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Abstract 
There is an inherent challenge in creating a shared architecture that facilitates the 

development and execution of analytics on variegated data for multiple lines of computational 

research. This is especially true when each line can have a distinct expectation of how the results 

will be used. This paper discusses a project, BlueRidge, with a proposed architectural model that 

addresses the specified challenge. BlueRidge intends to be a single unified model of all discrete, 

necessary components that make up computational threads. Such an architectural model must 

address (1) how the data will be ingested, (2) how the data and results will be represented, 

maintained, and warehoused, (3) how the results will be accessed, (4) how issues of analytic 

orchestration, in particular spanning multiple clouds, will be addressed, and (5) how data lineage 

is established through provenance. This suggests that many different technology decisions must 

be made, whether the technologies are internally developed or drawn from existing solutions 

(open-source, free, or commercial). Requirements will be based on the acquired data, the 

expected activities, the available assets, and ultimately the desired outcomes across the supported 

research community. 
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1 Introduction 
The development and execution of analytics in a research setting can be facilitated by 

having a software architecture to support these activities [1, 2, 3, 4]. It is challenging to develop 

a generalized architectural model that will be shared by many computational research domains 

analyzing different data sets and producing unique results for varied use-cases. Recognizing the 

appropriate solutions to use or develop and how the model handles each core competency of 

architecture must be examined. A model that addresses these challenges applies to different 

research scenarios with varied requirements and desired outcomes. An appropriate application of 

this model is in support of the MITRE Data-to-Decisions [5] investment area.  

 

 
Figure 1. Data-to-Decisions research stack. 

 

Data-to-Decisions (D2D) is a broad effort that seeks to use data for decision making 

purposes. The effort is directed toward multiple, varied domains, where each domain addressed 

is a thread comprised of related projects. The general workflow for a given domain-focused 

thread begins with data preparation. By way of pattern recognition and analysis the relevant 

knowledge is extracted for storage as results. Results are then digested and visualized in a 

manner such that a user receives the necessary indicators that can guide making optimal 

decisions and taking optimal actions. Figure 1 depicts this high-level flow, which can handle 
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multiple threads distinguished by different domain needs, results, and decisions. This can be 

viewed as a natural extension of the intelligence reference model (discussed in the Appendix). 

What we refer to as the Data-to-Decisions research stack is an instantiation of the core activities 

that one can expect in a general research stack, which aligns to the same high-level flow.  

 

 
Figure 2. Flow of activity through the research stack. 

 

The core elements, or layers, of D2D, which drive the design of its architectural model 

and analytic framework, include data preparation, pattern recognition, visualization, and 

decision-making. Data preparation encompasses the identification and acquisition of relevant 

data. Pattern recognition isolates salient features and identifies useful patterns to be captured in 

results, typically by way of automated processes. Visualization depicts patterns and results in a 

representation that can demonstrate the relevance in an operational context. The decision-making 

layer represents a user-orchestrated process that relies on the depicted patterns to take informed 

and improved actions. Cases of decision-making can then be data-driven and near real-time to 

real-time or question-driven and just-in-time. Figure 2 elaborates on the high-level flow, 

demonstrating where there is interplay between the layers and the intermediate knowledge store. 

Data preparation naturally precedes pattern recognition, but the level of success driven by the 

results of pattern recognition can also inform further data preparation tasks, after the value and 

potential shortfalls of analytic processes are exposed. Similarly, while visualization informs 
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decision, decisions can also lead to changes, online or offline, in how knowledge resulting from 

pattern recognition is visualized. 

Domain-specific threads will pass through each of these layers as part of the flow to 

assist decisions. For any given thread across these layers, there is the potential for interplay 

between automated processes and human-driven activity. Both are discussed in this document, 

but the emphasis is on automated processes. 

Related to these different layers, there are different, independent roles individuals have 

with respect to the architectural model and its implementation. The key distinctions are between 

thread leaders, researchers, and users. Thread leaders are typically subject matter experts who 

define or identify use-cases relevant to a domain and orchestrate researchers and analytics 

toward the use-case goals. This requires insight and attention at all levels, but especially at the 

data preparation and decision layers. Researchers are those who develop or implement solutions 

and applications for the domain-specific problems at a project level. This typically involves the 

pattern recognition and visualization layers. Users are those who examine results to inform their 

downstream actions and are engaged by the output of the visualization and at the decision-

making layer.  

The diversity of domain problems to be addressed across research threads suggests 

multiple differing data sources, data formats, analytic processes, and workflow capabilities. A 

supporting architecture must accommodate this expected diversity. Further, the architecture must 

be built so that research and development activities’ needs are given precedence over those 

desired in a production environment. In research and development, the flexibility of execution, 

repeatability of experiments, and retention of results are emphasized, while in production 

environments, efficiency is usually the primary concern. 

This document covers a proposed architectural model that is capable of supporting the 

Data-to-Decisions research stack and other scenarios that fit the template it outlines. We discuss 

approaches that can be applied to the architectural model and issues that must be addressed by 

these approaches. While this work intends to address the challenges posed in Data-to-Decisions, 

we are interested in a solution that can be also applied more widely as a general architectural 

model for any computational research stack, especially where multiple threads of research may 

be expected to coexist. 
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2 Layout  

2.1 Hadoop and Alternatives 

The task of configuration encompasses issues relating to software architecture capable of 

alignment with many possible underlying computational patterns. In anticipation of the need for 

scalability in order to handle the size and scope of data and tasks across different domains, this 

leads to an implicit assumption that cloud-computing is an underlying pattern of primary interest. 

It should be kept in mind that it is not the only pattern and the solutions described here, while 

using the cloud-computing pattern for specific examples and diagrams, are applicable to other 

underlying computational patterns. 

 

 
Figure 3. View of a Hadoop cloud stack. 

 

Considering configuration and partitioning with the above in mind, several standard 

cloud stacks exist (Figure 3 is a representative picture of a Hadoop [6, 7] cloud stack such as 

Cloudera provides), and those that are part of a thread’s required architecture need to be 

supported. If a new stack is proposed, there must be a responsible party for fabricating or 

providing the solution. Core functionalities of this cloud stack can be replaced in pieces or as a 
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whole. Other similar or quite different services could be used in place of a Cloudera installation 

depending on the needs of a particular domain, thread, or collection of projects.  

Given the importance of data in computational research domains, solutions likely need to 

scale. Some valid alternatives to Cloudera as the situation dictates include MongoDB, Neo4j, and 

Cassandra. Most of these database alternatives are directed toward specific use-cases, such as 

Neo4j to graphs and MongoDB to documents. Choosing an alternative requires certain 

conditions in data and results to be met.  

Using individual physical or virtual machines without scalability acting as standalone 

services within the architecture is also feasible. These cases are less problematic in terms of the 

core issues of partitioning discussed below, but are valid possibilities, even in combination with 

multiple cloud solutions. The examples that follow continue to assume an underlying Hadoop 

distribution, given its ubiquity and generalizability to many scenarios requiring scalability. 

2.2 Partitioning 

Figure 4. Relationship between data and cloud stack. 

 

Issues introduced when discussing configuration can be examined at a deeper level. 

Assuming the architectural model will use an underlying Hadoop cloud stack as depicted in 

Figure 3 and ingest and query patterns resembling Figure 4, there are further decisions required 

on how to partition capability across multiple threads, projects, and data. The optimal 
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organization of storage and execution will vary depending on size, rates and usage of data and 

the overlap between projects and threads. The colors align with those in Figure 3. 

The simplest, least-structured method for organizing the architecture is to assume there is 

a single analytic machine (such as a cloud) that is not partitioned as shown in Figure 4. Note that 

the colors in this figure align with those in Figure 3. In this case all threads, projects, and data are 

housed in one environment and share the resources of that environment, which is an inherent 

disadvantage. The advantage of this model is minimal duplication of data and no need to move 

the data between multiple machines for different projects. This could be accomplished using 

either a physical or virtual machine to implement the architecture. 

 

 
Figure 5. Architecture partitioned along different data sources and types [8]. 

 

As a contrast, Figure 5 depicts an architectural model where analytic machines 

(potentially cloud virtual machine or standalone services) are divided based on the data they will 

house. When data is substantial, moving it is expensive. Furthermore, typically cloud-computing 

tasks run on the machines that house the data. Therefore the model in Figure 5 is preferable when 

threads expect to operate on a single data source (e.g., Twitter) and will not integrate across 

multiple sources.  

This requires some duplication of data and added logistics of moving data, assuming data 

will be first ingested into physical storage, possibly using Storage as a Service (STaaS), and then 
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moved onto the virtual machines. While data being shared by multiple projects does not pose a 

problem, when a project requires more than one data source an issue arises. If usage of the data is 

independent within a project, this model can hold. If there is a dependency, but the results that 

form the dependency are small and the workflow can accommodate latency, keeping separate 

analytic machines is still feasible. In other situations though, it might be necessary to duplicate 

data such that there are analytic machines (often clouds) with multiple large data sets for a 

specific project.  

 

 
Figure 6. Architecture partitioned along different projects. 

 

This leads into another architectural model, which is depicted in Figure 6. Here the 

architecture is partitioned across threads and projects, where each thread or project is assigned an 

analytic machine, whether virtual cloud machines or standalone services, as necessary and of 

appropriate scale to the size of the data. The complete data set, stored in STaaS at ingest, is then 

moved to the appropriate analytic machine for the project that depends on it.  

If multiple projects require the same data, this solution is more weighty in the 

requirements of computational power needed to migrate the data and store it multiple times, but 

the advantage is there is no worry about threads interfering with one another by requiring them to 

share resources as each has its own dedicated virtual machine. 



9 

 

In selecting one of these solutions, the following questions must be asked: How unique 

and independent are the data sets required for each thread and for each project in a thread? Do 

projects expect multiple data sources? How much do projects depend on one another within a 

thread? Are there any dependencies between threads? 

 

 

 

  



10 

 

3 System Flow 

3.1 Architectural Model Overview 

Independent of the specifics of the ingested data and the desired result, a common 

system flow is expected for threads operating in the architectural model. This section describes 

the typical flow of data through the system as it is transformed through analytics into the results 

that will ultimately be provided to users to inform decisions.  

 

 
Figure 7.  The architectural model for threads of analytics suitable for multiple domains. 

 

Figure 7 provides a high-level layout of such an architecture, where multiple analytic 

machines, for example cloud virtual machines, support different data sets and analytics. Core 

components of this system are 1) the executive, which orchestrates the execution of analytics and 

the flow of activity, 2) the data bus, which stores the initial ingest of data, 3) the analytic layer, 

corresponding to the pattern recognition in the Data-to-Decisions model, is where analytic 

activity takes place and interim results and provenance are held, and 4) the knowledge store, 

where final results are placed before being visualized. This example flow follows the model 

where analytic machines, specifically cloud virtual machines, are stood up to support specific 

data sets. 
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3.2 Ingest and Data Preparation 

The first part of the flow is the ingest and preparation of the data, as shown in Figure 8. 

Data ingest includes both the type of data and the method of acquisition. A generalized 

architectural model for research means that all varieties of data should be considered for any 

thread that will transform raw input into meaningful knowledge that can drive decisions. In terms 

of data acquisition, data can arrive in two forms: bulk and streaming. Bulk data is procured in 

agreed-upon amounts, either at once or periodically. Streaming data is collected with greater 

regularity and can be provided as a service. In either case, data acquisition requires an upfront 

specification of the data expected by any downstream workflows, its volume and velocity, the 

vendors who will provide the data, and the cost to acquire. The retention policy should also be 

considered here because streaming or repeatedly acquiring batches of data will accumulate and 

eventually need to be purged.  

 

 
Figure 8. Ingest and data preparation flow. 

 

If we follow the established example in a Hadoop cloud-computing argument, choosing a 

cloud stack to be the pattern will have an impact on data ingest issues. Figure 4 depicts some 

specific software solutions for different types of data ingest into a Hadoop cloud-based 

architecture. Apache Flume [9] is an appropriate application for streaming data flows. Apache 

Sqoop [10] can be applied for data pulled from outside data stores (e.g., relational databases). 
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HttpFS is the appropriate service for transferring into the Hadoop Distributed File System 

(HDFS) [7] from non-cloud and other cloud sources. 

The data bus receives the ingest and can, by default, be implemented using the physical 

STaaS. The expectation is that the data bus will simply store the raw data and that virtual 

machines will be created to host the data for execution of analytics. Data is moved to a 

appropriate analytic machine, first undergoing data profiling, which performs any necessary 

transformation and filtration to make the data acceptable and usable for the thread (or threads) 

that require it.  

3.3 Issues of Scale 

 
Figure 9. Data division model of variety over genres and variability over applications / protocols. 

 

Because we are interested in a solution capable of generalizing to many different data 

types at large scales, it is useful to consider certain challenges within the context of the data bus. 

These challenges map to the common division of big data’s “3V” challenges into categories of 

volume, velocity, and variety [11, 12, 13]. Note that veracity and value are sometimes listed as a 

fourth and fifth “V” [14], but we will not consider those for now.  

While volume deals with size and velocity deals with rates of data in and out of the bus, 

these two can have the same impact, assuming data is being eliminated as new data emerges. 

Because there is a potentially limited capacity of the data bus for all threads and projects, space 
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must be allotted in an equitable fashion. If the velocity of incoming data is such that the volume 

would exceed this allotment, some method for aging off data or terminating the ingest must be 

adopted.  

The dimension of variety can be further subdivided based on the expectation of the 

analytic processes in the analytic layer, particularly when clouds are the required 

implementation. Analytics can be quite targeted, expecting a particular data format from a 

specific source or they can consume a more general type of input. It is useful to characterize 

these further, where subdivisions of variety are labeled variability. While there might be unifying 

features within a single category along the variety axis, this can be further separated into 

significant (to the analytics) differences along the variability axis. Figure 9 depicts variety along 

media genre and variability along application. Retaining these distinctions in the data bus makes 

it easier to migrate the necessary and valid data for a given project or thread to the analytic 

machines supporting the analytic processes for pattern matching. 

 

 
Figure 10. The workflows of projects within a thread’s pattern matching operation. 

3.4 Domain Workflow 

Core to the flow through a research stack is automated analysis of the data to generate 

results as well as retain the provenance describing the activity that produced these sets. Figure 10 

depicts the activity of multiple workflows through a system of clouds with analytics, although a 
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mix of clouds and standalone services could be part of this workflow as well. These analytics 

operate on the clouds containing the specific data required. Many—perhaps most—domain cases 

may only need to operate on a single data set and cloud machine (the “in cloud workflow”) or 

standalone service, but others may have dependencies between analytics operating on multiple 

data sets that span the different clouds and/or standalone services (the “cross cloud workflow”). 

The executive is used to describe and coordinate these workflows. Earlier MITRE work on 

MOSAIC evaluated different possible executives to serve in a Human Language Technology 

(HLT) domain but with an eye to generalizing to other domains [15]. The executive also reacts 

or reports when a workflow instance comes back as not having completed successfully. These 

analytic processes will generate interim results which will be input to downstream analytics or 

potentially part of the final results. Provenance, which is the retained description of the activity 

of analytic processes and their production of results, is also generated throughout a workflow 

instance. Generation of provenance can continue through the activity in the knowledge store. 

3.5 Knowledge Store 

 
Figure 11. Transfer to knowledge store. 

 

Analytic workflows will potentially find valuable patterns in the data, which will be 

captured in their final results. The final part of the flow out of the system is the transfer to the 

storage for the final results, or the knowledge store, as shown in Figure 11. Here, it can be 
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retained and visualized downstream. This knowledge store, which is a collection of data stores 

and databases, can be on one physical machine, but also partitioned by project or thread or 

knowledge type. It is anticipated that not all computed results will be elevated to this storage. 

The knowledge store receives only those results that meet some threshold for importance and 

value to the ultimate decisions that need to be made.  

This final knowledge is kept apart from the virtual machines hosting a thread’s analytics 

and interim results. Worthwhile results should outlive analytic execution so they can be accessed 

even after a project or thread is taken down in case they are needed to inform future projects. 

While not a principal reason for doing this, this has the added effect of providing a level of 

duplication that can protect important results if one of the analytic virtual machines breaks down 

or is corrupted. By doing this, we can keep a distance between the data processing and the 

visualization layers. This makes more asynchronous flows from data to knowledge and 

knowledge to decisions possible. 

 

 
Figure 12. Depiction of the core elements of the knowledge store. 

 

The knowledge store (Figure 12) is an overarching term for multiple stores of results 

encoded as different types of knowledge. These can include document stores, key-value stores, 

object stores, graph stores, and ontologies. The representation of knowledge and how it is 

accessed depends on the needs of the project and its domain, but a comprehensive data model 
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can also be developed and employed. We discuss the data model represented as an ontology later 

in greater detail as this is a richer representation that can be applied widely to long-term results 

stored as knowledge. In some cases, this high-order knowledge is the desired outcome that needs 

to be visualized or interrogated. In other cases, relevant data plots or documents are what 

matters.  

The knowledge store has internal functionality that post-processes the results. These can 

be as simple as indexing to increase query efficiency or as involved as inference engines that 

recognize relationships implicit in the acquired knowledge. Any final analytic work that operates 

on results as opposed to raw or interim data occurs here. What is produced is what will be 

queried, visualized, and used to inform decisions. 

 

 
Figure 13. The flow of how the knowledge revealed by analytics informs decisions. 

 

The activities of the top two layers in the research stack (Visualization and Decision) are 

captured in Figure 13. Here, knowledge is queried from the knowledge store and is then 

consumed by either visualization tools that present the results to a user (whether an analyst or a 

researcher evaluating analytics or workflow) or incorporate them into an automated or semi-

automated decision tool in appropriate cases. Using these tools, users make decisions and 

document their rationale. 
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4 Workflow and Command and Control Service 

 
Figure 14. Varied depictions of possible data flows throughout the analytic workflow. 

 

There are many possible workflows that can generate results and perform analysis of data 

in the analytic layer of the research stack. We discuss potential representations of data, results, 

and knowledge below, but first we describe patterns of handling and operating on data in a 

contained, but potentially extensible, research environment.  

First, we assert that in the data bus, data objects should be treated as immutable. This is 

data that is ingested into the system and comes with any initial provenance that is provided that 

describes how and where it was produced.  

Second, once data is copied and undergoes analytic workflow in the virtual machines, 

how data is manipulated and processed is more open-ended. Data objects from the perspective of 

the workflow can be input into analytics that enrich the data or summarize data and extract new 

data objects (pipeline flow), be aggregated and merged into new results (aggregation flow), or be 

altered and mutated such that the data object itself is changed by an application (alteration flow). 

Figure 14 depicts these different expected processes and their impacts on data, as well as 

indicating the dividing line between what is considered immutable in the data bus with respect to 

workflow and where workflow is given free rein. 



18 

 

Note that these concepts apply even to situations where we do not expect the analytic 

workflow to extend beyond a single virtual machine. However, to allow for a command and 

control service that is capable of operating across multiple clouds and standalone services, 

additional solutions are required. 

 

 
Figure 15. High level depiction of command and control service for the research stack. 

 

When we earlier discussed the system flow of analytic execution for projects in a given 

thread, we considered possible workflows that could make use of data and analytics across 

multiple clouds where the workflow was coordinated by the executive. This was depicted in 

Figure 10. In this section we describe the command and control service that allows the executive 

to orchestrate analytics distributed in this fashion.  

We envision the command and control (C2) service as a layer between the executive and 

the analytic processes, either operating on cloud virtual machines or as standalone services. The 

executive interacts with the C2 service by way of a REST protocol—where commands and job 

properties are issued—and the C2 service directly controls the various analytic processes and 

applications by way of their native protocol.  

This C2 service is a component that will be engineered specifically to perform this 

function. It should be applicable across all threads. Using the layout of Figure 15 as a basis for an 

example, Figure 16 depicts a protocol that allows the executive workflow engine to issue jobs to 
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the clouds and standalone services by way of the C2 gateway. In this example, a workflow will 

execute four applications in sequence, where the first and third (A and C) are in the same cloud, 

the fourth (D) is in a different cloud, and the second (B) is in a standalone service.  

Before the workflow instance is executed across the different environments, the 

availability and status of the services and stores to be used in the workflow is established by the 

executive. The executive then stands up the workflow engine, which checks to ensure the C2 

service is available and initiate a session. Each application is executed in order, and when the 

application terminates successfully, an adapter is applied to the results to be pushed to the 

knowledge store for persistence. Adapters ensure the results will be mapped to a common 

schema with a consistent model. When the workflow instance has finished, the executive closes 

the C2 service session for that workflow.  

 

 
Figure 16. Example protocol diagram for the research stack’s command and control service. 
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5 Knowledge Model 
While analytic results can be preserved in many different representations, here we 

provide an in-depth examination of an ontology approach as we expect this will apply to most 

cases of the knowledge that should be preserved long-term. As such, this assumes the analytic 

results elevated to inform decisions will be represented as knowledge. Because analytics may 

populate the same knowledge elements that inform decisions, this suggests there is a benefit in 

adhering to a common model throughout a thread or across multiple threads, in cases where the 

output of threads are expected to enter the same knowledge store. Knowledge is potentially 

valuable across domains, informing decisions in varied contexts. 

Ideally, a single comprehensive ontology would serve all use-cases and provide a 

common reasoning framework that draws on knowledge derived from analytic results in any and 

all domains. Yet thus far no single ontology has been offered that suffices for this role. The 

principal concerns with crossing multiple domains include 1) the lack of any relevance between 

certain domains and 2) collisions due to incompatibilities or ambiguities in modeled objects.  

Users of large comprehensive ontologies, such as Cyc [16, 17] or SUMO [18], have 

encountered these issues before. In the most abstract description, ontological levels—such as 

upper, middle, and lower—assist in distinguishing the commonality of terms and statements. 

Terms and statements that are universal across represented knowledge domains belong in the 

upper ontology, while middle and lower ontologies become more and more domain specific. A 

lower ontology may insist on complete consistency of terms and assertions within itself, but can 

have particulars that deviate from other lower ontologies. In the case of the Cyc ontology, the 

lower ontology contextual sets of concepts and assertions are termed micro-theories [19]. The 

simplest analogous model in our context would be to adopt a separate micro-theory for each 

domain, but without some binding upper ontology, this is essentially equivalent to having 

multiple independent data models. This is not a problem when there is no relevance between 

domains, but for domains that can or must supplement one another, it leads to a shortfall when 

performing reasoning or analysis that crosses knowledge derived from different sources. In cases 

when domains must be spanned, the lower ontologies can be designed from the outset to be 

interrelated (essentially a single merged lower ontology) or they can inherit their commonality 

from the upper or middle ontologies further up the hierarchy of types. It is customary that lower 

ontological models be subtypes of elements in a higher level ontology. 

Given the open-ended nature of BlueRidge, developing an overarching knowledge model 

to accommodate all domain and thread combinations a priori is infeasible. It is equally 

impractical to expect a pre-existing knowledge model or ontology to cover every need specific to 

an emerging thread or that one can be prepared in a final state at the outset. Instead, it is more 

reasonable to consider that each new situation will require some initial specification of what 

domains will feed into the ultimate decision-making process; this should direct the course of how 

the knowledge model is organized for each case. Because this work is intended to span multiple 

threads and be useful to projects at varying stages of readiness, from immature to nearly 

complete, the emphasis is not on building specific knowledge models but fostering the capability 

to build models flexibly, whether they are unique to a single thread or cross multiple threads.  

Minimizing the work involved in creating new domain-specific knowledge models now 

becomes the priority. If no existing domain-specific solutions are suitable, these typically must 

be hand-crafted on a case-by-case basis, but they need not be constructed from the bottom up 

each time. Existing ontologies that have broad coverage of high-level and generally universal 

terms such as Cyc or SUMO can be imported to serve as the upper ontology. Individual lower 
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ontologies for the domains can be made to inherit from these and supplement the coverage of 

terms and assertions not present. BlueRidge will provide a capability to generate domain specific 

knowledge models separately with specification files and adapted into any number of multi-

domain ontologies as ultimately needed. This circumvents the issue of creating a single ontology 

in the blind, while enhancing the capability to systematically create and combine knowledge 

models so that components can be used and reused in new combinations as required. 

 

 
Figure 17. Multi-domain knowledge model.   

 

This effectively means that a new model can consist of any number of imported existing 

schemas, pre-created models written specifically for domains, and new models. This is achieved 

by constructed by combining any number of contextually related lower ontologies, binding them 

to any appropriate upper ontology, which can be pre-existing or created to serve the role. Figure 

17 depicts this modularity. Collisions of terms and assertions in the domain specific models are 

allowed—they effectively end up merged, inheriting from multiple sources (see Figure 18)—and 

types can be enriched with constraints and rules derived from different domains. It is incumbent 

on domain experts and thread orchestrators to understand the knowledge representations and 

recognize whether or not there is consistency between what is being combined, both pre-existing 

and new, both in the precise semantics of terms and the implications of rules within the domains. 

In the long-term, BlueRidge intends to provide a capability to assist in checking the consistency 
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of the semantics when new sets of terms and rules are assembled. This matters because unlike 

multiple micro-theories that lack mutual inheritance, these lower ontologies are expected to 

coexist to allow for representation and reasoning across the domains, an issue of modular 

ontology design that has been explored but not universally solved [20, 21, 22]. 

 

 
Figure 18. Two data models that have been merged which share a common element. In this case 

the element is able to inherit qualities from both source models, making it applicable in either 

domain. 

 

As a final point, while the resulting models are intended primarily for final knowledge 

results, such models could be used by analytics within their workflow. In practice many analytics 

across the threads will not have been initially designed for the model, so it is unlikely a model 

serving this role in the analytic layer would—or could—be mandated. Mandating this would 

incur a great deal more adaptation work for analytic output, which might not be useful if interim 

results are only consumed by downstream analytics in a thread designed to handle them in their 

native format. But provided analytics are not legacy or externally developed, a common model 

within the analytic layer would allow for a greater degree of flexibility when replacing analytics, 

with the significant requirement that new analytics produce or consume the common data model 

or have applications to adapt from their native formats into the common knowledge model.  
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6 Error Detection and Recovery1 
In any complex system, error conditions are inevitable. Ingested data may be partially or 

wholly corrupt, or the ingest process itself may fail such that some expected data is missing. 

Similarly, workflow processes may freeze, crash, or produce corrupt data. If error conditions are 

not detected and responded to rapidly, time and processing resources are wasted. In the best case, 

the error condition is detected and resolved quickly, and the corrected workflow is able to 

reprocess the data from an archive before any user attempts to us the system to make a decision. 

In a worse case, a user may be prevented from using the system while it is in an error condition, 

or a user may unknowingly make a misinformed decision if shown corrupt results without 

realizing that the system is in an error condition.  

The simplest error conditions to detect are those which cause the absence of an expected 

result. Applications responsible for data ingest can monitor themselves to detect failures to ingest 

data. Similarly, the executive responsible for orchestrating analytics can monitor workflow 

processes to detect when they timeout or fail to produce results. In both cases, rapid reporting of 

the error condition to a responsible party capable of correcting the situation will reduce the time 

the system spends in an error condition, which will mitigate the impact of the error condition on 

users of the system. To achieve this, error monitoring must be accompanied by a reporting 

system which is configurable to ensure that the appropriate action is taken or the appropriate 

person notified as soon as possible. 

Error conditions in which corrupt data is ingested or wrong results are produced are more 

difficult to detect. Validation tools can be used to ensure that data and results conform to a 

specific format. In the case of validation on data ingest, because each data source is different, 

validators would need to be created individually and as necessary for each data source. In the 

case of analytic results which are intended to conform to the system knowledge model, a general 

purpose validator can be used to ensure basic compliance. Such a validator would be applied on 

all results destined for the knowledge store. 

The most problematic error conditions are those in which results are valid in format, but 

wrong in content in the sense that they would mislead decision makers in an unintended way. 

This type of error condition can occur when a change in the nature of the data being ingested or 

the output from a prior workflow process invalidates the assumptions of a later workflow process 

such that its results no longer match the original intent. This error condition is extremely difficult 

to detect, and if left untreated can continuously pollute the knowledge store with wrong results. 

However, by monitoring and baselining features of the output from a workflow process over a 

period of time, in some cases it is possible to identify anomalous output that differs from the 

baseline and may indicate that there is an error condition. Rapid attention to alerts of this nature 

can mitigate pollution of the knowledge store. 

 

  

                                                 
1 This text was contributed by Nathan Giles derived from his MITRE research project that discusses on result anomaly detection 

in a Human Language Technology context. Details on this research are provided at: http://projectpages.mitre.org/projects/EPF-

13-01556?fiscalYear=2014  

http://projectpages.mitre.org/projects/EPF-13-01556?fiscalYear=2014
http://projectpages.mitre.org/projects/EPF-13-01556?fiscalYear=2014
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7 Security 

7.1 Data States 

There will be a need in the research stack to derive knowledge leading to decisions from 

data that is sensitive and has requirements for storage and access levied by customers or data 

providers. Therefore data security, compartmentalization, and control are topics that must be 

considered throughout any solution for a comprehensive architectural model and at every stage 

of the system flow. Figure 7 serves as a starting point for depicting the general directional flow 

of data as it generates results and knowledge (as shown in Figure 19), which amount to 

significantly different scenarios where data security must be considered. From this we derive 

three locations where security needs to be addressed: A) the data bus, B) the analytic layer 

consisting of cloud virtual machines and standalone services, and C) the knowledge store. Figure 

20 shows this partition. 

 

 
Figure 19. Directional data flow throughout the analytic layer into the knowledge store. 

 

While the data bus (A) is logically a single component of the architectural model, it can 

physically be several different machines. Therefore it is indicated that if there are special 

sensitivities for data past acquisition and ingest, but prior to execution, separate machines that 
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have the appropriate restrictions on access are used. While the proposed STaaS can be the default 

choice for the data bus, the model does not preclude any special cases required by certain data. 

 

 
Figure 20. Data flow zones from ingest through analysis and the knowledge store. 

 

How security is handled on the analytic layer (B), where data is held for analytic 

execution, depends on the underlying model. If these machines and services are partitioned based 

on the data, then security is merely a matter of ensuring that the machines are only accessed by 

the proper individuals and workflows. Individual machines can be stood up to house data fitting 

security requirements case-by-case. If the machines are partitioned based on projects and threads, 

then the situation is more complicated. If there is only one data source per project or thread with 

sensitivity, then the environment, whether cloud virtual machine or standalone service, must 

conform to that data’s requirements. If there are more data sources per project or thread, then it 

may be necessary to partition the project or thread into multiple machines. If this is anticipated, it 

is recommended that the analytic machines be partitioned based on the data rather than the 

project and threads.  

Further security concerns around data at this stage involve ensuring workflows accessing 

sensitive data have the proper permissions. Workflows that will access virtual machines with 

sensitive data will require authentication on the part of users running instances of them or if they 

automatically access the analytic layer’s data and analytic results then the workflows themselves 
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must have their access and execution restricted. Ultimately, this is something that needs to be 

decided in each situation depending on the workflow requirements and how much human 

interaction is involved. 

Finally, imposing security in the knowledge store (C) is a trickier proposition. An 

important question that needs to be determined for each data set is whether analytic knowledge 

derived from it is considered to be at the same level of sensitivity. If it is not deemed sensitive, 

then there is no issue at the knowledge store for a particular data set. If it is deemed sensitive, 

then some solution is required. If true for this knowledge, the same likely also holds for the 

analytic results that need to be secured in (B). 

Again, while the knowledge store is intended to be logically a single component of the 

architectural model, in principle if threads are independent the best course is to ensure that only 

visualizations and users with the proper authentication access their data from a knowledge store 

that houses the results in a manner compatible with its specified restrictions. This simplified 

solution assumes there are not data sets with differing restrictions. Further if the knowledge 

derived from threads is intended to cross multiple threads, then this poses an additional problem.  

We must consider not only the location in the research stack, but also take into account 

the state of data, such as data at rest (on disk or other storage media), data in motion (moving 

across networks), or data in use (in the CPU or RAM). Our earlier delineation of security 

concerns chiefly considers data in use or at rest, typically on one or more analytic machines. The 

research stack assumes that data will be in motion at various stages, certainly at ingest—whether 

bulk or streaming—and when generating resulting knowledge but also potentially as data or 

results are moved between clouds or standalone services during workflow. Naturally decisions 

here, as with data at rest, need to be made based on the requirements of data providers and 

customers. 

Finally there are important questions to consider when devising a comprehensive solution 

to data security. What is the default underlying partitioning of the virtual machines? Will any 

threads require multiple data sets with differing, potentially incompatible, data security 

requirements? Will knowledge derived from sensitive data sets retain the same levels of 

sensitivity? Will knowledge derived from different threads be shared across different threads?  

7.2 Data Leakage Mitigation 

Of primary concern in security is data leakage, where an outside, unauthorized party 

receives data not intended for it. This is not necessarily malicious, as cloud-computing 

environments increase the opportunity for accidental data leaks [23]. Intrusion detection systems, 

firewalls, and antivirus software are all baseline security measures that can be taken to secure 

data. There are also more involved methods that can be applied, such as using machine learning 

techniques to find abnormal behaviors into or on a system or lexicons and keywords and data 

matching to recognize unauthorized attempts to retrieve or transmit data. Methods can be 

installed and applied at egresses to monitor and handle data in motion or locally on client 

systems for data in use.  

While obvious, it bears mentioning that, with respect to any of the identified locations 

where security concerns exist (i.e., data bus, analytic layer, and knowledge store), access should 

be limited to only people who are authorized to view, manipulate, and extract from the data. 

Further data should not be moved from one level to another unless each location is authorized to 

hold the data. There are additional concerns at the analytic layer and knowledge store where 

analytics can operate on the data, producing results. Analytics should not be applied to sensitive 
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data if they also involve transmission of its sensitive qualities outside the local environment. 

Because of analytics’ abilities to communicate outside the local environment or knowledge store, 

which analytics can be applied in certain circumstances can be limited. For some cases where it 

is warranted, data at rest could be encrypted to further protect it.  

While monitoring and encryption serve to protect data, in the cases where data leaks 

occur nonetheless, there are further ways to trace the data and culpability. Some solutions 

include watermarking or steganography [24, 25], which can identify the source of a leak of data 

by uniquely identifying information. Less obtrusive methods have also been researched for 

detecting the leakage of data sets, such as data allocation strategies that improve the ability to 

identify sources of leaks or the inclusion of “fake data objects” that uniquely identify a source 

given their inability to be guessed or derived from other sources [26]. While these strategies can 

be employed by data providers, our perspective is on the research stack. In this context, we look 

at these as methods as applicable when moving from the data bus to the different analytic 

machines for different projects or threads or when moving from these analytic machines to the 

knowledge store or from any of these components outside the research stack. Using these 

techniques facilitates identifying where the data was compromised. 

As stated above, it is important to determine the sensitivity of derivative results. Data 

provenance can potentially assist in this regard. The provenance tied to results records the history 

of these data products, indicating which ones are generated or extracted from sensitive sources. 

Additionally, provenance can build an end-to-end picture of the workflow that generated these 

results. This is essentially a result’s genealogy. Depending on the type of transformation or 

creation of the data, these results might be equally sensitive and unable to move off the analytic 

machines or the knowledge store or at least be limited in terms of who can access them or where 

they can be copied. 
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8 Provenance 
Provenance can be defined in varied ways to capture the context of application workflow. 

The term is derived from the history of ownership of objects of interest, but when applied to 

data, it takes on a new significance. Provenance is the derivation history of a data set or result, 

where this derivation history is the description of activity of analytic processes that informed the 

data object’s creation. In this paper, this is how we use the term “provenance.” 

Knowing the history of data can give insight into the trustworthiness of the data and 

inform the ultimate decisions based on the data and its results. The major stumbling block to this 

is the diversity of application implementation and ownership, making it difficult to capture and 

retain provenance across real-world enterprises [27]. Given the varying degrees of control over 

the data that can be expected when partitioning the research stack across multiple threads where 

data may flow from different organizations, this may hold in the case examined here.  

Most existing provenance solutions, applied within scientific applications or relational 

databases, assume a “closed world,” which increases the challenge of integration in enterprise 

use-cases with distributed or discrete analytic processes, especially those where one cannot re-

engineer or mandate the re-engineering of existing applications that are essential to the 

production of a data object. Instances of these violate requirements of an “open world” where 

provenance must be captured across multiple systems with no assumption of control over those 

systems and where provenance must be captured from legacy systems that do not natively 

produce provenance [28]. 

The “open world” provenance model (OPM) [29] and PROV [30] serve as a basis for 

solutions to handle the two specified requirements. This is a more generic model that bears 

resemblance to that employed by a MITRE-developed solution called PLUS [28]. This model 

stores provenance in a directed acyclic graph. Nodes can represent data sets, process instances, 

and agents acting as process catalysts. Edges represent relationships between these nodes such as 

data used or input to processes or produced by processes, thus indicating how the data passed 

between processes leads to data sources, sinks, and each other. This means for any data set or 

result, a graph that records the history (and future usage too) can be constructed, indicating 

instances of processes that have executed on previous inputs to produce the current data object of 

interest as well as process instances that have produced new, refined results. Traversal of this 

graph, both for the backward and the forward lineages, is essential for the value of the 

provenance model.  

The lineage that the provenance tracks goes back to when data is transitioned into the 

analytic machines for execution and can be extended to describe activities on knowledge results 

in the knowledge store. How provenance is stored in the research stack can be approached in 

different ways, but largely should depend on the choice of how these machines are partitioned. 

For a partition-free environment or partitioning based on the data, having a central store that 

tracks provenance is the best solution for workflows of moderate scale. This centralized storage 

is simpler, would be accessible from all subcomponents of the research stack, and could issue 

provenance outside it in accordance with sensitivity issues. For environments partitioned based 

on threads, provenance will be stored with the thread’s data and results. There are issues with 

either choice of storing provenance. A centralized storage could be a single point of failure 

across all threads and likely would be a bottleneck as different threads compete for its resources 

if they are all actively producing and using provenance. Storage per analytic machine is 

complicated by the added difficulty when it needs to be accessed or moved.   
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Given the potential data sensitivity issues described in the Security section, these issues 

should be extended to the provenance, where organizations may have restrictions on what 

information about practices that describe the data and workflow history can be released to 

individuals or other organizations. Following the PLUS model, organizations are able to specify 

how information submitted as provenance is released as well as providing alternate information 

to users unable to view the complete provenance graph.  

 

 
Figure 21. Extended provenance model. 

 

We also can levy some additional requirements to make provenance more applicable to 

workflows in research domains. Provenance models expect that the graphs representing history 

and forward usage of data will be connected by way of process instances in nodes. Also 

including a representation of the process itself (that is, a node representing the application or 

activity’s actions in general as opposed to a specific run or execution of it) and its role in a 

workflow can bridge multiple instances to reveal more plainly which processes are being 

employed multiple times in a workflow involving a particular data set. This is depicted in Figure 

21, where the provenance of specific process instances produce and consume data in the instance 

layer, the intrinsic processes—be they applications or activities—are represented in the class 

layer, and different workflows that utilize these processes (and can be discovered as being 

instantiated in the instance layer) are represented in the workflow layer. In this representation, 
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the class layer assumes the role of a hub bridging equivalent processes as viewed in different, 

potentially repeated workflow roles and as executed examples that have manipulated data. For 

instance the workflow example shown in Figure 21 has multiple paths that can be taken given 

different criteria; the depicted instance layer contains two executions that took different paths 

(process C is colored red in both the workflow and instance layers to highlight it as an alternate 

path).  

Further, because these process instances can vary greatly due to parameterization, having 

a property attached to each instance that includes the necessary parameters and settings 

information is required for the repeatability of a workflow. This can be achieved in much the 

same way that PROV uses attributes and values. Further, these additions can allow for the 

discovery of implicit workflows within the provenance. 

Until now we have been operating under the assumption of adhering to an open 

provenance model. Naturally, it is infeasible to mandate external systems generate, handle, and 

retain provenance using our model, so this is taken into account by how we handle data within 

the research stack. Recall that Figure 14 established different workflows through the research 

stack and further delineated immutable and mutable data objects. Objects in the data bus were 

considered immutable and retained any existing initial provenance provided with them. We 

establish this principle to allow for a consistent picture of past provenance so that any threads 

using a data object can have consistent expectations about that data. Because data can be altered 

and overwritten by way of a pipeline flow or an alteration flow as shown in Figure 14, this 

requires a sense of provenance that takes into account that data objects can be changed, which 

may be as straightforward as considering altered data objects as new data objects where the older 

object does not exist any longer.  

There is a final, but critical, caveat about provenance that must be acknowledged. 

Typically provenance is a weighty—if not the most weighty—retained information about data 

sets and processes. Because of this heft, one must be cautious and cognizant that in “big data” 

scenarios, provenance could potentially increase the storage requirements and costs by orders of 

magnitude. This is situational and not entirely predictable at the outset, which is why being 

aware of its possibility is required. One solution to this issue is to apply provenance at a coarser 

grain, but there is no guarantee this will be sufficient for every scenario. Ultimately the 

recommendation for any given thread is to employ provenance if it deemed essential when 

weighed against its costs. 
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9 Conclusions 
The proposed concept for the discussed architectural model is founded on the notion of 

addressing domain-specific problems in a generalizable fashion. Applying this to a shared 

research architecture spanning many projects, threads, and data sets is an ambitious endeavor 

requiring an architectural model to bridge each core element of the investment area (data 

preparation, pattern recognition, visualization, and decision) and to enable the analytic flow from 

raw data up to high-level decisions that are informed by knowledge derived from pattern 

recognition and automated analysis. Furthermore, this needs to be accomplished at a large scale 

given the anticipated sizes of data and results.  

In this paper we have provided an architectural model that will support a diversity of 

research projects and allow for their coordination across multiple research domains. We have 

proposed varied partitioning methods for the analytic environment based on the expected needs 

of the research threads and projects. We have also proposed a method for orchestrating across 

multiple cloud-computing environments and described our approach to modeling knowledge. 

Our model accommodates the varied types of data and workflows that researchers require across 

potentially multiple data sources and provides a common storage for results that will be 

visualized and used to improve or suggest ultimate decisions for a user. 
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10 Glossary 
Aggregation Flow: a workflow of analytics that aggregates and merges data and interim results 

into new results 

 

Alteration Flow: a workflow of analytics that alters or overwrites an existing data object 

 

Analytic Layer: location of analytic activity corresponding to the Data-to-Decisions pattern 

recognition layer and the storage of interim results and provenance 

 

Analytic Machine: a machine, physical or virtual, that performs analytic pattern recognition on 

data; these can be, for instance, cloud virtual machines or standalone services 

 

Architectural Model: the conceptual design for an infrastructure supporting analytic workflows for 

multiple environments, including cloud environments 

 

C2 Service: abbreviation for command and control service  

 

Command and Control Service: service that bridges executive orchestration and the analytic 

processes that potentially cross multiple environments, including clouds and standalone services 

 

D2D: abbreviation for Data-to-Decisions 

 

Data Bus: storage for ingested data that can be pulled or pushed into the analytic layer 

 

Data Preparation: a layer of the research stack that encompasses the identification, acquisition, 

and ingest of data relevant to a domain of customer interest 

 

Data: the input for threads and projects operating at the analytic layer 

 

Data-to-Decisions Research Stack: a specific, but representative, model for thread development 

consisting of four layers which (in consecutive order) are 1) data preparation, 2) pattern 

recognition, 3) visualization, and 4) decision-making 

 

Decision-Making: a layer of the research stack that encompasses the user-orchestrated process 

that leverages depicted patterns to take informed and improved actions 

 

Domain: the space of interest and responsibility unified by customer and mission goals, where 

some examples include command and control, intelligence, finance, and health care 

 

Executive: describes and coordinates workflows of analytics in and across analytic machines in 

the analytic layer and reacts to or reports when workflow instances are unsuccessful 

 

Knowledge Store: storage for results of the analytic layer that will be visualized 

 

Pattern Recognition: a layer of the research stack that encompasses the isolation and 

identification of salient and useful patterns in data to be captured in results 
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Pipeline Flow: a workflow of analytics that summarize data and extract new results 

 

Process Instance: a specific execution of an analytic that takes in a specific input and produces a 

specific result 

 

Process: an individual analytic step in a workflow 

 

Project: a research endeavor that can be associated with other projects in a thread and which 

must address one or more of the research stack layers 

 

Provenance: retained description of the activity of analytic processes and their production of 

results 

 

Research Stack: a general model for data-driven analytic activity consisting of four layers which 

(in consecutive order) are 1) data preparation, 2) pattern recognition, 3) visualization, and 4) 

decision-making 

 

Researcher: an individual who develop solutions and applications for domain-specific problems 

at the project level 

 

Results: the interim and final output of projects operating at the analytic layer, a subset of which 

will be elevated to knowledge, stored longer term, and visualized 

 

Standalone Service: a physical or virtual machine independent of other analytic machines that 

serves a specific analytic purpose 

 

Thread Leader: an individual who is a subject matter expert and defines or identifies use-cases 

relevant to a domain 

 

Thread: a collection of interrelated research projects that target a domain of interest to a 

customer and which collectively address each layer of the research stack 

 

User: an individual who examines visualized results to inform downstream actions 

 

Visualization: a layer of the research stack that encompasses the depiction of patterns and results 

in a representation that can demonstrate their relevance in an operational context 

 

Workflow Instance: a specific execution of a workflow of analytics  

 

Workflow: the sequence and flow of analytics specified by the user which can be deployed across 

the analytic layer and will execute on data and interim results to produce results  
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12 Appendix 

12.1 Appendix A – Intelligence Reference Model 

 
Figure 22. The intelligence reference model. 

 

Figure 22 depicts the classic intelligence reference model. This presents a high-level 

division of terminology into signals, data, information, knowledge and intelligence. The most 

raw, unprocessed form resides at the bottom. As one ascends the pyramid, signals are refined 

into data, which undergo pattern recognition and automated analysis to become information and 

knowledge. Ultimately intelligence—worthy of guiding actions—reside at the top. The 

terminology of data can be somewhat ambiguous. In addition to the role it serves in the reference 

model, other disciplines such as cloud computing and Master Data Management (MDM) use the 

term for specific places in this hierarchy. 

12.2 Appendix B – REST Protocol Schemas 

The following is a schema in JSON format for REST protocol messages: 
{ 

 "type":"object", 

 "$schema": "http://json-schema.org/draft-03/schema", 
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 "id": "http://jsonschema.net", 

 "required":false, 

 "properties":{ 

  "C2 Message": { 

   "type":"object", 

   "id": "http://jsonschema.net/C2 Message", 

   "required":false, 

   "properties":{ 

    "Job Properties": { 

     "type":"object", 

     "id": "http://jsonschema.net/C2 Message/Job Properties", 

     "required":false, 

     "properties":{ 

      "ID": { 

       "type":"string", 

       "id": 

        "http://jsonschema.net/C2 Message/Job Properties/ID", 

       "default": "Job-123456", 

       "required":false 

      }, 

      "Name": { 

       "type":"string", 

       "id":  

        "http://jsonschema.net/C2 Message/Job Properties/Name", 

       "default": "MyName", 

       "required":false 

      }, 

      "Path": { 

       "type":"string", 

       "id": 

        "http://jsonschema.net/C2 Message/Job Properties/Path", 

       "default": "FullPath", 

       "required":false 

      } 

     } 

    }, 

    "Message Properties": { 

     "type":"object", 

     "id":  

      "http://jsonschema.net/C2 Message/Message Properties", 

     "required":false, 

     "properties":{ 

      "Connected": { 

       "type":"boolean", 

       "id":  

        "http://jsonschema.net/C2 Message/Message      

         Properties/Connected", 
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       "default":false, 

       "required":false 

      }, 

      "Host ID": { 

       "type":"string", 

       "id":  

        "http://jsonschema.net/C2 Message/Message  

         Properties/Host ID", 

       "default": "MyServer", 

       "required":false 

      }, 

      "Session ID": { 

       "type":"string", 

       "id":  

        "http://jsonschema.net/C2 Message/Message  

         Properties/Session ID", 

       "default": "M-12345678", 

       "required":false 

      } 

     } 

    }, 

    "Message Type": { 

     "type":"object", 

     "id": "http://jsonschema.net/C2 Message/Message Type", 

     "required":false, 

     "properties":{ 

      "Command": { 

       "type":"object", 

        "id":  

         "http://jsonschema.net/C2 Message/Message  

          Type/Command", 

       "required":false, 

       "properties":{ 

        "Cancel": { 

         "type":"number", 

         "id":  

          "http://jsonschema.net/C2 Message/Message  

           Type/Command/Cancel", 

         "default":2, 

         "required":false 

        }, 

        "Job Status": { 

         "type":"number", 

         "id":  

          "http://jsonschema.net/C2 Message/Message  

           Type/Command/Job Status", 

         "default":3, 
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         "required":false 

        }, 

        "Submit": { 

         "type":"number", 

         "id":  

          "http://jsonschema.net/C2 Message/Message  

           Type/Command/Submit", 

         "default":1, 

         "required":false 

        } 

       } 

      }, 

      "Session": { 

       "type":"object", 

       "id":  

        "http://jsonschema.net/C2 Message/Message Type/Session", 

       "required":false, 

       "properties":{ 

        "Command Request": { 

         "type":"number", 

         "id":  

          "http://jsonschema.net/C2 Message/Message  

           Type/Session/Command Request", 

          "default":3, 

          "required":false 

        }, 

        "Connect": { 

         "type":"number", 

         "id":  

          "http://jsonschema.net/C2 Message/Message  

           Type/Session/Connect", 

         "default":1, 

         "required":false 

        }, 

        "Disconnect": { 

         "type":"number", 

         "id":  

          "http://jsonschema.net/C2 Message/Message  

           Type/Session/Disconnect", 

         "default":2, 

         "required":false 

        } 

       } 

      } 

     } 

    } 

   } 
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  } 

 } 

} 

 

The following is a JSON format schema for the acknowledgement to the REST protocol 

acknowledgement. 
 

{ 

 "C2 Ack": { 

  "Message Type": { 

   "Session": { 

    "Connect": 1, 

    "Disconnect": 2, 

    "Command Request": 3 

   }, 

   "Command": {  

    "Submit": 1, 

    "Cancel": 2, 

    "Job Status": 3 

   } 

  }, 

  "Message Properties": { 

   "Host ID": "MyServer", 

   "Session ID": "M-12345678", 

   "Connected": false 

  }, 

  "Job Properties": { 

   "Name": "MyName", 

   "Path": "FullPath", 

   "ID": "Job-123456" 

  }, 

  "Job Status": { 

   "State": { 

    "Running": 1, 

    "Completed": 2, 

    "Canceled": 3, 

    "Erroring Out": 4, 

    "Retired": 5 

   }, 

   "percentage complete": 0, 

   "Message": "No Message Given" 

  }, 

  "Ack Return": { 

   "Status": { 

    "OK": 0, 

    "Error": 1 

   }, 
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   "Message": "No Message Given" 

  } 

 } 

} 


