
MITRE

Dorian Voegeli
© 2018 The MITRE Corporation. All Rights Reserved.

Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

A Field Guide

ETL from
RDF to
Property
Graph

© 2018 The MITRE Corporation. All Rights Reserved.
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

ETL from RDF to Property Graph

Dorian Voegeli

MITRE

© 2018 The MITRE Corporation. All Rights Reserved. iii
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Table of Contents

Preface ___ vi
Introduction __ ix

Unit One Extract ___ 13
Chapter 1 HTTP Interface: Extract ___ 14

Item 1: HTTP interfaces potentially allow any language to query the RDF database _____ 14
Chapter 2 Format __ 16

Item 2: Serialization formats depend on the access points of the RDF database _________ 16
Item 3: Determine how the database represents a triple set in JSON ___________________ 17
Item 4: A good starting format is a CSV file for nodes and relationships _______________ 18

Chapter 3 Query __ 19
Item 5: Proprietary features can add simple free-text capabilities to SPARQL queries ____ 19
Item 6: Define a SPARQL query in terms of a function, where appropriate _____________ 20
Item 7: Determine the validity of inferred triples ___________________________________ 20

Chapter 4 Index ___ 21
Item 8: Be sure to preserve the triple’s unique identifier _____________________________ 21
Item 9: RDF index can become the graph context ___________________________________ 22
Item 10: Use static analysis features to determine the optimal index ___________________ 22
Item 11: Use unique constraints to ensure unique property values ____________________ 23

Chapter 5 Literal: Extract __ 24
Item 12: Consider preserving free-text search capabilities ____________________________ 24
Item 13: SPARQL and RDF differ in literal definitions _______________________________ 24

Chapter 6 Reification: Extract __ 26
Item 14: Every reification pattern has its compromises ______________________________ 26
Item 15: The triple’s unique identifier in the subject or object _________________________ 27
Item 16: Four extra triples that refer to a single triple ________________________________ 27
Item 17: The fourth element is properties on the predicate ___________________________ 28

Unit Two Transform __ 29
Chapter 7 CSV: Transform __ 30

Item 18: Find and remove unintended artifacts _____________________________________ 30
Item 19: Guidelines to properly formatting a CSV __________________________________ 31

Chapter 8 JSON: Transform ___ 33
Item 20: Make sure that the JSON file is not malformed _____________________________ 33
Item 21: JSON is usually the default format for HTTP interfaces ______________________ 33

© 2018 The MITRE Corporation. All Rights Reserved. iv
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 9 Aggregate ___ 35
Item 22: Reduce duplicate triples by determining the criteria of duplicate triples________ 35
Item 23: Alignment of data points across data sets __________________________________ 35
Item 24: Consider adding or preserving equivalent relationships _____________________ 36
Item 25: Predicates and object types help decompose compound literal objects _________ 37

Chapter 10 Translate ___ 38
Item 26: Be careful when translating a SPOGI index ________________________________ 38
Item 27: Translate to an object representation ______________________________________ 38

Chapter 11 Encode __ 39
Item 28: Be careful with the types on predicate-object properties _____________________ 39
Item 29: Preserve the classification capabilities of RDFS _____________________________ 40

Chapter 12 Transformation __ 41
Item 30: Consider when to use either a direct or indirect transformation _______________ 41
Item 31: Property graph properties cannot contain nodes ____________________________ 42

Chapter 13 Linkage __ 43
Item 32: Be careful to preserve links to other databases ______________________________ 43
Item 33: Be on the lookout to preserve links to documents ___________________________ 43

Chapter 14 Literal: Transform __ 45
Item 34: Beware of a literal in the place of either the subject or predicate _______________ 45
Item 35: Watch out for either missing or dropping a literal’s type _____________________ 45

Chapter 15 Reification: Transform __ 47
Item 36: Triple unique identifier in the subject or object is difficult to transform_________ 47
Item 37: Beware of reification that uses blank nodes ________________________________ 48
Item 38: Using the fourth element for properties of a predicate _______________________ 48

Unit Three Load ___ 49
Chapter 16 HTTP Interface: Load ___ 50

Item 39: Differences between built-in import tools and HTTP interfaces _______________ 50
Chapter 17 Import ___ 51

Item 40: Memory cache affects import efficiency ___________________________________ 51
Item 41: Gremlin is an emerging property graph query language _____________________ 52
Item 42: Try a periodic commit for large data sets __________________________________ 52
Item 43: Setup index to speed up importing _______________________________________ 53
Item 44: Backup data before attempting a batch import______________________________ 53

Chapter 18 Idempotence __ 55
Item 45: Use a repeatable (idempotent) update operation ____________________________ 55

Chapter 19 CSV: Load __ 56
Item 46: The structure of the CSV files determines the query statements _______________ 56
Item 47: Load a line of the CSV file before proceeding _______________________________ 57

Chapter 20 JSON: Label __ 58
Item 48: Use a function to traverse the JSON structure ______________________________ 58

© 2018 The MITRE Corporation. All Rights Reserved. v
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 21 Label __ 59
Item 49: Uniqueness constraints for nodes with a specific label _______________________ 59
Item 50: Create an index from a label ___ 59

Chapter 22 Relationship __ 61
Item 51: Use properties for information about relationships __________________________ 61
Item 52: A relationship does not always imply a bi-directional traversal_______________ 62
Item 53: Undirected relationship for arbitrary relationships __________________________ 62

Chapter 23 Transform: Load ___ 63
Item 54: Order-free RDF triples and node-dependent structure of a property graph _____ 63

Appendix A Modeling __ 64

Appendix B Inference ___ 65

Appendix C RDF with Property Graphs __________________________________ 66

Appendix D Error Messages __ 68

List of Tables __ 69

List of Figures ___ 70

Glossary ___ 71

References __ 76

Index __ 78

© 2018 The MITRE Corporation. All Rights Reserved. vi
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Preface

Within this preface is general information about this document, such as what the
document is about, how to use it, its organization, what technologies it uses for examples,
its style conventions, and acknowledgements. This section introduces many terms and
acronyms. Please refer to either the introduction, later chapters, or glossary for the
definitions of these terms and acronyms.

About
This document is a field guide to extracting data from a database, transforming the data,
and loading the data into a database. The term ETL is the shorthand reference to this
activity (extract, transform, load). Specifically, this document focuses on the ETL process
from an RDF (Resource Description Framework) model to a property graph model.

Usage
This document does not evaluate proprietary database technologies. However, for
illustrative purposes, this document will refer to such proprietary technologies.
References to any proprietary technologies are not an endorsement.

Though this document briefly introduces the concepts of an RDF model and a property
graph model, this document assumes that readers are familiar with the broad terms and
concepts about these models.

Organization
Each chapter in this document has items that relate to a problem area. Each item has two
parts: a title and a body. The item’s title is a phrase that sums up the item. The item’s
body will usually contain a problem description, a possible solution, or an example.

© 2018 The MITRE Corporation. All Rights Reserved. vii
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Technologies
Whenever possible, this document will refer to open standards set forth by a standards
committee. If that is not possible, this document will use free and open-source software.
Otherwise, this document will defer to proprietary solutions.

AllegroGraph1 is the technology used to represent an RDF model. For data modeling, it
uses the open-standards RDF, RDFS, SKOS, and OWL. For querying, it uses the open-
standard SPARQL query language.

Neo4j2 is the technology used to represent a property graph model. For data modeling, it
uses a non-standard representation of nodes, edges, labels, and attributes. For querying,
it primarily uses its own proprietary Cypher query language; secondarily, it uses the
open-source Gremlin query language. Finally, a plugin provides limited interoperability
with the SPARQL query language.3

Style Conventions
The following typographical conventions are in use throughout this document:

Italic

Indicates new terms or technology-related terms, such as a URL, email, or filename

Constant width

Used for program listings or within paragraphs to refer to programming examples

Constant width bold

Designates commands or other text that the user should type

Constant width italic

Specifies values supplied by the user or determined by the context

1 http://franz.com/agraph/allegrograph/
2 http://neo4j.com/
3 https://github.com/neo4j-contrib/sparql-plugin/

© 2018 The MITRE Corporation. All Rights Reserved. viii
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Offers a tip or suggestion

Marks a warning or cautioning

Signifies an important note

Acknowledgements
Thank you, Kim Halladay, for hacking through a dense jungle of information to clear a
path for this document; you have been very helpful in grounding this work. Thank you,
Ram Muscu, for offering access to your modeled data and for offering insights into a
general framework for organizing this document. Thank you, Bob Daniels, for the big
issues related graph databases and for presenting many wonderful, open-ended
questions about RDF and property graphs. Thank you, Joe Portner, for your excellent
suggestions for, and edits to, the preface. Thank you, Caroline Kennedy, for your
countless edits. Thank you, Justin Brunelle and Jackie Morin; for without you two, there
would be no total effect that is greater than the sum of either of our individual
contributions. Finally, thank you, Elizabeth, my wife.

Disclaimer
The author's affiliation with The MITRE Corporation is provided for identification
purposes only, and is not intended to convey or imply MITRE's concurrence with, or
support for, the positions, opinions or viewpoints expressed by the author.

© 2018 The MITRE Corporation. All Rights Reserved. ix
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Introduction

Within this introduction is a brief description of the extract, transform, and load process,
as well as a general description of both the resource description framework and the
property graph concepts. Concluding this section is a side-by-side comparison between
the resource description framework and the property graph databases. This information
intends to give the reader a sense of how the resource description framework and the
property graph databases relate in respect to the extract, transform, and load process.

Extract, Transform, Load
The following is a summary of the ETL process [1]:

Together, the steps extract, transform, and load (ETL) form a single process that describes
the procedure of placing a data set from one database into another. In practice, the ETL
process is more complex, but in its most basic form, it consists of three steps:

• The extract step reads data from a specified source database and extracts a desired
subset of data.

• The transform step works with the acquired data to convert it to a desired state by
using rules or lookup tables or by creating combinations with other data.

• The load step writes either all or a subset of changes of a data set to a target
database that may or may not have previously existed.

Usually, there are two different motivations for executing the ETL process. The first is to
acquire a temporary subset of data, which has several uses, such as for on-demand
analysis and for generating reports. The second is to create a permanent data set, which
may be the result of a database migration or a data type conversion.

© 2018 The MITRE Corporation. All Rights Reserved. x
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

It is important to note that these three steps do not have an order. Rather, the ETL process
is an iteration between these steps. In other words, each step will inform the other, so it
is normal to constantly switch among each step to complete the process or to complete
any step of the process.

Resource Description Framework
The Resource Description Framework (RDF) specifies a language for defining data items and
relationships, by using a graph representation, with the intent to scale up and work across
the entire Internet [2]. The World Wide Web Consortium (W3C)—a standardization
committee for web technologies—created and maintains the RDF specification.

Numerous other standards by the W3C support RDF. Its query language is SPARQL,
which is a recursive acronym that stands for SPARQL Protocol and RDF Query Language.
RDF has two schema standards, which are RDFS and OWL. RDFS stands for Resource
Description Framework Schema, which provides the ability to organize data items as sets
and to define relationships between those sets [2]. OWL stands for Web Ontology Language,
which intends to represent rich and complex knowledge about things, groups of things,
and relations between things [3]. Both RDFS and OWL facilitate reasoning engines by
adding formal definitions of the meaning of an object and relationship types that inference
engines can exploit for reasoning.4

RDF uses a triplestore data model, which breaks down knowledge into statements. A
statement combines a resource, a property, and a property value; the other name for a
statement is a subject-predicate-object assertion [4]. For example, “Lucky is the pet of
Elizabeth,” where “Lucky” is the subject, “pet of” is the predicate, and “Elizabeth” is the
object. Ultimately, RDF is about describing subjects by relating them to objects [5].

4 Suppose that these assertions are in the database, “A veterinarian checks Lucky” and “Animals are
checked by veterinarians,” but not this assertion, “Lucky is an animal.” With inferencing, the query, “show
me all of the animals,” will return “Lucky.” Not only is inference convenient for creating new assertions
from existing assertions, but it reduces modeling complexity (so that it improves query accuracy) and
reduces storage (so that it increases query speed).

ETL is an iterative process among the steps of extract, transform, and load.

© 2018 The MITRE Corporation. All Rights Reserved. xi
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

These assertions have the name triples. However, it is common to extend the triple into a
quadruple or quintuple. The reason for doing so is to capture metadata about the triple. For
instance, these extensions can capture the context of the triple or can hold a global
identifier for indexing purposes. In practice, these quadruples and quintuples still use the
name triples.

Property Graph
A property graph is similar to a graph in that it has edges and nodes, but dissimilar in that
the nodes and edges can hold any number of attributes in the form of key-value-pairs [6].
A node can have a label that represents metadata, such as its context, an index, or a
constraint. The edge connecting the nodes represents a relationship that relates two nodes
to each other. A relationship always has a type, a start node, an end node, and a direction
[6]. However, despite the explicit direction, navigation between nodes occurs in either
direction [6]. Like nodes, relationships can have attributes, which are usually a weight,
such as a distance, cost, rating, strength, or time interval [7]. Thus, a property graph is a
great candidate for querying information about relationships.

As of this writing, there is not a standard for a property graph model, though efforts to
create one are underway by the W3C.5 The current alternative to a standard is the Apache
Software Foundation’s6 TinkerPop7, which is an open-source project that provides an entire
stack of technologies that offers a standard interface to a graph database [8]. Two
important technologies that TinkerPop provides are the Blueprints API, which is a
framework that provides a set of generic interfaces [9], and the Gremlin query language,
which is a powerful, domain-specific language designed for traversing graphs [8].

5 https://www.w3.org/community/propertygraphs/
6 This non-profit corporation supports open-source Apache software projects.
7 http://tinkerpop.incubator.apache.org/

A triple extended to a quadruple or quintuple still keeps the triple moniker.

The property graph model does not have a standardization.

© 2018 The MITRE Corporation. All Rights Reserved. xii
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Comparison
Table 1 compares aspects of RDF and property graphs.8

Table 1 – Comparing RDF and Property Graph

 Property Graph RDF
Features Inferences and relationships across data

Interesting visualizations from nodes and edges
Data Type Linked Data

Data Model Graph
Graph Models Binary, Directed, Multi
Standardized No Yes
Serialization

Formats
Vendor-specific Turtle, N-Triple, N-Quads

JSON-LD, RDF/XML
Query Languages SPARQL-like, Cypher,

Gremlin
G, GraphLog, SoSQL,

BiQL, SNQL

SPARQL, RDQL, Versa
RQL, SeRQL, XUL

Metadata Vertex or Edge Attributes Reification
Graph Storage Directed, Labeled,

Multigraph, Hypergraph
Triples

Type-centric Node Edge
Graph Traversal Optimized for Graph

Traversals
Logarithmic Edge
Traversal [10]

Common Perception Pragmatic
Whiteboard to Database

Semantic Web
Standardized Knowledge

8 Refer to the glossary for definitions of acronyms.

© 2018 The MITRE Corporation. All Rights Reserved. 13
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Unit One

EXTRACT

© 2018 The MITRE Corporation. All Rights Reserved. 14
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 1

HTTP Interface: Extract

Item 1: HTTP interfaces potentially allow any language to
query the RDF database
Even though an RDF database will support different languages, the database may not
support the particular programming language that a solution uses. Before discarding the
solution due to this reason, check to see if the RDF database supplies an HTTP interface,
which is a way to communicate with the database via HTTP (Hypertext Transfer
Protocol) verbs.

If the RDF database has an HTTP interface, such as a RESTful API (Representational State
Transfer)1, then change the solution by converting the direct database calls to HTTP calls.
This process may take some time, so decide if rewriting the solution is worth the trouble.
Finally, keep in mind that, while an HTTP interface provides a broader choice of
languages while implementing a solution, there may be efficiency trade-offs compared to
directly accessing the database.

1 A RESTful API uses an HTTP interface in a way that is more scalable and maintainable.

© 2018 The MITRE Corporation. All Rights Reserved. 15
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

2 As of AllegroGraph 5.0.

 – Propri e ta ry Solution [1 1]

AllegroGraph has an extensive RESTful API.2 All of the database clients that
AllegroGraph provides (Sesame, Apache Jena, Python, C#, Clojure, Perl, Ruby, Scala,
and Lisp) make calls to its RESTful API.

© 2018 The MITRE Corporation. All Rights Reserved. 16
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 2

Format

Item 2: Serialization formats depend on the access points of
the RDF database
An RDF database has several access points for retrieving data. Unfortunately, these
different access points do not typically offer the same serialization formats for the
retrieved data. Serialization is the process of formatting data for either storage or
transmission for future reconstruction [12]. To find all of the serialization formats that the
RDF database offers, the user must first find all of the access points of the database.

There are usually three different access points for locating a particular serialization
format for an ETL solution. The first access point is the database export tool. This route
will probably have the least variety because the export tool is more like direct database
access than queries to the database. The second access point is database queries. Also
limited in variety, this route usually offers different formats than a database export tool.
If available, the third access point is an HTTP interface. The user can find the JSON
(JavaScript Object Notation) format with this route. JSON is a lightweight data-
interchange format that is easy for humans to read and write and also easy for machines
to parse and generate.

 – Proprietary Solution [11]

In AllegroGraph, the HTTP interface offers the following responses listed in Table 2.

© 2018 The MITRE Corporation. All Rights Reserved. 17
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Table 2 – AllegroGraph HTTP response codes and serialization formats

HTTP Response Code Serialization Format

application/rdf+xml RDF/XML

text/plain N-triples

text/x-nquads N-quads

application/trix TriX

text/rdf+n3 N3

application/json JSON

application/x-quints+json JSON w/ unique identifier

Item 3: Determine how the database represents a triple set
in JSON
With an HTTP interface, the de facto serialization format is JSON, which is a framework
for structuring objects in plain text. Regarding sets of triples, a common format is arrays
of string elements, such as:

[[“Dorian”, “RECEIVES_TASKS_FROM”, “Kim”, “work”, “32”],
 [“Dorian”, “BRAINSTORMS_WITH”, “Bob”, “work”, “33”]
 [“Dorian”, “CONSULTS_WITH”, “Ram”, “work”, “34”]]

The RDF database will rarely use a triple that has only three elements. Instead, the
common number of elements in a triple is either four or five, which includes the context
and the unique identifier.

 – Proprietary Solution [11]

AllegroGraph uses arrays of strings to encode RDF triples as JSON. The strings contain
terms in UTF-8 (Unicode Transformation Format) encoded format, which is similar to
N-triples that allow non-ASCII (American Standard Code for Information Interchange)
characters. Arrays of three elements are triples in the default graph, arrays of four
elements add the graph name/context as the fourth element, and arrays of five elements
add the triple’s unique identifier as the fifth element.

© 2018 The MITRE Corporation. All Rights Reserved. 18
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 4: A good starting format is a CSV file for nodes and
relationships
CSV (comma-separated values) is a simple format that stores tabular data in plain text,
though there is no standard on to how to prepare the structure for importing into a
property graph. As a general approach, the user can align the structure of the CSV to the
structure of the property graph.

In other words, because a property graph is about nodes and relations, it may be
worthwhile to structure the CSV file into nodes and relations. General candidates for
nodes are usually subjects or objects, while predicates are candidates for relations. An
example is illustrated in Table 3.

Table 3 – Example of CSV structure for nodes and relations

nodes.csv relations.csv
Dorian Voegeli, Intern Kim Halladay, TASK_LEADS, Dorian Voegeli, Summer

Kim Halladay, Employee Dorian Voegeli, REPORTS_TO, Kim Halladay, Summer

© 2018 The MITRE Corporation. All Rights Reserved. 19
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 3

Query

Item 5: Proprietary features can add simple free-text
capabilities to SPARQL queries
When there is a need to query free-text, which is not an explicit ability of SPARQL, the
user should decide if the RDF database has any proprietary features to augment SPARQL
queries with simple free-text capabilities. This can help to improve the query process.
Free-text is simply unstructured text, such as a person’s name.

 – Proprietary Solution [11]

AllegroGraph has a feature called a Magic Property, which is a predicate in a SPARQL
query that produces bindings by using something other than simple subgraph
matching. These extensions give a much richer query environment at the cost of non-
portability.

Note that Magic Properties can use patterns with multiple inputs and outputs.
SPARQL's list notation provides a syntactic sugar to make this quite readable. Here is
an example that looks for text matching willows in the free-text index named titles and
then binds ?book to the matches it finds:
select * {
 ?book fti:match ('willows' 'titles') .
}

© 2018 The MITRE Corporation. All Rights Reserved. 20
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 6: Define a SPARQL query in terms of a function,
where appropriate
In the case of complicated queries that differ only by a few parameters, it is advisable to
find out if the RDF database has a feature to wrap such a query into a function. Though
this is a non-standard feature, it will make querying easier and more accurate.

Check if the RDF database is able to bind those complicated queries into some sort of
function that accepts parameters. To take this step further, use these functions as
parameters to another function, thus allowing for rich, expressive queries.

Item 7: Determine the validity of inferred triples
If an RDF data set incorporates RDFS terminology, then a data base can deduce new
triples through inference. The database stores less data with this technique, with the
trade-off of recreating the inferred triple when queried.

The main issue with inferred triples is that a query can return triples that are no longer
valid. This can happen if there is not a function within the system that will back up and
remove triples that were dependent upon the inferred triple.

 – Proprietary Solution [11]

AllegroGraph has the SPIN (SPARQL Inferencing Notation) API that defines a function
in terms of a SPARQL query. Then, the user can call that function in other SPARQL
queries. These SPIN functions can appear in filters so that the user can compute values
in ASSIGN and SELECT expressions.

 [13]

When the user removes an explicit statement, the RDF database should find and retract
any inferred statements based upon the removed explicit statement. This implies that
the entire inferencing process would need to rerun, thus consuming valuable computer
resources and time. The lack of support for retraction means that query results can
return misleading data. This advanced form of inferencing management is currently
uncommon in RDF databases.

© 2018 The MITRE Corporation. All Rights Reserved. 21
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 4

Index

Item 8: Be sure to preserve the triple’s unique identifier
Though not part of a standard, it is common for an RDF database to have a unique identifier
for each triple. This unique identifier has a few uses in an RDF data set that are difficult
to replicate in a property graph.3

Regardless, saving the unique identifier somewhere in the property graph is good in lieu
of any other options. Doing so allows transformation back and forth between an RDF
database and a property graph database. This can enable the reuse of queries that rely on
a triple’s unique identifier, as is the case with reification. RDF is edge-centric, so it may
make sense to save the triple as the edge’s unique identifier, as it essentially describes an
edge, as shown in Figure 1.

Figure 1 – Preserving the triple’s unique identifier

3 For instance, in reification, the subject has the value of a triple id; thus, the user can make statements about
a statement. In a property graph, this amounts to collapsing a node-relation-node into a single node, which
a property graph does not support.

[Dorian, REPORTS_TO, KIM, work, 32]

Dorian Kim REPORTS_TO
id:32

© 2018 The MITRE Corporation. All Rights Reserved. 22
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 9: RDF index can become the graph context
A triple that has four elements is a quadruple. This fourth element can serve several
purposes, but, conventionally, it is the graph context, which is similar to the concept of a
subgraph. Another use for this fourth element is a label or a place to put properties for a
triple.

This graph context in RDF can easily convert to the graph context in a property graph, as
shown in Figure 2.

Figure 2 – Fourth element from RDF to the graph context in a property graph

Item 10: Use static analysis features to determine the
optimal index
When querying millions of triples, query optimization is important. Using an index is
one technique to optimize queries. There may be several ways to index data, but one that
is immediately clear is to index on the elements of a triple.4

The usual optimization is on one of the five elements of a triple. Some RDF databases are
capable of static analysis to decide if the query on the desired index matches the index
available in the database. Another optimization is to find what is the best index for the
query.

4 The subject, predicate, object, graph context, and unique identifier.

work

[Dorian, REPORTS_TO, KIM, work]

Dorian Kim REPORTS_TO

© 2018 The MITRE Corporation. All Rights Reserved. 23
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 11: Use unique constraints to ensure unique property
values
Sometimes a property is unique, such as an email or identification number. These are
similar to a primary key in traditional relational database management systems.
However, there is no concept of a primary key in RDF or in property graph. Identify
unique elements to use as a unique constraint, such as a particular subject or object type,
to ensure unique property values.

 [11]

Where each line refers to one of the indices required by the query, the line indicates
which index the query really wants and which index the query used based on what is
available in the database. In AllegroGraph, the line (desired p.o.s.g.i. optimal 6
actual o.s.p.g.i. suboptimal 4) means that the query wanted p.o.s.g.i. (which
would have been optimal), but it got o.s.p.g.i. (which was suboptimal). The three
possible values are optimal, suboptimal, and full (a full scan).

 [6]

In Neo4j, the user can rely on unique constraints to make sure that property values are
unique for all nodes with a specific label. Unique constraints do not mean that all nodes
must have a unique value for the properties.

© 2018 The MITRE Corporation. All Rights Reserved. 24
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 5

Literal: Extract

Item 12: Consider preserving free-text search capabilities
Free-text search may be an important feature in an RDF database that the user can take
advantage of to better process a compound object literal5. Sometimes a linked document
database stores the free-text or has a free-text search engine attached to it.

The user should decide if the property graph is able to handle free-text queries.
Otherwise, the user may have to further break down the free-text into triples or load them
into a separate database and link to them. Depending on the situation, linking a free-text
search engine to a property graph may be worth the trouble.

Item 13: SPARQL and RDF differ in literal definitions
A literal is a data point in a string format, which is simply unstructured text. Despite
SPARQL’s use for querying RDF, these standards are not completely compatible with
each other. For instance, sometimes the way they handle literal data is not compatible.
Even within RDF, different specification versions handle literal definitions differently.

5 A compound object literal is a string that can undergo further decomposition, such as a timestamp.

© 2018 The MITRE Corporation. All Rights Reserved. 25
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

 [5]

No current or planned version of RDF allows a literal to appear in the subject or
predicate of a triple. Additionally, predicates cannot be blank nodes. SPARQL does
allow these, and if the user were to query an RDF data source with SPARQL, the query
would never return predicates with blank nodes.

© 2018 The MITRE Corporation. All Rights Reserved. 26
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 6

Reification: Extract

Item 14: Every reification pattern has its compromises
Dealing with reification in RDF is not always straightforward. Reification is the process of
making statements about an RDF triple. While the RDF standard includes a section on
reification, it is neither elegant nor efficient.

Usually, any method of reification is verbose and inefficient in terms of storage and
retrieval [14], and also clutters the data model. For instance, the user can theoretically
turn every predicate into a node to attach properties to the predicate. Not only does this
make little sense, it also would complicate the relationship names in addition to confusing
predicates for either a subject or an object. Figure 3 illustrates this complication.

Figure 3 – Reification by converting predicates to nodes

[Dorian, DID_ACTION, Talk], [Talk, ACTED_UPON, Kim], [Talk, WITNESSED_BY, Bob]

Dorian Kim DID_ACTION Talk ACTED_UPON

BOB

WITNESSED_BY

© 2018 The MITRE Corporation. All Rights Reserved. 27
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Recording the reification process or searching for clues about the process of reification
will help the user to compensate for the added information in the data model when he or
she is trying to find the difference between data versus metadata.

Item 15: The triple’s unique identifier in the subject or
object
Most RDF databases will have a unique identifier for each triple. This unique identifier
represents a whole statement, so a triple can use the unique identifier reference in either
its subject or object. This reification improves model clarity and reduces the size of the
data set.

However, this pattern of reification is difficult to portray in a property graph. It is very
tough to transform it without losing the context.6

Item 16: Four extra triples that refer to a single triple
A particularly noisy reification pattern is to add four triples that function as a single triple,
which is the convention that the RDF standard recommends. This pattern uses four
statements that set up a given node as a triple. The four triples represent the statement,
subject, predicate, and object. Then, the user can use the node in a triple, thus making
statements about the triple. The basic pattern is,

[node, TYPE, Statement],
[node, SUBJECT, subject data],
[node, PREDICATE, predicate data],
[node, OBJECT, object data]

after which a user can attach statements to the node, like so,

[node, PREDICATE, object data]

Unfortunately, this convention obscures the data model, as seen in Figure 4.

6 See Item 36: Triple ID in the subject or object is difficult to transform

© 2018 The MITRE Corporation. All Rights Reserved. 28
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Figure 4 – Graph of reification convention in RDF specification

Item 17: The fourth element is properties on the predicate
It is common for RDF databases to extend a triple into a quadruple. Usually, this fourth
element is the graph context. Sometimes, though, it represents properties of the triple.

An example is [Dorian, RECEIVES_TASKS_FROM, Kim, Summer Internship Period], where the
fourth element Summer Internship Period reflects that Dorian receives tasks from Kim for
the summer internship period.

Property graphs give a simplified version of this latter form of reification by adding a
property holder for every edge and encapsulating edge attributes as key-value pairs. That
is, the concept of one level of reification is inherently part a property graph [14].

Using the fourth element as a placeholder for properties is not the intended purpose of
the fourth element, so it will cause confusion for other people working on the data set.

Statement

SUBJECT

object
data

subject
data

predicate
data

object
data

TYPE

PREDICATE

OBJECT

PREDICATE

node

© 2018 The MITRE Corporation. All Rights Reserved. 29
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Unit Two

TRANSFORM

© 2018 The MITRE Corporation. All Rights Reserved. 30
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 7

CSV: Transform

Item 18: Find and remove unintended artifacts
Commonly, CSV will contain unintended artifacts, which are characters that prevent the
property graph from properly loading the file. Sometimes either an operating system or
an RDF database can cause artifacts.

The basic approach to removing artifacts is pattern matching. A user can do this through
regular expressions, though he or she should only consider using them after exhausting
all other possible options. Despite regular expressions being a good choice for very
complex pattern matching, they can fail in very subtle and catastrophic manners.

 [6]

Table 4 lists some of Neo4j’s recommendations against unintended artifacts in the CSV
file when using LOAD CSV.

© 2018 The MITRE Corporation. All Rights Reserved. 31
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Table 4 – Neo4j’s recommendations against unintended artifacts

Artifact Recommendation
BOM byte order mark (2 UTF-8) bytes at top of file Remove them
Linked Data BOM byte order mark (2 UTF-8) bytes at
top of file

Remove them

Binary zeros or other such non-text-characters Remove them
Special character in non-quoted text Quote them out
No unexpected newlines in quoted and unquoted text-
fields

Quote text
Remove newlines

Stray quotes
 Standalone double in the middle of non-quoted text
 Single quote in the middle of non-quoted text
 Non-escaped quotes in quoted text

Escape them
Remove strays

Empty fields Skip them
Default values

Item 19: Guidelines to properly formatting a CSV
Different property graph databases require different formatting for the CSV files they
will import, so the user will need to check the documentation of the property graph
database. Usually, the RDF database does have a way to format the CSV properly. The
transformation process usually offers more control of the formatting process, but first the
user will need to decide how well the RDF database can handle formatting during the
export process.

After the user finds the formatting guidelines recommended by the property graph, it is
advisable that he or she automate the process of formatting a CSV file. A quick solution
is a simple search-and-replace feature. Another solution is encapsulating similarly
performing types of transformations into a function. Regular expressions are an option
that a user should carefully consider before using it, as they work best with regular

© 2018 The MITRE Corporation. All Rights Reserved. 32
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

languages, which means that, in certain instances, it’s impossible to have a good solution.7
Table 5 lists some common formatting styles.

Table 5 – Neo4j’s recommendations regarding CSV formatting

Guideline
Character encoding is UTF-8
Line termination is system dependent, e.g., it is \n on UNIX or \r\n on Windows
Default field terminator is ,
Character for string quotation is double quote "
Escape character is \
Inconsistent line breaks or mixed windows and UNIX line breaks should be made
consistent, and it is best to choose UNIX style
Empty fields should have default values or be removed
Fix inconsistent headers (missing, too many columns, different delimiter in
header)
Make sure that unusual text is always quoted, such as special characters in non-
quoted text
Check the cypher import statement for typos
Labels, property names, and relationship-types are case-sensitive

7 For instance, when trying to use regular expressions to parse HTML.

 [6]

Table 5 lists some information from the Neo4j database regarding formatting a CSV file
to use with LOAD CSV.

© 2018 The MITRE Corporation. All Rights Reserved. 33
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 8

JSON: Transform

Item 20: Make sure that the JSON file is not malformed
JSON has more formatting requirements than CSV, so caution is advisable when doing
transformations of JSON-formatted data. It is worthwhile for the user to try to validate
the JSON formatting before moving on from the transformation process. It may also be a
good idea to run the JSON through a linter program8. A linter is a program that
determines syntax validity.

Remember though, a JSON linter can only detect syntactic errors. It will not detect
semantic errors. In other words, it will not help the user meet the formatting requirements
for a property graph database. For example, it will not detect missing headers or empty
nodes.

Item 21: JSON is usually the default format for HTTP
interfaces
When accessing an HTTP interface, especially a RESTful API, the default format will
commonly return and accept JSON. Most languages and most databases have some
means of correctly parsing the JSON format.

8 An online JSON linter is at http://jsonlint.com/, though an offline version is better with a workflow.

© 2018 The MITRE Corporation. All Rights Reserved. 34
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Regarding RDF and property graphs, there is a new standard emerging called JSON-LD
(JavaScript Object Notation Linked Data). There are already a few approaches for
converting between JSON and RDF.9 The user needs to find out if his or her property
graph can accept JSON-LD and if it is a good fit for his or her ETL process.

9 The W3C has a standard API for converting between RDF and JSON-LD. The specification for the API is
at http://json-ld.org/spec/latest/json-ld-rdf/

© 2018 The MITRE Corporation. All Rights Reserved. 35
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 9

Aggregate

Item 22: Reduce duplicate triples by determining the criteria
of duplicate triples
While duplicates are very efficient in some contexts, in others, they can complicate the
data model and the data queries. Duplicate triples can lead to inefficiencies that increase
storage and retrieval times. The user can remove these duplicate triples after first
determining that they are a problem.

Before removing any data, the user must first figure out the criteria for duplicate triples.
This may be as simple as defining the criteria as, “duplicate triples have the same subject
and predicate.” Defining the criteria can also be very complex, such as in the case of object
timestamps with the same month, day, and year. These would need a free-text search for
a compound literal object.

After determining the criteria for duplicate triples, the user can consider if it is better to
remove triples in the RDF database, in the property graph database, or in a separate
process. The user can then use an automated process to remove the duplicates.

Item 23: Alignment of data points across data sets
Alignment occurs when separate data sets have common data points [15]. For instance,
different databases may have the same person in their data sets. This allows teams to
keep up separate data sets, but share common data points, as shown in Figure 5.

© 2018 The MITRE Corporation. All Rights Reserved. 36
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

The main issue with alignment is keeping the data points synchronized. Synchronization
becomes difficult to have if the data points are in different formats, which, in this case, is
RDF and property graph. In this case, a simple solution would be to have the aligned data
point be read-only. Otherwise, the user will need to create a lightweight, persistent ETL
process during the synchronization process.

Figure 5 – Aligned data across different databases

Item 24: Consider adding or preserving equivalent
relationships
It is common for data to have multiple aliases for a data point. For example, this will
happen when a person has several nicknames, or if the same person has different roles in
different contexts.

One technique of dealing with this duplicate data is to use a relationship that states that
the data items are the same, such as a SAME_AS relation. Doing so makes the data input
robust and aids alignment across data sets. Other databases may need to use different
names in their data set, and the SAME_AS relation allows a database to adhere loosely to
some other standard. An automated process for producing SAME_AS relations will make
for a more efficient transformation process; however, adding such relations is a manual
process.

MITRE

George Mason
University

CompSci

DEGREE

Dorian J85A DEPARTMENT

© 2018 The MITRE Corporation. All Rights Reserved. 37
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

A good place to store a SAME_AS relationship in a property graph is in the node properties.
In Figure 6, the node Dorian has several nicknames stored as properties, which show the
SAME_AS relationship.

Figure 6 – Equivalent relationship in a property graph

Item 25: Predicates and object types help decompose
compound literal objects
Objects can have values that are a literal, which is actually just a string. Such a literal is
commonly a terminal node, which means that they can no longer be decomposed. An
example of this is a person’s name. There are no constraints as to what is in a name, so it
is best to treat it as a literal.

However, there are situations where the user can decompose a literal—for example, a
timestamp. A timestamp is a specially formatted literal. The format follows some
convention10 that informs the user about how to parse the timestamp.

The user should make sure to capture that convention information when he or she is
exporting. This information can come from the label on either the object or the predicate
of the triple.

10 Usually, this is the name of the convention, such as the ISO 8601 standard.

 [1 1]

In AllegroGraph, the functions toPointXY and toPointLonLat need the predicate
argument to decide which geospatial subtype to use to construct the point.

Same As:
[Dorian Voegeli,

Dorian A. Voegeli,
D. Voegeli,
Dorian V.]

Dorian

© 2018 The MITRE Corporation. All Rights Reserved. 38
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 10

Translate

Item 26: Be careful when translating a SPOGI index
Most RDF databases have something like the SPOGI index, which is an index of each
element of the quintuple. SPO stands for subject, predicate, object, and GI stands for
graph and a unique identifier.

Unless the RDF data is very basic, translating the SPOGI index may be complicated,
usually due to unconventional patterns associated with the quadruple and quintuple.
This particularly happens with certain types of reification, especially those that use the
fourth element to hold properties instead of the graph context.

Item 27: Translate to an object representation
A property graph works very well with the concept of an object model. An object model is
an entity that has properties. Nodes and edges in a property graph can have properties,
so, in this regard, a property graph is similar to an object model. JSON is an object model,
which makes it very easy to translate for a property graph.

Translating an RDF triple to an object model representation may make the import process
easier. The user can look for patterns where it seems like there are objects with properties.
Quite often, a predicate and an object can become a key-value property on a node or edge.
In addition, the user should look out for the pattern of storing properties in the fourth
element of a quadruple.

© 2018 The MITRE Corporation. All Rights Reserved. 39
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 11

Encode

Item 28: Be careful with the types on predicate-object
properties
Most of the time, RDF types will translate to labels in property graphs, or they can serve
as labels for indexing. However, there are some cases where this does not work.

This does not work with a predicate-object property. A predicate-object property is a
triple and describes a property of a subject. For example, in Figure 7, with the triple
[Dorian, WEIGHT, 150], the predicate and the object form a property of the subject.
However, triples usually have a type, as in [Dorian: intern, WEIGHT, 150: lbs]. When
transforming such a triple into a property graph, it creates a situation where properties
have properties, which is usually not directly possible in a property graph.

 Figure 7 – A property group cannot have properties of properties

 :intern
weight:150

Dorian

[Dorian:intern, WEIGHT, 150:lbs]

←?

?
→

© 2018 The MITRE Corporation. All Rights Reserved. 40
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 29: Preserve the classification capabilities of RDFS
If triples use the class-describing ability of an RDFS, it is possible to translate the class
structures into the property graph. In addition, through the class structuring of RDFS, it
is possible to use the class as an index in the property graph. Finally, the user should try
to translate as much information about the RDFS classes in his or her triples, as the classes
may be invaluable while creating graph contexts and relationships.

[4]

RDFS does not offer application-specific classes and properties. Instead, RDFS provides
the framework to describe application-specific classes and properties. Classes in RDFS
are much like classes in object-oriented programming languages. This allows a user to
define resources as instances of classes, and subclasses of classes. The following RDF /
XML format describes an intern as a subclass of the employee:

<rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#
xml:base="http://www.mitre.fake/employees#">

<rdfs:Class rdf:id="employee" />

<rdfs:Class rdf:id="intern">

<rdfs:subClassOf rdf:resource="#employee"/>
</rdfs:Class>

/>

© 2018 The MITRE Corporation. All Rights Reserved. 41
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 12

Transformation

Item 30: Consider when to use either a direct or indirect
transformation
A direct transformation is a triple that transforms into a node-relation-node. Such is the
case when a subject-predicate-object is describing a relation between two entities.
Figure 8 illustrates a direct transformation between two entities.

Figure 8 – Direct transformation from RDF to property graph

However, there may be many cases where a direct transformation is not possible. The
most predominate example of this is a predicate-object property in RDF.11 The predicate
and object paring form a key-value property, which is not a one-to-one transformation.
Figure 9 illustrates an indirect transformation.

11 See Item 28: Be careful with types on predicate-object properties

[Dorian, REPORTS_TO, KIM]

Dorian Kim REPORTS_TO

© 2018 The MITRE Corporation. All Rights Reserved. 42
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Figure 9 – Indirect transform of predicate-object property from RDF to property graph

Item 31: Property graph properties cannot contain nodes
Due to the differences between RDF and property graphs, there are cases where a
transformation will cause significant differences in the data model. This is usually
common with reification.

For example, there is a reification pattern to convert a predicate into a subject, which adds
an extra node to the model so that the predicate can have properties.12 If a user tried to
transform this model into a property graph, he or she would end up with a situation
where it is convenient to make a node represent a value. Unfortunately, this is not
possible in a property graph.

12 See Item 14: Every reification pattern has its compromises

weight:150

Dorian

[Dorian, WEIGHT, 150]

© 2018 The MITRE Corporation. All Rights Reserved. 43
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 13

Linkage

Item 32: Be careful to preserve links to other databases
A way to enhance a data set is to link it to another data set or, alternatively, to import a
data set. For several reasons, it may not always be possible to import another data set.
Instead, the user may need to create links to another data set. This most commonly occurs
when the data set is very large. Usually, queries to these external links return read-only
data.

How this linking occurs will complicate the ETL process. The user should decide whether
a property graph supports linking or if an external solution is needed, such as querying
an HTTP interface of the database. In addition, to avoid inadvertently altering the data
set, the user should take caution when accessing an HTTP interface.

Item 33: Be on the lookout to preserve links to documents
An RDF database can have links to documents through which the user can search using
either a free-text ability or a free-text search engine. The free-text search is usually an
external program integrated into the RDF database.

Triples can also represent connections between databases and documents that contain
free-flowing, unstructured text. These connections are also extremely valuable. They can
link entities from the database to the documents that mention them. Some RDF databases
have specific support for such connections, which allow data and text to form a single,

© 2018 The MITRE Corporation. All Rights Reserved. 44
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

interconnected information space. That information space allows access through hybrid
queries, combining the richness of the full-text search with the selectivity and precision
of a database [13].

However, the property graph database may not natively support this. One solution is to
create a server layer application that sits between the two. This could entail creating an
HTTP interface to query both databases. Doing so is typically a significant effort with
little chance to create a generalized, re-usable solution—at least, not easily [16].

© 2018 The MITRE Corporation. All Rights Reserved. 45
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 14

Literal: Transform

Item 34: Beware of a literal in the place of either the
subject or predicate
The RDF specification does not allow a literal in the place of subjects or predicates.13
Breaking this rule causes many problems, such as losing inference abilities and reference
ambiguity.

Usually, in a property graph, a good place to put a literal is in the properties of either a
node or relationship. Transforming a literal into either a node or edge is bad data
modeling. It is right to either turn the literal into a legitimate node or edge or to place it
into the properties of a node or edge.

Item 35: Watch out for either missing or dropping a literal’s
type
A literal can also be a compound literal, and, with such a literal, decomposing is
necessary. The compound literal is serialization of some sort that requires a method to
decompose it. The decomposing method is commonly a standardization. For instance, a

13 According to Section 3.4 of the W3 definition of RDF 1.1 Concepts and Abstract Syntax, “A literal may be
the object of an RDF statement, but not the subject or the predicate.”

© 2018 The MITRE Corporation. All Rights Reserved. 46
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

timestamp is a compound literal with a standard method to decompose it. Commonly, a
user stores the reference to the standardization as the type.14

The literal’s type will point the user to a specification that has the correct method of
decomposing the compound literal. Without the literal’s type, it may be impossible to
decompose the literal, which can, in turn, cause the user to instead misinterpret the
compound literal. In addition, even after decomposing a literal, the user should try to not
drop the type if they expect to re-aggregate it later.

14 A real example of a standardized timestamp is the ISO 8601 standardization, which can be the
timestamp’s type (e.g., type:ISO_8601).

© 2018 The MITRE Corporation. All Rights Reserved. 47
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 15

Reification: Transform

Item 36: Triple unique identifier in the subject or object is
difficult to transform
Using a triple ID for the subject or object is a very elegant pattern of reification in RDF 15,
but this pattern of reification is difficult to portray in a property graph.

One method is to make the predicate-object of the reified triple a key-value property on
the original statement, as in Figure 10. However, in this pattern, it is not clear that
WITNESSED_BY->Bob refers to the node-relation-node Dorian-TALKED_TO->Kim, instead of to
the relation TALKED_TO, which is what it seems in Figure 10.

Figure 10 – Reification by using a unique identifier in the subject or object

15 See Item 15: Triple ID in the subject or object

[Dorian, TALKED_TO, KIM, 32],
[32, WITNESSED_BY, Bob, 15]

Dorian Kim TALKED_TO
WITNESSES_BY:Bob

© 2018 The MITRE Corporation. All Rights Reserved. 48
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 37: Beware of reification that uses blank nodes
Adding four extra triples that refer to a triple16 will not only complicate the property
graph model during the transform process, but sometimes a direct transformation is not
possible.

Direct transformation is not always possible because this pattern of reification can rely
on attaching the four triples to a blank node; the problem is that a property graph does
not allow blank nodes. Therefore, in the case of this type of reification, careful
consideration must go into developing an automated process that can handle this case.

Item 38: Using the fourth element for properties of a
predicate
The fourth element of an RDF sometimes holds properties on a predicate.17 This type of
reification is the easiest to transform, but only if the user is aware of the reification type,
as illustrated in Figure 11.

Figure 11 – Transforming the properties on a predicate with the fourth element

16 See Item 16: Four extra triples that refer to a single triple
17 See Item 17: Fourth element is properties on the predicate

[Dorian, RECEIVED_TASKS_FROM, KIM, During Summer]

Dorian Kim RECEIVED_TASKS_FROM
During : Summer

© 2018 The MITRE Corporation. All Rights Reserved. 49
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Unit Three

LOAD

© 2018 The MITRE Corporation. All Rights Reserved. 50
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 16

HTTP Interface: Load

Item 39: Differences between built-in import tools and HTTP
interfaces
It is advisable that the user check the trade-offs for the different approaches to loading
data into a property graph. There are usually at least two methods for loading data into
a property graph: a built-in import tool and an HTTP interface.

The main difference between these approaches is their ACID compliance. ACID stands
for atomicity, consistency, isolation, and durability. A database needs these properties to
guarantee successful processing of a query. The built-in import tool is faster because it
loads data directly into the data set, thus circumventing ACID compliance. In the case of
an HTTP interface, because loading data occurs through queries, the import will be ACID
compliant. However, if a database import tool wraps the HTTP interface, then neither
approach will offer an advantage over the other.

© 2018 The MITRE Corporation. All Rights Reserved. 51
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 17

Import

Item 40: Memory cache affects import efficiency
It is noteworthy that importing a data set will need a certain amount of memory for the
database cache and heap sizes. The database needs this memory as a staging area for the
import transactions.

Usually, there is a formula to control the ideal sizes for cache and heap sizes, and the user
can look for it by checking the property graph’s documentation. If the documentation
does not contain a formula, it is simple to derive an approximate formula by the number
of nodes, relationships, and properties that the user is trying to import. The example
below is a good example of how to create a formula for approximating the memory size.

 – Proprietary Solution [17]

In Neo4j, make sure to increase the heap size generously, especially if importing large
data sets. In addition, the user needs to make sure that the file buffer caches fit the entire
data set.

For example, if the user is going to import 100K nodes, 1M relationships, and a fixed-
size property per node/relationship (i.e., an integer number), then these are the smallest
values that the user should use in the file buffer cache configuration.

 Nodes: 100,000 * 15B = 1.5 MB
Relationships: 1,000,000 * 34B = 34MB
 Properties: 1,100,000 * 41B = 45.1 MB

© 2018 The MITRE Corporation. All Rights Reserved. 52
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 41: Gremlin is an emerging property graph query
language
If the user has maximum portability in mind for data sets, then the user will want to use
standards or at least open-source material that the community considers the de-facto
standard. One such language is Gremlin, which is under the care of the Apache
Foundation. Gremlin is declarative, and the user should consider that when determining
if it is a good choice versus the native language of the user’s property graph database.

The problem with Gremlin is that it must go through a few layers before reaching the
property graph. Gremlin communicates to the property graph through the Blueprints
API, with the implication being that the property graph will need to implement the
Blueprints API. In other words, the Gremlin language merely wraps the database’s native
language.

Item 42: Try a periodic commit for large data sets
The main risk with committing large data sets into the database in one pass is that the
process could encounter an error and thus fail. This could mean hours of time waiting for
the commit to finish, only to have it fail at the end. Depending on the database, this could
be a total rejection of the data, or it could mean a corrupted commit. There are a few ways
around this, either manually or automatically.

The user can decide if the property graph has a feature like a periodic commit, which
guarantees a commit at some determined interval. If the property graph database does
not have a periodic commit, then the user can consider making a custom application for
a periodic commit.

 – Proprietary Solution [6]

In Neo4j, when importing a large amount of data (more than 10,000 rows), the user
should prefix the LOAD CSV clause with a PERIODIC COMMIT hint. This allows Neo4j to
regularly commit the import transactions to avoid memory churn for large transaction-
states.

© 2018 The MITRE Corporation. All Rights Reserved. 53
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 43: Setup index to speed up importing
With a property graph, an index allows faster updates to the data set; therefore, the user
needs to set up the indexes and constraints on the data. This is faster because the database
references what part of the graph needs to be updated.

Setting up the indexes and constraints on the data also makes importing data more
efficient because look-up times of where to place data will be faster. This is the difference
between committing new data in a matter of minutes versus a matter of hours—or worse,
not committing at all. Setting up indexes and constraints is especially important if the
user wants to make this a permanent data set.

Item 44: Backup data before attempting a batch import
Usually, a batch importer is used for placing a data set into a newly created database.
With this in mind, it usually will not offer an ACID guarantee. However, the user may
want to use the tool to import into an already populated data set. If this is the case, then
the user should make sure to back up the data set before doing so.

An issue that comes with this approach is the difficulty in verifying if a particular
transaction is correct.

 – Proprietary Solution [17]

In Neo4j, indexes will do lookups faster during and after the load process. The user
should make sure to include an index for every property that is used to find nodes in
MERGE queries.

A user can create an index with the CREATE INDEX clause. Example:
CREATE INDEX ON :User(name);

If a property is unique, adding a constraint will also implicitly create an index. For
example, if the user wants to make sure not to persist any duplicated user nodes in the
database, then the user needs to use a constraint for the email property.
CREATE CONSTRAINT ON (u:User) ASSERT u.email IS UNIQUE;

© 2018 The MITRE Corporation. All Rights Reserved. 54
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

 – Propri e ta ry Solution [6]

Pertaining to Neo4j, the batch insert feature will import data into an existing database,
although it is a less common use case. However, the user will need to shut down the
existing database before he or she writes to it.

The batch importer bypasses transactions, so it is possible to experience data
inconsistency if the import process crashes midway. The user must back up his or her
existing database before using the batch insert feature.

© 2018 The MITRE Corporation. All Rights Reserved. 55
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 18

Idempotence

Item 45: Use a repeatable (idempotent) update operation
It is common for multiple teams to load data into a data set. This may mean an increase
in attempting to load duplicate data, which is like denormalized data. The user should
try to put safeguards into place to prevent a user from updating the database with
duplicate data, as all that this will do is lock up database resources.

An easy solution to this problem is for the user to check if the property graph database
has some sort of idempotent commit feature. When the data is already in the database,
the idempotent updates silently fail because the database can tell that the data is already
present. Additionally, this usually prevents a log entry, which makes troubleshooting
less difficult.

 – Proprietary Solution [6]

In Neo4j, when the user gets data from external systems or is not sure if certain
information already exists in the graph, he or she needs access to a repeatable
(idempotent) update operation. In Cypher, Neo4j’s query language, MERGE, has this
function. MERGE combines MATCH and CREATE, which allows it to check if the data exists
first before creating the data. With MERGE, the user defines a pattern to find or create.
Usually, as with MATCH, the user only wants to include the key property to look for in
his or her core pattern. MERGE allows the user to set more properties when using ON
CREATE.

© 2018 The MITRE Corporation. All Rights Reserved. 56
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 19

CSV: Load

Item 46: The structure of the CSV files determines the query
statements
During the import phase, the structure of the CSV determines the query statement for
loading the data. Because of this, the user may want to explore this loading phase first.

Additionally, the user can try to find a common pattern in the CSV files to create queries
for nodes and relationships. This will help during both the export and the transform
phases.

 – Proprietary Solution [6]

For example, with the following in Neo4j’s Cypher language,
Nodes.csv Relations.csv
Node,Name,Label From,Name,Relationship Type,To,Name
1,Dorian,Intern 1,Kim,TASK_LEAD_OF,1,Dorian

For the nodes:
CREATE (n:#{Label} {id:{Node}, name:{Name}}) RETURN *

For relations:
MATCH (from: {id:{From}}), (to {id:{To}}) create from-[:#{Relationship Type}]->to RETURN *

Notice that the two name fields are missing.

© 2018 The MITRE Corporation. All Rights Reserved. 57
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 47: Load a line of the CSV file before proceeding
Errors are bound to happen when loading data, so it is a good idea to catch those errors
as early as possible. The user should try to not load thousands of nodes or relationships
before learning this lesson, as it is difficult to expect how the database will parse the data.
For example, a CSV file that is opened in a spreadsheet program may automatically
format each year as a two-digit number, instead of a four-digit number. If the database
expects a four-digit number for the year, then there will be a loading error.

The user should load a single line of the CSV before committing to loading the rest of the
file. However, if this one line is error-free, that does not mean that the rest of the lines are
error-free, though it is indicative that the rest of the file will not cause errors if it is similar
to the first line. The user should come up with a format that will work, and then alter his
or her queries to anticipate errors with the current data set.

© 2018 The MITRE Corporation. All Rights Reserved. 58
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 20

JSON: Label

Item 48: Use a function to traverse the JSON structure
The user should find out if the property graph is able to import JSON files, as the JSON
structure can translate well into property graphs.

Usually, if the property graph accepts JSON, then it is also a feature to parse, or walk
through, the JSON structure. The ability to walk through a JSON structure will make
loading queries more human-readable, and thus create fewer errors.

 – Proprietary Solution [6]

In Neo4j, the Cypher statement UNWIND expands a collection into a sequence of rows.
This works for JSON, which is essentially a container for collections. With UNWIND, the
user can transform any collection back into individual rows.

One common usage of UNWIND is to create distinct collections. Another usage is to create
data from parameter collections that the user provides to the query. UNWIND requires the
user to specify a new name for the inner values.

© 2018 The MITRE Corporation. All Rights Reserved. 59
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 21

Label

Item 49: Uniqueness constraints for nodes with a specific
label
In many cases, the user will want a certain level of uniqueness within the data set.
Uniqueness constraints are important because they can help to cut duplicates in the data
set. This particular item focuses on labels as uniqueness constraints. The user should
consider if the property graph is capable of enforcing constraints upon labels. Uniqueness
constraints do not mean that all nodes have to have a unique value for the properties [6].

If a label has a uniqueness constraint, then properties of the node or edge are unique (e.g.,
a user and his or her email address may only exist once in a system). If multiple,
concurrent threads try to create the user, then this strategy will reduce the duplicates [6].

Item 50: Create an index from a label
The user can create an index on just about every element of a property graph, not just
nodes and relationships; labels will allow the user to create indexes on properties.

In order to create an index for properties, the properties need to have some other
constraint, such as a specific label.

© 2018 The MITRE Corporation. All Rights Reserved. 60
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

 – Propri e ta ry Solution [6]

In Neo4j, to create an index for a property, for all nodes that have a label, use CREATE
INDEX ON. Note that the index is not immediately available because Neo4j has to create
it in the background.

© 2018 The MITRE Corporation. All Rights Reserved. 61
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 22

Relationship

Item 51: Use properties for information about relationships
What makes a property graph very useful is that the user can put properties on nearly
everything. Properties are not just for the nodes (objects and subjects in RDF) of the
property graphs, but also for the relationships (predicates in RDF).

In RDF, the various methods of reification are the only techniques for placing properties
on relationships. There are several methods of reification for placing properties on a
predicate, so the user will have to recognize and transform these predicate properties.
This becomes particularly cumbersome if the data set has multiple methods of reification.

 [18]

Unlike the RDF data model and SPARQL query standard, a property graph database
enables the user to add properties to relationships, instead of only to nodes. In addition,
a property graph database can contain metadata about relationships. A good example
is in-car route planning, where a user will store each town as a node. The distance
between each town is a property of the relationship.

© 2018 The MITRE Corporation. All Rights Reserved. 62
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Item 52: A relationship does not always imply a
bi-directional traversal
Typically, the user will need to create an explicit direction for a relationship between
nodes. However, in some property graphs, this direction is not explicit, and traversal
happens in both directions. Note that just because traversal can happen in either
direction, this does not imply the relationship is symmetrical, such as the case with an
employee-employer relationship.

Item 53: Undirected relationship for arbitrary relationships
In property graphs, a relationship’s direction is sometimes symmetrical. This can occur
with something like a SAME_AS relationship. For example, this is the case when a person
has several aliases.

In this situation, the user can check if there is a special syntax to denote this relationship.
Otherwise, it is necessary to add two relationships between two nodes (one relationship
going in each direction), and then add properties to each relationship to signify the
symmetrical relationship. This can add a lot of noise to the data model.

 – Proprietary Solution [6]

In Neo4j, when it is the case that a relationship’s direction is arbitrary, the user can
leave off the arrowhead. MERGE will then check for the relationship in either direction
and will create a new directed relationship if no matching relationship exists.

© 2018 The MITRE Corporation. All Rights Reserved. 63
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Chapter 23

Transform: Load

Item 54: Order-free RDF triples and node-dependent
structure of a property graph
The most important thing to notice between RDF triples and a property graph is their
structures. RDF triples do not have an order, while a property graph is a node-dependent
structure. These differences will cause problems throughout the extract, transform, and
load processes.

This structural difference can mean that the user will come across triples that do not fit
into the structure of the property graph. The best tip to avoid this is to carefully model
the RDF triples to avoid later difficulties in deriving a model from a set of order-free RDF
triples.

© 2018 The MITRE Corporation. All Rights Reserved. 64
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Appendix A

Modeling

Tips about modeling in the ETL process
Here are a few tips on how to start the ETL process [19]:

• Remember that modeling is important.
• Create a graph model first.
• Clarify what are entities, relationships, and properties.
• Focus on the use cases.
• Be conscious about a data model.
• Do not reconstruct data structures from other databases.
• Import into a graph model.
• Add graph indexes later in the process.

The data model is different from data representation
The model, also known as a whiteboard graph, is different from the representation. A
representation is the implementation in the database. A model is the concept to which the
representation refers; for example, the diagram on the whiteboard is the model, and the
RDF triple data set is the representation. In addition, a model transformation is more
complex than a representation transformation.

© 2018 The MITRE Corporation. All Rights Reserved. 65
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Appendix B

Inference

There are several standard profiles for inference
There are several standard profiles, or languages, for inference. These include RDFS and
the three profiles of OWL 2 – RL, DL, and QL. Only RDFS OWL 2 RL and OWL 2 QL are
right for applications that need to deal with large volumes of data. The user should
investigate which profile best fits the needs of a domain, data, and application. Then, the
user can check whether or not the vendor provides full support for the standard profiles,
particularly the one that best fits the needs of an application. Finally, the user should
check if the inference engine passes standard compliance tests and if it supports
independent verification and evaluation [13].

© 2018 The MITRE Corporation. All Rights Reserved. 66
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Appendix C

RDF with Property Graphs

The industry’s leading products are rapidly changing and are becoming more like each
other, in that they are trying to offer both RDF and property graph capabilities.

Open-source software for using RDF and SPARQL with
property graphs
TinkerPop18 is an open-source project that provides an entire stack of technologies within
the graph database space. The Blueprints API is at the core of this stack of technology.
The Blueprints API is like the JDBC (Java Database Connectivity)19 of graph databases.
By providing a set of generic interfaces, it allows a user to develop graph-based
applications without introducing explicit dependencies on concrete graph-based
database implementations. Additionally, the Blueprints API provides concrete bindings
for the Neo4J, OrientDB, and Dex Graph Databases. In addition to the Blueprints API, the
TinkerPop team developed an entire range of graph technologies, including Gremlin, a
powerful, domain-specific language designed for traversing graphs. Hence, once a
Blueprints API binding is available for a particular graph database, an entire range of
technologies is available [9].

18 http://tinkerpop.incubator.apache.org/
19 This technology is a generic method of connecting to databases through Java.

© 2018 The MITRE Corporation. All Rights Reserved. 67
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

There is a difference between SPARQL and SPARQL-like

20 https://github.com/neo4j-contrib/sparql-plugin/

 – Propri e ta ry Ex pla na tion [2 0]

All of the input and output of the Neo4j SPARQL Plugin20 is JSON. The user sends data
and queries to Neo4j that are embedded in JSON, and the results are JSON, but not the
W3C SPARQL Query Results JSON Format. This use of JSON is the default for the
Neo4j RESTful API, which provides the context for all SPARQL-oriented
communication with a Neo4j server. While the plugin's documentation refers to an
endpoint, it is not a SPARQL endpoint in the sense that it supports the SPARQL
Protocol, but rather, that it has its own interface for accepting SPARQL queries and
delivering results.

© 2018 The MITRE Corporation. All Rights Reserved. 68
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Appendix D

Error Messages

Determine the approach that provides the most-robust error
messages
Different error messages will occur in different contexts. The user needs to find the
approach that has the most-robust error messages. Even if the user chooses to not use the
approach with the best error messages, it will allow the user to have good intuition of
what is happening with environments that have less-robust error messages. The shell that
comes with a database usually offers the best error messages.

© 2018 The MITRE Corporation. All Rights Reserved. 69
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

List of Tables

Table 1 – Comparing RDF and Property Graph ______________________________________ xii

Table 2 – AllegroGraph HTTP response codes and serialization formats __________________ 17

Table 3 – Example of CSV structure for nodes and relations ___________________________ 18

Table 4 – Neo4j’s recommendations against unintended artifacts _______________________ 31

Table 5 – Neo4j’s recommendations regarding CSV formatting _________________________ 32

© 2018 The MITRE Corporation. All Rights Reserved. 70
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

List of Figures

Figure 1 – Preserving the triple’s unique identifier ___________________________________ 21

Figure 2 – Fourth element from RDF to the graph context in a property graph _____________ 22

Figure 3 – Reification by converting predicates to nodes ______________________________ 26

Figure 4 – Graph of reification convention in RDF specification _________________________ 28

Figure 5 – Aligned data across different databases _________________________________ 36

Figure 6 – Equivalent relationship in a property graph _______________________________ 37

Figure 7 – A property group cannot have properties of properties ______________________ 39

Figure 8 – Direct transformation from RDF to property graph __________________________ 41

Figure 9 – Indirect transform of predicate-object property from RDF to property graph _____ 42

Figure 10 – Reification by using a unique identifier in the subject or object ________________ 47

Figure 11 – Transforming the properties on a predicate with the fourth element ____________ 48

© 2018 The MITRE Corporation. All Rights Reserved. 71
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Glossary

A
Alignment—This occurs when separate data sets have common data points.

Apache Software Foundation—This is a non-profit corporation that supports open-source
Apache software projects.

Atomicity, Consistency, Isolation, and Durability (ACID)—These are properties that a
database needs so that it can guarantee the successful processing of a query.

B
Bison Query Language (BiQL)—This graph query language is for representing, manipulating,
and transforming information networks.

Blueprints API—This framework provides a collection of generic interfaces for property
graphs capabilities.

C
Comma-Separated Values (CSV)—This simple format stores tabular data in plain text.

Compound Object Literal—This string can undergo further decomposition, such as a timestamp.

Cypher—This is the declarative graph query language for Neo4j that allows for expressive
and efficient querying and updating of the graph database.

D
Data Point—This is a discrete unit of information.

Data Set—This is a collection of related data points.

© 2018 The MITRE Corporation. All Rights Reserved. 72
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Database Model—This is a type of data model that determines the logical structure of a
database and fundamentally determines in which manner data can be stored, organized, and
manipulated. For example, the diagram on a whiteboard is the model.

Database Representation—This is an implementation of a model within the database. For
example, the RDF triple data set is the representation.

E
Extract, transform, and load (ETL)—This process describes the procedure of transferring a
data set from one database into another.

Extract—This step reads data from a specified source database and extracts a desired subset
of data.

F
Free-Text—This is unstructured text, such as a paragraph of text.

G
Graph Context—This is like the concept of a subgraph.

GraphLog—This query language uses graphs for expressing data, queries, and generic rules.

Gremlin—This declarative query language has traversal operators that chain together to form
a path-like expression.

G—This high-level, dataflow graphical programming language is for developing interactive
applications that are executed in parallel by using multicore processors.

H
HTTP Interface—This interface is a communication and data-transfer process using HTTP verbs
(e.g., GET and POST). The advantage of this interface is an independence from a particular
programming language, software, or operating system.

I
Idempotent Update—This update operation will silently fail, thus sparing the use of database
resources, or creating extraneous log entries.

Inference—The process of having a database use RDFS or OWL vocabulary to prove new RDF
triples that are based off the current data set of triples.

J
Java Database Connectivity (JDBC)—This technology is a generic method of connecting to
databases through Java.

JavaScript Object Notation (JSON)—This format is a lightweight data-interchange format that
is easy to read and write for both humans and machines.

© 2018 The MITRE Corporation. All Rights Reserved. 73
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

JavaScript Object Notation for Linked Data (JSON-LD)—This format is for transporting Linked
Data by using the JSON format.

K
Knowledge Organization Systems (KOS)—These are systems such as thesauri, classification
schemes, subject heading systems, and taxonomies.

L
Linked Data—This format is for publishing structured data so that the data can interlink to
become more useful through semantic queries.

Linter—This is a program that determines syntax validity.

Literal—This is a data point in a string format.

Load—This step writes either all of the subset or just the changes of the data to a target
database that may or may not have previously existed.

N
Notation 3 Logic (N3)—This non-standard serialization is similar to Turtle, but has some
additional features, such as the ability to define inference rules.

N-Quads—This superset of N-Triples is for serializing multiple RDF graphs.

N-Triples—This simple, easy-to-parse, line-based format is similar to Turtle, though not as
compact.

O
Object Model—This is an entity with properties.

P
Periodic Commit—This is a process guaranteeing a commit at some determined interval.

Property Graph—This is a graph that supports labels, edges, and nodes, all of which can hold
any number of attributes in the form of key-value-pairs.

Provenance—This information is about entities, activities, and people that are involved in
producing a piece of data or thing; this is useful in forming assessments about its quality,
reliability, or trustworthiness.

PROV—This is a W3C family of documents that defines a model, corresponding serializations,
and other supporting definitions to enable the interoperable interchange of provenance
information.

R
RDF Data Query Language (RDQL)—This language is for extracting information from RDF
graphs and is a precursor to SPARQL.

RDF/XML—This syntax is to serialize an RDF graph as an XML document.

© 2018 The MITRE Corporation. All Rights Reserved. 74
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Reification—This is the process of making statements about an RDF triple.

Representational State Transfer (REST)—This is a system of guidelines to make an HTTP
interface more scalable and maintainable.

Resource Description Framework (RDF)—This W3C standard defines data items and
relationships in a triple-format that is similar to a graph representation.

Resource Description Framework Schema (RDFS)—This W3C standard is for defining basic
aspects of data models for data that is in RDF format, and it provides the ability to organize
data items as sets and define relationships between those sets.

Resource Query Language (RQL)—This query language is for use in URIs with object-style
data structures.

S
Semantic Web—This W3C extension of the web that promotes common data formats and
exchange protocols, especially regarding RDF.

Serialization—This is the process of formatting data, for either storage or transmission, that is
reconstructed at a later time.

Sesame RDF Query Language (SeRQL)—This language for RDF/RDFS combines features from
other languages, mainly RQL, RDQL, N-Triples, and N3, and is part of Sesame.

Sesame—This system/framework for storing and querying RDF data includes various storage
back ends, query languages, inference engines, and client-server protocols.

Simple Knowledge Organization System (SKOS)—This specification and standard supports
the use of KOS, such as thesauri, classification schemes, subject heading systems, and
taxonomies, within the framework of the Semantic Web.

Social Network Query and Transformation Language (SNQL)—This query language does
social network matching and social network construction.

Social Query Language (SoQL)—This SQL-like query language is for social networks that are
focused on identifying groups and paths over a classical network.

SPARQL Protocol and RDF Query Language (SPARQL)—This query language by the W3C
specifies queries against data graphs that use the RDF format.

Subject, Predicate, Object, Graph, Identifier (SPOGI) Index—This is an index of each element
of the quintuple, where SPO stands for subject, predicate, object, and GI stands for graph and
unique identifiers.

T
TinkerPop—This open-source project provides an entire stack of technologies within the graph
database space.

Transform—This step works with the acquired data to convert it to a desired state by using
rules or lookup tables or by creating combinations with other data.

Triple Set—This data model breaks down knowledge into subject-predicate-object assertions.

© 2018 The MITRE Corporation. All Rights Reserved. 75
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Turtle—This serialization format allows RDF graphs to be represented in a compact and
natural text form with abbreviations for common usage patterns and data types.

U
Uniform Resource Identifier (URI)—This string of characters provides a unique identity to an
internet resource. This may be either a uniform resource locator or unique resource name.

Uniform Resource Locator (URL)—This reference to a resource specifies the location of the
resource on a computer network and a mechanism for retrieving it.

Unique Resource Name (URN)—This string of characters identifies a name of a web resource.

Uniqueness Constrains—These are constraints to making a data point unique so as to prevent
duplicate data points.

V
Versa—This compact query syntax is in 4Suite with Python and is not based on SQL.

W
Web Ontology Language (OWL)—This language can represent rich and complex knowledge
about things, groups of things, and relations between things.

Web Ontology Language (OWL)—This W3C standard is a superset of RDFS and provides
extensive techniques for defining and relating sets of data items, such as set operations,
cardinality, relationships (symmetrical, inverse, transitive), equivalence, and difference
relationships.

World Wide Web Consortium (W3C)—This international community develops open standards
to ensure the long-term growth of the web.

X
XML User Interface Language (XUL)—This markup language has a template element to
declare rules for matching data in RDF and uses RDF extensively for data modeling.

© 2018 The MITRE Corporation. All Rights Reserved. 76
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

References

[1] M. Rouse, "The TechTarget Network," [Online]. Available:
http://searchdatamanagement.techtarget.com/definition/extract-transform-load. [Accessed
12 June 2015].

[2] RDF Working Group, "Resource Description Framework (RDF)," 25 February 2014. [Online].
Available: http://www.w3.org/RDF/. [Accessed 13 July 2015].

[3] OWL Working Group, "Web Ontology Language (OWL)," 11 December 2012. [Online].
Available: http://www.w3.org/2001/sw/wiki/OWL. [Accessed 22 June 2015].

[4] W3Schools, "Introduction to RDF," [Online]. Available:
http://www.w3schools.com/webservices/ws_rdf_intro.asp. [Accessed 25 June 2015].

[5] DATAVERSITY Education, LLC., "DataVersity Answers," [Online]. Available:
http://answers.semanticweb.com/. [Accessed 16 June 2015].

[6] Neo Technology, Inc., "The Neo4j Manual," [Online]. Available:
http://neo4j.com/docs/2.2.2/. [Accessed 8 June 2015].

[7] "Neo4J, RDF and Kevin Bacon," [Online]. Available: https://tommorris.org/posts/2462.
[Accessed 17 June 2015].

[8] Apache TinkerPop, "TinkerPop3 Documentation," [Online]. Available:
http://tinkerpop.incubator.apache.org/docs/3.0.0.M9-incubating/. [Accessed 17 June
2015].

[9] Apache TinkerPop, "Blueprints Homepage," [Online]. Available:
https://github.com/tinkerpop/blueprints/wiki. [Accessed 17 June 2015].

© 2018 The MITRE Corporation. All Rights Reserved. 77
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

[10] A. Harth, K. Hose and R. Schenkel, "5.3.4 Physical Operators: Joins, Path Traversals," in
Linked Data Management, Boca Raton, CRC Press, 2014, pp. 134,135.

[11] Franz, Inc., "AllegroGraph 5.1 Documentation Index," [Online]. Available:
http://franz.com/agraph/support/documentation/current/. [Accessed 8 June 2015].

[12] Wikimedia Foundation, Inc., "Serialization," [Online]. Available:
https://en.wikipedia.org/wiki/Serialization. [Accessed 27 August 2015].

[13] Ontotext, The Truth About Triple Stores, Ontotext, 2014.

[14] W. Suny, A. Fokouez, K. Srinivasz, A. Kementsietsidisx, G. Huy and G. Xiey, SQLGraph: An
Efficient Relational-Based Property Graph, Melbourne: SIGMOD, 2015.

[15] Office of Naval Research, Code 31 and U.S. Navy TENCAP, "Achieving a Naval Data
Strategy: Achieving a Naval Data Strategy: Leveraging UCD the UCD Ecosystem as a
Pathfinder for a Naval Data Ecosystem," 2014.

[16] M. Hunger, "Document Oriented Access to Graphs," 27 May 2014. [Online]. Available:
http://www.slideshare.net/neo4j/document-oriented-access-to-graphs. [Accessed 22 July
2015].

[17] GrapheneDB, "Importing Data Into Neo4j via CSV," [Online]. Available:
http://blog.graphenedb.com/blog/2015/01/13/importing-data-into-neo4j-via-csv/.
[Accessed 6 June 2015].

[18] A. Fowler, NoSQL for Dummies, Hoboken: John Wiley & Sons, Inc., 2015.

[19] M. D. Marzi, "Importing Data into Neo4j," 27 March 2014. [Online]. Available:
http://watch.neo4j.org/video/90358900. [Accessed 18 June 2015].

[20] B. DuCharme, "Storing and querying RDF in Neo4j," [Online]. Available:
http://www.snee.com/bobdc.blog/2014/01/storing-and-querying-rdf-in-ne.html.
[Accessed 17 June 2015].

© 2018 The MITRE Corporation. All Rights Reserved. 78
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

Index

A
ACID, 50, 53

alignment, 35

Apache Software Foundation, xi, 52

assertions. See subject-predicate-object

B
Blueprints API, xi, 52

C
comma-separated values, 18

compound object literal, 45

compound object literals, 24

CSV. See comma-separated values

D
database model, 64

database representation, 64

E
ETL. See Extract, transform, and load

Extract, transform, and load, ix

extract, ix

load, ix

transform, ix

F
free-text, 19, 24

G
graph context, 22

Gremlin, xi, 52

H
HTTP interface, 14

© 2018 The MITRE Corporation. All Rights Reserved. 79
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

I
idempotent update, 55

index, 53

inference, x, 20

J
JavaScript Object Notation, 16

JavaScript Object Notation Linked Data, 34

JSON. See JavaScript Object Notation

JSON-LD. See JavaScript Object Notation
Linked Data

L
linter, 33

literal, 24, 37, 45

O
object model, 38

OWL. See Web Ontology Language

P
periodic commit, 52

property graph, xi

attribute, xi

edge, xi

key-value-pair, xi

label, xi

node, xi

relationship, xi

Q
quadruple. See triple

quintuple. See triple

R
RDF. See Resource Description Framework

RDFS. See Resource Description Framework
Schema

reification, 26

Representational State Transfer, 14

Resource Description Framework, x

Resource Description Framework Schema, x

resource-property-value. See subject-
predicate-object

REST. See Representational State Transfer

S
serialization, 16

SPARQL. See SPARQL Protocol and RDF
Query Language

SPARQL Protocol and RDF Query Language,
x, 24

SPOGI index, 38

statement. See subject-predicate-object

subject-predicate-object, x

object, x

predicate, x

subject, x

T
terminal node, 37

TinkerPop, xi

triple. See subject-predicate-object

triplestore, x

U
unintended artifacts, 30

unique identifier, 21, 27

uniqueness constraint, 23, 59

© 2018 The MITRE Corporation. All Rights Reserved. 80
Approved for Public Release. Distribution Unlimited: Case Number 15-2949.

W
W3C. See World Wide Web Consortium

Web Ontology Language, x

World Wide Web Consortium, x

