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ABSTRACT 
 

Linear mixtures of materials in a scene often occur because the pixel size of a sensor is relatively large and consequently 

they contain patches of different materials within them. This type of mixing can be thought of as areal mixing and modeled 

by a linear mixture model with certain constraints on the abundances.  The solution to these models has received a lot of 

attention. However, there are more complex situations, such as scattering that occurs in mixtures of vegetation and soil, or 

intimate mixing of granular materials like soils. Such multiple scattering and microscopic mixtures within pixels have 

varying degrees of non-linearity. In such cases, a linear model is not sufficient.  Furthermore, often enough, scenes may 

contain cases of both linear and non-linear mixing on a pixel-by-pixel basis.  This study considers two approaches for use 

as generalized methods for un-mixing pixels in a scene that may be linear (areal mixed) or non-linear (intimately mixed). 

The first method is based on earlier studies that indicate non-linear mixtures in reflectance space are approximately linear 

in albedo space. The method converts reflectance to single-scattering albedo (SSA) according to Hapke theory assuming 

bidirectional scattering at nadir look angles and uses a constrained linear model on the computed albedo values.   The 

second method is motivated by the same idea, but uses a kernel that seeks to capture the linear behavior of albedo in non-

linear mixtures of materials. The behavior of the kernel method can be highly dependent on the value of a parameter, 

gamma. Furthermore, both methods are dependent on the choice of endmembers, and also on RMSE (root mean square 

error) as a performance metric. This study compares the two approaches and pays particular attention to these 

dependencies.  Both laboratory and aerial collections of hyperspectral imagery are used to validate the methods. 

 

Keywords:  Hyperspectral, kernel methods, single scattering albedo, Hapke theory, linear spectral mixing, non-linear 

spectral mixing. 

 

1.  INTRODUCTION 
 

In a broad sense, spectral mixing phenomenology in multispectral and hyperspectral imagery can be treated in two ways, 

depending on how the materials in a scene are presumed to be mixed.  A linear mixing model is usually suitable in cases 

where materials are presumed to be non-overlapping (areal) and can be mathematically expressed as a linear combination, 

where the weights in the combination are associated with the abundances of each material. The endmembers are spectra 

(hopefully) representing unique materials in a given image such as water, soil, and vegetation.  Abundances are the 

percentage of each endmember within a given pixel.  On the other hand, it is well known that intimately mixed materials 

frequently exhibit nonlinear spectral mixing. Granular materials, such as soils, are often intimate mixtures of numerous 

different inorganic (minerals) and organic (humic) substances. And since soils are often significant constituents of spectral 

remote sensing scenes, intimate mixing may safely be assumed to be a common phenomenon. Another case is the mixing 

of fluids, such as oil and water, as occurred during the Deepwater Horizon oil spill disaster a few years ago. We will 

consider this second case in more detail, below.   

 

Linear mixing is modeled as linear combination of the spectra from multiple endmembers.  The problem is posed in a 

number of ways using theory from Linear Statistical Models with variations that impose either physical or sparseness 

constraints.
1-7

  Sites in a scene are labeled as containing one, two, or perhaps many endmembers.  Some approaches begin 
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with what is sometimes referred to as a full model, where the full model contains all possible variables (endmembers), and 

subsequently eliminates variables that do not contribute to the statistical significance (e.g., using an F-statistic) of the 

model.
8
  Alternatively, other approaches are synonymous with step-wise regression, where the process begins with a pair 

of variables (endmembers) and adds variables if they contribute significantly to the model.
6,8

   

 

Intimate mixing is modeled as non-linear combinations of spectra from multiple endmembers.  An intimate mixture model 

can be described by nonlinear functions, which are justified by Hapke scattering theory
9
  and photometric phase 

functions
18 

 This approach can be used to convert reflectance to single scattering albedo (SSA).  An exact model can been 

difficult to obtain, but can show up to 30% improvement in measurements over the linear mixing model when intimate 

mixtures are present.
10

  Many years ago studies showed success in using a Constrained Energy Minimization (CEM) 

method and other linear methods applied to SSA data.
 20-22

 

 

As an alternative to computing SSA, kernel functions have been introduced as a way to generalize linear algorithms to 

nonlinear data.
11,12

  In the case of detection and classification applications, kernel functions can induce high dimensional 

feature spaces. In these spaces, previously non-separable classes can be made linearly separable. Thus, linear methods can 

be applied in this new feature space that provides nonlinear boundaries back in the original data space. Another example 

is the kernel PCA method.
13

   The kernel, in this case,  is not used to induce a high dimensional space, but is used to better 

match the data structure through nonlinear mappings. It is in this mode that kernels can be used to produce nonlinear 

mixing results while essentially using a linear mixture model. What is more appealing is that the physics suggest that such 

a method is ideal if one can model the kernel correctly. 

 

The drawback with the earlier kernel algorithms for classification and detection is that they produced abundance estimates 

that do not meet the non-negativity and sum-to-one constraints. This was solved by the development of a Kernel Fully 

Constrained Least Squares (KFCLS) which computes kernel based abundance estimates to meet the physical abundance 

constraints.
14

  Further investigation of the KFCLS method has resulted in (1) the development of a generalized kernel for 

areal (linear) and intimate (non-linear) mixtures
15 

and (2) an adaptive kernel-based technique for mapping areal and 

intimate mixtures.
16

  The generalized kernel and adaptive technique provides a way to adaptively estimate a mixture model 

suitable to the degree of non-linearity that may be occurring at each pixel in a scene.  This is important because a scene 

may contain both areal and intimate mixtures and we don’t always know a priori which model is appropriate on a pixel-

by-pixel basis. These methods were developed further by Broadwater and Banerjee.
 17,19

  Based on their work, a study 

investigating the behavior of the generalized KFCLS and adaptive kernel-based techniques was recently performed using 

both user-defined and SVDD automatically-generated endmembers.
23

  

 

Recently a study using laboratory data was performed comparing the performance of the generalized KFCLS applied to 

reflectance spectra with the FCLS method applied to spectra converted to SSA.
24

 One of the conclusions of this effort was 

that similar accuracy in abundance estimates can be achieved using the SSA-based method, but with much faster 

computation time.  
 

 

Overall, the impact of nonlinear spectral mixing on algorithm results must be well understood if we are to achieve a major 

goal of hyperspectral imaging (HSI): the areal mapping and quantification of materials that comprise remotely sensed 

scenes.  In this study we attempt to further this understanding through investigating both phenomenology-based Single 

Scattering Albedo as well as mathematical-based kernel methods.  Our current effort continues this investigation on 

laboratory and airborne imagery data. The laboratory experiment is performed on a highly controlled data containing pre-

determined non-linear mixtures of two materials.  The airborne experiment is performed on an AVIRIS scene collected 

over the oil spill region in the Gulf of Mexico during the Deepwater Horizon oil incident.
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2.  DESCRIPTION OF ALGORITHMS 
 

2.1 Fully Constrained Least Squares  
 

What is often called the Fully Constrained Least Squares (FCLS)
7
 spectral mixing model can be expressed as 

 

Eax  ,     with constraints 0ia  and  



N

i

ia
1

1       (1) 

 

where x is an L×1 vector containing the spectral signature of the current image pixel, E is an L×N matrix containing the 

endmember signatures (the i
th 

column contains the i
th 

endmember spectrum),  and a is an N×1 vector containing the 

estimated abundances (the i
th 

entry represents the abundance value ia ).  N is the number of endmembers within the image 

and M is the number of endmembers within the scene.   

 

The FCLS method is has been quite successful in the past for modeling linear mixing phenomenology. In our present study 

we will be using FCLS in two ways. The method will be used as a benchmark to compare against with the proposed non-

linear methods.  The method will also be used in one of the non-linear approaches, where we will apply the FCLS to 

spectra that has been converted to Single Scattering Albedo (SSA), as discussed immediately, below.   

 

2.2 Using Hapke Theory: Fully Constrained Least Squares (FCLS) applied to Single Scattering Albedo Spectra.  
 

As just mentioned, previous studies indicate that intimate (non-linear) mixtures in reflectance space, are approximately 

linear in albedo space.  Therefore, rather than apply the complex computations involved with (5) on reflectance data to 

estimate abundances of intimate mixtures, why not apply a linear mixing method on albedo?  We consider this by applying 

the FCLS method on data that’s been converted to SSA.  Conversion to SSA is described in Resmini et al.
 20

 (1996) and 

Resmini
21

 (1997) (both studies following Hapke
 9

 (1993); and Mustard and Pieters
18

 (1987)) assuming the reflectance 

spectra are bidirectional. SSA spectra were also generated assuming the input reflectance spectra are hemispherical-

directional. The expressions to transform reflectance spectra to SSA are given by eqs. (2) and (3) for bi-directional (bd) 

reflectance and for hemispherical-directional (hd) reflectance, respectively. In the derivation of both expressions, phase 

angle is large enough that the opposition effect is assumed negligible. 

 

       
 

2

0

0

5.0

0
22

0

0.40.1

0.10.40.1
0.1























    (2) 

 

 

2

0.20.1

0.1
0.1 

















      (3) 

 

In (2) and (3), is single scattering albedo;  is reflectance factor (Hapke
22

), 0 is the cosine of the angle of incidence of 

the illumination, and  is the cosine of the viewing angle. Note that one reflectance is calculated as described previously 

in Section 2.1 though two different equations are used to generate the two sets of SSA spectra.  

 

In the experiments that follow, we refer to this approach as the “FCLS on SSA” method, or as simply the ALBEDO 

method.  The conversion of reflectance spectra to SSA using (2) and (3) is very fast as compared to the GKLS method. 
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2.3 Generalized Kernel Fully Constrained Least Squares  
 

A kernel-based mixing model was derived previously by Broadwater, Chellappa, and Banerjee,
14

 where the method 

estimates the abundances of a mixture using the expression 

 

         ii
tt atsKKK  ,0..,ˆ,ˆ,ˆ2,minargˆ

2
1 aEEaxEaxxa    (4) 

 

where E is the endmember matrix and â  is the estimated abundance vector, discussed above for (1).  The abundance 

estimates are computed using a quadratic programming method to enforce the non-negativity constraint. The specific 

choice of kernel determines the ability of this method to response to different types of mixing.  Choosing the linear kernel 

  yxyx
tK ,  is ideal for modeling linear mixture; however, it is not a suitable kernel for intimate mixtures.  A physics-

inspired kernel has also been proposed and was shown to provide significantly improved behavior to model non-linear 

mixtures.
17

   However, a conclusion of that effort was that although each kernel provides good results for the type of 

mixing intended, only one kernel or the other could be used, for either areal mixtures or intimate mixtures, but not both.  

 

The approach was further developed by Broadwater and Banerjee into a generalized method for adaptive areal and intimate 

mixtures.
15,16

  This method is motivated by attempting to simulate Hapke theory for Single Scattering Albedo (SSA), 

making use of the kernel: 
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The kernel in (5) can model either areal or intimate mixtures so long as the correct   is used.  If   is very small then 

 yx,K approximates linear mixing.  If   is large then  yx,K approximates intimate mixing in cases when the 

reflectance occurring from intimate mixing is modeled as 
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where r is the reflectance vector, H is Chandrasekhar’s function for isotropic scattering, w is the average single-scattering 

albedo vector, 0 is the cosine of the angle of incidence, and   is the cosine of the angle of emergence.
18

 The computation 

is similar in form to (4) except the minimization is done according to 
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where â  is the abundance estimate and  yx,K  is the kernel evaluated with the parameter value  .   A numerical 

optimization based on the golden search method is used to minimize (7).
19

  An implementation of this generalized method 

is investigated, which we refer to as Generalized Kernel Least Squares (GKLS). 

 

In addition to a fixed-gammaGKLS implementation, an automated GKLS method is investigated that attempts to select 

the most appropriate gamma based on achieving a minimum of the model’s RMSE.  In this manner, at least theoretically, 

the automated GKLS method has the ability to respond differently to differing degrees of non-linearity to select the best 

gamma and compute more precise estimates of abundance. 
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3.  DESCRIPTION OF EXPERIMENTS 
3.1. Overview of Experiments 

 

Two experiments are performed in this study. The first is an experiment conducted in the laboratory. In this experiment, 

two granular materials were custom fabricated and mechanically mixed to form intimate mixtures. The materials are 

spherical beads of didymium glass and soda-lime glass, both ranging in particle size from 63 m to 125 m. The mixtures, 

which exhibit largely nonlinear spectral mixing, were then observed with a visible/near-infrared (VNIR; 400 nm to 900 

nm) hyperspectral imaging (HSI) microscope.  The second experiment is performed using airborne hyperspectral imagery, 

an AVIRIS scene that was collected over the oil spill region in the Gulf of Mexico during the Deepwater Horizon oil 

incident. The SSA, FCLS, and GKLS methods are applied to the data experiments. 

 

3.2. Experiment 1 - Laboratory Experiment 

 

A Resonon Pika II imaging spectrometer with a Xenoplan 1.4/23-0902 objective lens shown in Figure 1 is used to measure 

the glass bead mixtures.
29,20,31

 The Pika II is mounted nadir-looking at a mechanical translation table on which the sample 

to be imaged is placed. The Pika II is a pushbroom sensor with a slit aperture, thus the need for a translation table to move 

the sample to facilitate hyperspectral image cube formation. The height of the sensor above the table is user selectable; a 

height was chosen such that all mixtures are captured in the same scene thus the data have a ground sample distance of 

~75 m/pixel. Though capable of acquiring 240 bands from 400.0 nm to 900.0 nm, the sensor was configured to acquire 

80 bands by binning spectrally by three resulting in a sampling interval of ~6.25 nm and high signal-to-noise ratio spectra. 

Four quartz-tungsten-halogen (QTH) lamps are used for illumination approximating a hemispherical-directional 

illumination/viewing geometry. Sensor and translation table operation, data acquisition, and data calibration are achieved 

by software that runs on a laptop computer. Calibration consists of a measurement of dark frame data (i.e., acquiring a 

cube with the lens cap on) and a measurement of a polytetrafluoroethylene (PTFE) reference plaque (large enough to 

entirely fill the field-of-view). Then, for each HSI cube measured, the sensor's software first subtracts the dark data and 

then uses the PTFE data (also dark subtracted) to ratio the spectral measurements to give relative reflectance (also known 

as reflectance factor; Hapke, 1993
29

; Schott, 2007
32

 ). 

  

 
Figure 1: Photograph of the VNIR HSI microscope. The Resonon Pika II is shown with 

the Xenoplan 1.4/23-0902 objective lens [33]. 

 

Three binary mixtures (and the two endmembers) are constructed and emplaced in the wells of a 96-well sample plate: 

0%/100%, 25%/75%, 50%/50%, 80%/20%, and 100%/0% of didymium/soda-lime (percentages by volume).  This was 

done as follows: Five cells of a 96-well sample plate, spray-painted flat black, were filled with the various glass bead 

mixtures; this is shown in Figure 2. The volume of each cell is 330 L (0.33 mL). Three binary mixtures and the two 100% 

endmembers are constructed and emplaced in five of the wells of the 96-well sample plate: 0%/100%, 25%/75%, 

50%/50%, 80%/20%, and 100%/0% didymium/soda-lime. The materials are spherical beads of didymium glass and soda-

lime glass both ranging in particle size from 63 m to 125 m. Mixtures are by volume. This is a data set with only non-

linear spectral mixing; the glass beads, didymium and soda-lime, are translucent. Their chemical composition, densities, 



Approved for Public Release: 15-2513.  Copyright has been transferred to another party. 

and particle size range are well known. Note that the glass bead particle size range is much larger than the VNIR 

wavelengths used in this analysis. The glass beads and their mixtures display subtle, though interesting, gonioapparent 

changes in color. 

 

 

 
 

Figure 2: (left) 35 mm digital single-lens reflex (DSLR) camera photograph of the 96-well plate containing the glass beads. (right) A 

Pika II normal color composite image (2% linear stretch of the bands used in the red-green-blue [RGB] image). All percentages are by 

volume of glass bead type indicated. Spillage onto the plate is evident in the photo on the left but not in the image on the right. Changing 
the stretch of the Pika II imagery will reveal the spillage [33]. 

 

 

Fifteen data cubes were acquired; however, we focus here on the analysis of one cube comprised of 640 samples, 500 

lines, and 75 bands ranging from 434.0 nm to 885.0 nm. Of the 80 bands acquired the first 5 were discarded due to noise 

content.  

 

Training and test data were extracted from the selected hyperspectral cube.  Figure 3 shows polygons defining the training 

and test regions drawn on top of a Red-Green-Blue (RGB) color composite of this cube.  For training, three training 

endmembers are defined: DiDy (100%), Lime (100%) and Background.  The spectra within the small training polygon 

regions were extracted and the averages of the spectra the regions were used as endmember spectra for the three methods 

under investigation.  For purposes of testing the performance of the algorithm, five regions were extracted, corresponding 

to the five mixtures 100% DiDy, 75/25% DiDy/Lime, 50/50% DiDy/Lime, 25/75% DiDy/Lime, and 0/100% DiDy/Lime. 

Two additional test regions of background spectra were extracted.    The training regions are shown in Figure 3a and the 

test regions are shown in Figure 3b. Note that none of these test regions overlapped the training regions. The spectra of 

the training endmembers are shown in Figure 4.   

 

The image-derived training endmembers, as just described, are used to investigate the three methods described in 

Section 2.0: (1) FCLS applied in reflectance space; (2) GKLS applied in reflectance space; and (3) “FCLS applied in 

SSA space.  For purposes of conciseness in reporting results, these methods henceforth will be referred to as the FCLS, 

GKLS, and SSA methods, respectively.  
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(a) RGB Composite of the HSI cube showing training regions 

 

 
 

(b) RGB Composite of the HSI cube showing test regions 

  
Figure 3:  RGB composite images of the hypercube showing the training and test regions used in the experiment trials. 

 
 

Numerous factors affect the performance of the methods.  Three factors affecting the performance of all the methods are 

(1) the number the endmembers used in a model; (2) how well these endmembers span the space in which the mixing 

occurs; and (3) the Root Mean Square Error (RMSE) threshold for eliminating bad fits between the observed and 

 model-estimated spectra.  In addition, the GKLS method uses a kernel parameter “gamma” that determines the non-linear 

behavior introduced by the models’ kernel. We test the GKLS method at fixed values of gamma: 0.1, 0.5, 1.0, 2.0, 3.0, 

4.0, 5.0 and 6.0, as well as the automated GKLS.    For the SSA method, performance might be affected by the type SSA 

conversion: Hemispherical or Bi-Directional. If Bi-Directional, the input and output angles are other factors.  In our case, 

we report on the results for an SSA conversion made assuming bi-directional reflectance with nadir input and output 

angles.  We also tried the SSA conversions at other angles, but we didn’t notice any noteworthy difference.  
 

The experiment trials were made on the entire scene.  Both qualitative results (shown by pictures of the entire scene) and 

quantitative results (applied in the test regions) are given. 
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Figure 4:  Mean spectra for the three endmembers (DiDy, Lime, and DarkBackground) are shown. 

 

 

3.3. Experiment 2 - Airborne Experiment 

 

An airborne experiment is performed using a scene extracted from AVIRIS data collected during a JPL/USGS campaign 

in response to the Deep Water Horizon (DWH) oil spill incident.
27

  Out of the numerous flight lines of AVIRIS acquired 

on May 17, 2010, Run 11 of AVIRIS was selected, which includes the incident site of the oil spill.  This run was collected 

at an altitude of 28,000 feet resulting in a Ground Sampling Distance (GSD) of approximately 9 meters.  The full size of 

the imagery is 677 pixels by 16,835 lines with 224 bands of reflectance data in the range 0.365-2.49 microns.  As part of 

the calibration to reflectance, the imagery was scaled by a factor of 20,000.  For Experiment 2,a portion of this scene of 

size “500 samples by 500 lines” was extracted for processing.   

 

Figure 5 shows a true-color RGB composite of this scene.  The scene is mostly water with large portions containing oil.  

Different states of the oil can be seen visibly, appearing in different colors ranging from almost black, to dark brown, to 

light brown, and to orange. This small scene contains a great diversity of oil thicknesses.   

 

Although precise ground truth is not available due to the dynamically changing environment of an oil spill on water, 

previous studies using feature-based spectroscopy methods determined the locations of three predominant oil thicknesses 

in the region. As a part of these studies, during the DWH campaign, USGS collected numerous oil samples and brought 

them back to their laboratory for measurements.
27

  

 

Figure 6 shows laboratory-measured spectra of three oil samples at differing thicknesses.  Absorption features due to C-H 

with band centers (bc) at 1.2 microns and 1.73 microns are highlighted in red and green, respectively. The left edge of an 

absorption feature is labeled lc (left continuum edge) and the right edge is labeled rc (right continuum edge).  The blue-

colored diagonal line shows the inferred continuum spectra Cs of the 1 mm thickness oil sample. The edges and center for 

the feature near 1.2 microns are shown in the figure. Similar edges and center are defined near the 1.7 micron feature, but 

are not depicted 

 

For purposes of training and defining the endmembers, laboratory spectra for pure oil samples with 4mm thickness and 

1.85 mm thickness are used, as well as an oil/water emulsion having a thickness of 1.0 mm.  Because much of the emulsion 

behavior is difficult to model in the laboratory, user-defined image spectra are also used: orange colored spectra (in the 

RGB true-color composite) and water spectra with trace oil. 

 

Trials are performed for the FCLS, GKLS, and SSA methods.  Based on the results from the laboratory experiment, we 

limited our testing of the GKLS method to a fixed value of gamma (G = 5). We report on the results for an SSA conversion 

made assuming bi-directional reflectance with nadir input and output angles.   
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Figure 5: An RGB composite scene (500 samples by 500 lines) from a portion of AVIRIS Run 11 is shown in (a). [Source of 

imagery: U.S. Geological Survey]  

 

 

 

 
 

Figure 6: Spectra of three oil samples at differing thicknesses are shown.  Absorption features due to C-H with band centers (bc) at 1.2 

microns and 1.73 microns are highlighted in red and green, respectively. The left edge of an absorption feature is labeled lc (left 

continuum edge) and the right edge is labeled rc (right continuum edge).  The blue-colored diagonal line shows the inferred continuum 
spectra Cs of the 1 mm thickness oil sample.  

 

  

Oil 1.0 mm 

Oil 1.85 mm 

Oil 4.0 mm 
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bc 
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4.  RESULTS 
 

The results for Experiment 1 (the Laboratory Experiment) are shown in Figures 7 to 9, as well as Tables 1 and 2.  Figure 

7 shows RGB Color Abundance Maps for four of the trials (Red=DiDy, Green=Lime, Blue= Background). Qualitatively, 

Figures 7a and 7b show poor correspondence to the known mixtures shown in Figure 2.  Figures 7c and 7d show much 

better correspondence to the known mixtures shown in Figure 2.  The variations in color within the discs containing the 

three mixtures (75/25, 50/50/ and 25/75) is noteworthy.  These variations indicate the methods are detecting notable 

variance in the abundance proportions.  This is in spite of the experiment goals to prepare mixture proportions that are as 

uniform as possible. There is little reason to doubt that these variations are real and that the methods (particularly, GKLS 

and SSA) are responding correctly.  Static clinging and other inter-particle interactions can easily account for the clumping 

and variations observed. 

 

    
                 (a)  FCLS Method (Linear)                       (b) GKLS at Gamma = 0.1 (Linear) 

  

    
(c) GKLS at Gamma = 5.0  (Non-Linear)   (d) SSA Method (Non-Linear) 

 
Figure 7:  RGB composite images showing Color Abundance Maps for four of the trials (Red=DiDy, Green=Lime, Blue= Background).  

Figures 7a and 7b show poor correspondence to the known mixtures shown in Figure 2.  Figures 7c and 7d show much better 

correspondence to the known mixtures. 

 

Table 1 lists the average estimated abundances for the FCLS, GKLS, and SSA methods in the five test regions.  Figure 8 

shows these results graphically. The “truth” (actual physically measured) percent by volume of DiDy for these regions 

varied slightly from the goal of 100%, 75%, 50% 25% and 0%. In reality these were measured as 100%, 78.8%, 50.5%, 

24.2%, and 0% for DiDy100, DiD075, DiDy050, DiDy025, and DiDy000, respectively.  Results for the GKLS method 

using a fixed gamma of G= 0.1, G=0.5, G=1.0, G=2.0, G=3.0, G=4.0, G=5.0, and G=6.0 are given.  This table shows 

FCLS to be poor at predicting the abundances for DiDy075 (93.11% vs. 78.8%) and DiDy050 (74.97% vs. 50.5%), as well 

as very poor at predicting DiDy025 (63.88% vs. 24.2%).  The results of GKLS for small gamma agree with theoretical 

expectations of approximately a linear model.  Specifically, the predication of GKLS at G=0.1 is almost exactly the same 

as the FCLS method.  Out of the eight gamma values tested, GKLS at G=5.0 provides the closest prediction for DiDy50 

(49.08% vs. 50.5%) and is only slightly worse at predicting the correct abundance than GKLS at G=6.0. 
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Table 1.  Abundance Results: The average estimated abundances are listed for the FCLS, GKLS, and SSA methods in the five test 

region. The “truth” for these regions (actual physically measured proportions by volume) is 1.0, 0.788, 0.505, 0.242, and 0.0 for 

DiDy100, DiD075, DiDy050, DiDy025, and DiDy000, respectively.  Results for the GKLS method using a fixed gamma of G= 0.1, 

G=0.5, G=1.0, G=2.0, G=3.0, G=4.0, G=5.0, and G=6.0 are given, as well as for the automated GKLS. 
 

 FCLS G=0.1 G=0.5 G=1 G=2 G=3 G=4 G=5 G=6 G=Auto SSA 

DiDy100 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.98 

DiDy075 0.93 0.93 0.93 0.92 0.91 0.89 0.88 0.86 0.84 0.90 0.82 

DiDy050 0.75 0.75 0.73 0.70 0.65 0.59 0.54 0.49 0.44 0.55 0.40 

DiDy025 0.64 0.63 0.61 0.58 0.52 0.47 0.41 0.36 0.31 0.33 0.30 

DiDy000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

   

  

Figure 8:  A graph of the results listed in Table 1 for the FCLS, GKLS, and SSA methods is displayed. 

 
Table 2. Model Diagnostics:  The Root Mean Square Error (RMSE) of the fit between the estimated and observed spectral mixtures is 

listed for selected points in the scene.  The first column lists the location and planned percentage mix of DiDy for these points. (Actually 

physically measured mixes were 100%, 78.8%, 50.5%, 24.2% and 0.0%.). 

 

(x, y)   DiDy % FCLS GKLS G=5 GKLS G=6 SSA 

(585,248) 100% 0.0141 0.0293 0.0369 0.0315 

(400,228)  75% 0.0245 0.0244 0.0248 0.0351 

(418,239)  75% 0.0183 0.0177 0.0324 0.0262 

(405,251)  75% 0.0179 0.0196 0.0205 0.0255 

(324 ,049)  50% 0.0357 0.0225 0.0222 0.0129 

(313, 062)  50% 0.0359 0.0318 0.0390 0.0118 

(328, 067)  50% 0.0333 0.0294 0.0533 0.0223 

(223,314)  25% 0.0526 0.0380 0.0379 0.0140 

(224,327)  25% 0.0495 0.0383 0.0384 0.0186 

(246,330)  25% 0.0420 0.0289 0.0636 0.0121 
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(a) FCLS Method 

 

 
 

(b) GKLS Method with Gamma G = 5. 

 

 
  

(c) SSA Method 

 
Figure 9:  The observed and estimate estimated mixture (averaged) spectra of the 50/50% region using the FCLS, GKLS, and SSA 
methods.  
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Figure 9 shows the observed and estimated mixture (averaged) spectra of the 50/50% region using the FCLS, GKLS, and 

SSA methods.  Visually, we can see both the GKLS (G=5) and SSA methods provide a better fit as compared to the FCLS 

method. 

 

Table 2 lists the Root Mean Square Error (RMSE) of the fit between the estimated and observed spectral mixtures for 

selected points in the scene.  Except for DiDy at 25% (0.242), the RMSE errors for FCLS were not considerably larger 

than the errors for the other methods. Yet we know FCLS is poorly predicting the known abundances for these samples.  

We conclude RMSE is not necessarily a good indicator of a methods accuracy to predict abundance.  As far as the 

GKLS method, in most cases a gamma of G=5.0 provides a better fit than G=6.0.  Recalling that G=5 provides a better 

prediction of abundance as compared to GKLS at the other values of gamma and also provides a smaller RMSE as 

compared to GKLS at G=6.0, we henceforth consider G= 5.0 to provide the best GKLS result. 

 

In Tables 1 and 2, the results also show (unfortunately) the automated implementation of the GKLS method, which 

attempts to select the most appropriate gamma based on achieving a minimum of the model’s RMSE, was  not as successful 

as the fixed gamma GKLS (G = 3, 4, 5, or 6)  for estimating the correct abundance.  This automated GKLS method attempts 

to select the most appropriate gamma based on achieving a minimum of the model’s RMSE.  We conclude the RMSE 

metric seems to respond to a mixture being linear or non-linear, but unfortunately it is not a reliable metric to determine 

the degree of non-linear behavior.  RMSE could not be used to achieve the most accurate estimate of abundance and was 

not effective for implementing an automated GKLS. 

 

The results for Experiment 2 (the Airborne Experiment) are shown in Figures 10 to 12 and Table 3 and 4.  Figure 10 shows 

an RGB composite abundance map and five single-layer abundance maps for the fixed-gamma GKLS method.  The 

composite abundance map shows visually the method’s response to three thicknesses of oil: the R layer depicts the 

abundance of 4.0 mm. thick oil; the G layer depicts the abundance of 1.85 mm. thick oil; and the B layer depicts the 

abundance of 1.00 mm. thick oil.  The single-layer abundance maps show visually the results for five of the six 

endmembers.   Due to space limitations and the small size of these photos in the report, it is difficult to see the detailed 

patterns, but it’s possible to get the sense of the behavior the method.   We expect oil to spread out in a certain pattern 

from thick to thin, which is indeed what happens.  In the original photos of the three methods (not shown), there is little 

difference in the patterns observed between the GKLS and SSA methods.  However, there is a notable difference in the 

patterns seen for the 4.0 mm thick oil between the FCLS and GKLS (or SSA) methods.  

 

Figure 11 shows the single-layer abundance maps of the 4.0 mm. thick oil for the FCLS and fixed-gamma GKLS (G=5) 

method.  The FCLS method shows much of the same large area of thick oil in the central-right side of the scene as the 

GKSL (and SAA, not shown).  However, these maps also show a notable difference in pattern between the FCLS and 

GKLS methods, as just mentioned above.  The linear method (FCLS) indicates a significant amount of 4.0 mm. thick oil 

throughout the scene in areas that would not be expected.  Of course, we don’t have ground truth, so it’s always possible, 

but physically we expect the oil to spread out in a certain pattern from thick to thin.  There is isolated 4.0 mm oil scattered 

throughout the area in the FCLS photo not seen in the GKLS photo.  Neither the GKLS nor the SSA methods indicate 

much 4.0 mm. thick oil in these regions. 

 

Tables 3 and 4 show the abundance results and model diagnostics, respectively, for the three methods at selected locations 

of the AVIRIS scene.  In Table 3, the abundance estimates are not very different for the first three locations.  Interestingly, 

the model diagnostics (RMSE) in Table 4 indicate the mixtures are likely to be linear at these locations.  The abundance 

estimates listed in Table 3 for the last location (x,y) = (441, 441) are in agreement with Figure 11 and the smaller RMSE 

value for the GKLS at this location indicate mixture is likely non-linear.   

 

Figure 12 shows plots of the observed and estimated spectra at the location (x,y) = (441, 441).  The fits look good, visually, 

except for a significant difference in the F2 diagnostic region for the FCLS method and in the F1 diagnostic region for the 

SSA method.  However, overall the fits are quite good considering the magnitudes of the data. The larger values of RMSE 

listed for the SSA method are likely a consequence of the magnitude of the SSA spectra as compared to the normalized 

reflectance values used in the FCLS and GKLS methods (see range of the y-axis in Figure 12).  
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                (a) RGB Layer: R=4mm, G=1.85m, R=1.0mm                (b) Single Layer 4mm thick oil 

                
                        (c) Single Layer: 1.85 mm thick oil                        (d) Single Layer: 1.0 mm thick oil 

             
        (e) Single Layer 0.5 mm thick oil                             (f) Single Layer: Orange oil 

 

Figure 10:  RGB and Single-Layer Abundance Maps using the GKLS method are shown for 5 of the 6 endmembers (water 

endmember not shown).  
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(a) FCLS Method: Single Layer Map for 4 mm thick oil. 

 
(b) GKLS Method (G=5): Single Layer Map for 4 mm thick oil. 

 

Figure 11:  Single-Layer Abundance Maps of the 4.0 mm thick oil are shown for the FCLS and GKLS (G=5) methods.  
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Table 3. Abundance Results: Estimated abundance values of the methods are listed for selected locations (points) of the 

AVIRIS oil scene. 

  Lab Lab Lab Lab Img Img 

 Location DWH Oil DWH Oil DWH Oil DWH Oil (546, 481) (1154, 112) 

Method (x,y) 4.0 mm 1.85 mm 1.0 mm 0.5 mm Orange Water 

FCLS (317, 202) 0.965 0.000 0.000 0.000 0.000 0.035 

GKLS=5 (317, 202) 0.956 0.000 0.000 0.000 0.000 0.044 

SSA (317, 202) 0.951 0.000 0.000 0.000 0.000 0.049 

FCLS (318, 202) 0.988 0.000 0.000 0.000 0.000 0.012 

GKLS=5 (318, 202) 0.973 0.000 0.000 0.000 0.000 0.027 

SSA (318, 202) 0.965 0.000 0.000 0.000 0.000 0.035 

FCLS (323, 203) 0.966 0.043 0.000 0.000 -0.009 0.000 

GKLS=5 (323, 203) 0.956 0.044 0.000 0.000 0.000 0.000 

SSA (323, 203) 0.952 0.048 0.000 0.000 0.000 0.000 

FCLS (410, 375) 0.133 0.000 0.171 0.000 0.187 0.508 

GKLS=5 (410, 375) 0.137 0.000 0.230 0.052 0.201 0.380 

SSA (410, 375) 0.177 0.000 0.082 0.339 0.108 0.294 

FCLS (441, 441) 0.119 0.000 0.142 0.000 0.293 0.445 

GKLS=5 (441, 441) 0.073 0.000 0.181 0.094 0.303 0.349 

SSA (441, 441) 0.075 0.000 0.000 0.460 0.177 0.288 

 

 

 

Table 4.  Model Diagnostics: The Root Mean Square Errors (RMSEs) computed for the fit between the observed and 

estimated mixed spectra are listed for selected locations of the AVIRIS oil scene. 

 

Location  RMSE  

(x,y) FCLS GKLS G=5 SSA 

(317, 202) 0.0060 0.0064 0.0274 

(318, 202) 0.0070 0.0073 0.0286 

(323, 203) 0.0026 0.0027 0.0133 

(410, 375) 0.0092 0.0073 0.0287 

(441, 441) 0.0132 0.0118 0.0484 
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(a) FCLS Method 

 

 
(b) GKLS Method with Gamma = 5.0 

 

 
(c) SSA Method 

 

Figure 12.  Plots of the observed and estimated spectra at the selected location (x,y) = (441,441). The result for the FCLS model is 

shown in (a), the result for the GKLS method at a fixed gamma of G=5.0 is shown in (b) and the result for the SSA (ALBEDO) method 

is shown in (c).  F1 and F2 are diagnostic oil features located at 1.2 microns and 1.73 microns, respectively.  Bad bands have been 
removed in the plots. Artificial discontinuities are apparent for three of the four bad-band regions that were removed, at horizontal 

coordinates 35, 55, and 83. The discontinuities are indicated by the pink-colored strips.  
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5.  CONCLUDING REMARKS 
 

This study has investigated the use of a Generalized Kernel Least Squares (GKLS) method applied to reflectance data, and 

a Single Scattering Albedo (SSA) method for non-linear mixture analysis.  In the case of the SSA method, a Fully 

Constrained Least Squares (FCLS) method is applied to data that has been converted from reflectance space to SSA space.  

Our baseline method was the FCLS method applied to reflectance data. Our hypothesis is that, for intimate (non-linear) 

mixtures, both of these methods will provide improved modeling and abundance estimates as compared to the baseline 

FCLS method.  Two scenarios (laboratory and aerial) are tested on different scenes and hyperspectral sensors (Pika II and 

AVIRIS).  

 

Overall the results for Experiment 1 indicate the FCLS method has a poor capability for modeling intimate mixtures.  In 

contrast, both the GKLS and SSA methods do a much better job.  Whether or not one is better than the other is not 

conclusive. However, we conclude that our hypothesis is confirmed and that both of these methods provide a better 

estimate of abundance for mixtures exhibiting nonlinearity. For the laboratory experiment of known abundance quantities, 

the SSA and GKLS methods responded well to the nonlinearity present in a mixture of materials and provided better 

estimates of abundance than the linear FCLS method for the DiDy and Lime.   

 

The GKLS parameter “gamma” determines the degree of non-linear behavior exhibited by the GKLS method and affects 

its accuracy for estimating abundances.  The automated GKLS method attempts to select the most appropriate gamma 

based on achieving a minimum of the model’s RMSE.  We conclude the RMSE metric seems to respond to a mixture 

being linear and non-linear, but unfortunately it is not a reliable metric to determine the degree of non-linear behavior.  It 

could not be used to achieve the most accurate estimate of abundance.  

 

For mixtures known to be non-linear: A fixed gamma implementation of GKLS with G = 5 or 6 provides a good estimate 

of abundance.  The fixed gamma GKLS and the SSA methods can be computed in approximately the same amount of time 

and provide approximately the same accuracy for estimating abundances.  The automated GKLS was much slower to 

compute and did not achieve better accuracy. 

 

In Experiment 2, the aerial experiment over water (Deepwater Horizon Oil Spill), the SSA and GKLS methods performed 

equivalently and appeared to respond better to the non-linear mixtures of oil thicknesses in the water than the linear.  

Specifically, the linear method appears to be predicting too much of the thicker oils.  This can only be determined 

qualitatively because of the lack of ground truth. Additional analysis should be performed on scenes containing a variety 

of known nonlinear mixtures that are well documented with ground truth. 
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