state iscted by
applying error correction to 7 qubits all initially in theas|0).* We use Shor state ancilla for syndrome measurentents.
(2) A seven qubit Shor statén constructed and proper verifications are applied. (3pB@ontrolled-ZPX gates:

1 0 0 0
0 1 0

C(ZPX) = 0 0 0 ei% ) (l)
0 0 e 0

are applied each between a qubit of the Shor state and a dubé ogical zero state with the Shor state qubits as control
(4) Measurement of the Shor state (with even parity outcarogjpletes the projection and the construction of the Idgica
state|©). Circuits for these steps are shown in Figs. 1 and 2. Our sitiouis follow the method described3.
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Figure 1. Implementation of [[7,1,3]] QEC codégate.
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Figure 2. Left: Circuit for phase syndrome measurement erj[ih1,3]] QEC code. Right: Four qubit Shor state constaunctvith one
verification.

SM are performed via the Shor state ancilla. Shor statesoppipte for the [[7,1,3]] QEC code are four qubit GHZ
states with a Hadamard gate appended for each qubit. Th&eatien of the necessary Shor states is how described and,
in our simulations, is done in the non-equiprobable errmirenment. We start with four qubits assumed to be noisily
initialized in the statéy;) = %UO} + |1))|000). The construction requires three CNOT gates and a verificatiep to
test the parity of the qubits and ensure no error has takee plhe construction is shown in Fig. 2.

As shown in Fig. 2 bit-flip and phase-flip SM each require thresasurements to properly locate and identify potential
errors. In order to adhere to the rules of QFT, these six SM meisepeated until the same SM is read out twice to ensure
that no errors happened during the SM themselves. In oullaiioos we have assumed that the same SM is read out the
first two times. In addition, we assume that the SM indicatesmor has occurred. Were the SM to indicate error, a (noisy)
recovery operation would have to be applied with some casted@ccuracy of the implementation.

To determine how often SM should be applied during a gateesszpiwe simulate the implementation of 20 randomly
chosen composite gates (comprising 50 total gates):

U = ABBBAAAABBABABABBBAA, )

with each gate, P, andT and all associated ancilla construction, implemented énntbn-equiprobable error environ-
ment. We then formulate 7 SM application schemes: applyiBG @fter every gateg(= 50, whereq is the number of
QEC applications), after every composite gdtand B (¢ = 20), after every two composite gateg£ 10), after every 5
composite gateg (= 4), after each half of the sequentdq = 2), after the entire sequencg £ 1), and not at all¢ = 0).
Every physical gate of the QEC implementation, includingiSitate constructiofY,is also done in the nonequiprobable
error environment. Each scheme is simulated for error enments of different values @f,, p, andp.. Our initial state

is the basis stat®). Other initial states and gate sequences were explorediemdimilar results.



Table 1. Second line: infidelity of final state after 50 noisyeg with noisy SM applied after each as a function of defzaltion strength
p = pz = py = p.. Lower lines: fractional increase or decrease of infiddlitydifferent SM application schemes compared to SM

after every gate.

lg] p=10" | p=10" | p=10"° | p=10"3 |

[50] 450x107% [ 450x10°° | 454x10~* [827x 107 |
20| 1.46 x 107 | 7.52x 107" 755 x107° [ 7.85 x 1073
10| 1.62x 1077 | 2.73x 10~ 7 2.80 x 10° | 4.97 x 1073
4 1234x1077 | —1.97x1077 | —=1.89 x 107° | 1.52x 103
2 [220x1077 | —2.73x 1077 | —2.65x 107° | 9.88 x 10~ *
1 [1296x1077 | —341x1077 | —=3.32x107° | 5.12x 10~*
0 —1.02 —1.02 —1.01 —.544

Each of the SM application schemes will be compared for codtaccuracy. The cost is straightforward. Each SM
application comes at a cost of 12 Shor states totalling at B&qubits (4 per state and one for verification) and at [E2ast
time steps. We leading to a final statg, of the 7 qubits. We determine the accuracy of the simulatgdémentations
by comparing the final seven-qubit stajg,, with the final state after perfectly applied gatgs,via the state fidelity
F(pi,ps) = Tr[pipy]. In addition we will find it useful to utilize the infidelity (p;, ps) = 1 — F(pi, py). We note that
this fidelity measure gives very similar results to the serigigical qubit fidelity because the errors affect the erdiete
space more or less uniformly.

In this paper we look concentrate on a depolarizing enviremm = p, = p, = p.. Other environments are explored
elsewheré® 2> Results of our simulations are shown in the Table. The setinacdf Table reports the infidelity of the
output state when QEC is applied after every géig, The lower lines show the fractional chande, of the infidelity
when using other QEC application schemes: E .

50 — 14g¢

D(Iso, I,) = (3)

for ¢ = 20,10,4,2,1,0. A positive fractional change means a higher fidelity wheingitgess QEC. Negative fractional
change means the fidelity is higher when applying QEC afteryegate. We note, however, that even if applying QEC
after every gate gives the highest fidelity, this does notmies the optimal choice of QEC application scheme. If the
fractional changeD (150, I1) is small one may achieve an almost optimal fidelity while sg\a factor of up to 50 in time
and number of qubits, perhaps a worthwhile tradeoff.

From the Table we see that the optimum accuracy is achievegplying SM after every composite gatge £ 20).
This also provides a 60% savings in time and number of qubdiesnwcompared to applying SM after every gate. The case
of ¢ = 10 also provides better accuracy than applying SM after evatg.gThis demonstrates that applying (noisy) SM
more often does not translate to higher fidelity. For 10 we find that the fidelity is lower than when applying SM after
every gate. Nevertheless, the reduction in accuracy by gt in10° may be worthwhile given that it comes with a
savings in resources of up to 98%.

We now look at the infidelities themselves as a function adrgprobabilites and number of gates. We concentrate on
the case when QEC is applied after every gate and note thigtides from this for the other QEC schemes are extremely
small. In a depolarizing environmentthe infidelity incresby an order of magnitude for every order of magnitude asege
in error probability up tg = 104, after which the increase is slightly faster.

In a depolarizing environment when QEC is applied after ygate, the infidelity increases linearly as a function
of gate number as shown in Fig. 3. When QEC is not applied aftery gate, the infidelity is lowest after/agate and
increases after application of &hor P gate. This behavior will be explored elsewhere. When QE@jidied the infidelity
is lowered practically to that of the scheme when QEC is appdifter every gate. The linear fit for infidelity for an error
probability ofp = 1072 is given by8.1 x 10~%¢ + .045 wheret is the gate number. Fgr= 10=°,10~7, and10~?, the
fits are given by8.3 x 1078¢ + 4.5 x 1074, 8.3 x 10712¢ +4.5 x 107°, and8.3 x 1016t + 4.5 x 10~7. To achieve better
insight, we define a critical fidelityg,.. Output states with lower fidelity will be considered ungutedle. Based on the fits
we can determine how many gates can be performed while tipeiostate fidelity remains below.. AssumingF, = .9
we find that for error probability = 10~3 69 gates can be performed. Fore= 107°,10~7, and10~?, the number of
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Figure 3. Fidelity as a function of gates in the depolarizngironment fop = 1073,107%,107°,10~° (top to bottom) and for QEC
implementation methodg = 1 (-), ¢ = 2 (¢), ¢ = 20 (o), ¢ = 50 (x). The dashed line is a least squares linear fit to fidelity when
q = 50.

gatesisl.1 x 107, 1.1 x 10'1, and2.5 x 10'5. In other words, for every order of magnitude decrease iorgmobability,
we find about a two order magnitude increase in the numbertetdghat can be performed for a givéh (similar trends
occur for other values af,.).

In conclusion, our study casts doubt on the assumption ti@asbould apply SM after every logical gate. Our simula-
tions demonstrate that applying Shor state SM on informatimcoded in the [[7,1,3]] QEC code after every logical gate
will generally not maximize the output state fidelity. In apdéarizing environment it is best to apply QEC after every
composited and B gate. In addition, the difference in fidelity between theesok where QEC is applied after every gate
and a scheme where QEC is applied only once after 50 gatetrésresty minimal. It may be far more practical to apply
SM less often and gain a 50-fold savings in time and numbeubits|.

Our analysis points to additional trends that are imporfantaspects of quantum fault tolerance. First, we have
determined the change in fidelity for the depolarizing emwment as a function of error probability. Importantly werda
calculated the number of gates that can be applied in a dégintaenvironment before reaching a given critical fidetind
shown how that number changes with error strength. Finakyhave seen how the fidelity changes with time depending
on which gates and when SM are applied. While these simuktieere done with a specific choice of QEC code and SM
the results promise to be important for explorations of o@EC choices. Further work will explore other QEC codes and
strategies with the goal of tailoring an optimal error coti@n and SM approach to a given error environment.
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