
Approved for Public Release; Distribution Unlimited.
Case Number 16-1919.

Cross-Tool Semantics for Protocol Security Goals

Joshua D. Guttman, John D. Ramsdell, and Paul D. Rowe
{guttman,ramsdell,prowe}@mitre.org

The MITRE Corporation

Abstract. Formal protocol analysis tools provide objective evidence that a pro-
tocol under standardization meets security goals, as well as counterexamples to
goals it does not meet (“attacks”). Different tools are however based on different
execution semantics and adversary models. If different tools are applied to alter-
native protocols under standardization, can formal evidence offer a yardstick to
compare the results?
We propose a family of languages within first order predicate logic to formalize
protocol safety goals (rather than indistinguishability). Although they were orig-
inally designed for the strand space formalism that supports the tool CPSA, we
show how to translate them to goals for the applied π calculus that supports the
tool ProVerif. We give a criterion for protocols expressed in the two formalisms to
correspond, and prove that if a protocol in the strand space formalism satisfies a
goal, then a corresponding applied π process satisfies the translation of that goal.
We show that the converse also holds for a class of goal formulas, and conjecture
a broader equivalence. We also describe a compiler that, from any protocol in
the strand space formalism, constructs a corresponding applied π process and the
relevant goal translation.

1 Introduction

Automated tools for analyzing cryptographic protocols have proven quite effective at
finding flaws and verifying that proposed mitigations satisfy desirable properties. Re-
cent efforts to apply these tools to protocols approved by standards bodies has led Basin
et al. [5] to stress the importance of publishing the underlying threat models and de-
sired security goals as part of the standard. This advice is in line with the ISO standard,
ISO/IEC 29128 “Verification of Cryptographic Protocols,” [22] which codifies a frame-
work for certifying the design of cryptographic protocols. There are three key aspects
to this framework (described in [23]). It calls for explicit (semi-)formal descriptions of
the protocol, adversary model, and security properties to be achieved. One final aspect
is the production of self-assessment evidence that the protocol achieves the stated goals
with respect to the stated adversary model. This fourth aspect is critical. It increases
transparency by allowing practitioners the ability to independently inspect and verify
the evidence. So, for example, if the evidence is the input/output of some analysis tool,
the results could be replicated by re-running the tool.

An interesting situation may arise when two different tools are used to evaluate the
same protocol. For example, in 1999, Meadows [25] found weaknesses in the Internet
Key Exchange (IKE) protocol using the NRL Protocol Analyzer [24], while in 2011

This technical data was produced for the U.S. Government
under Contract No. W15P7T-13-C-A802, and is

subject to the Rights in Technical Data-Noncommercial Items clause
at DFARS 252.227-7013 (FEB 2012)

c©2015 The MITRE Corporation. ALL RIGHTS RESERVED.

P

$$

��

B
f
loc

P

zz

��

GL(P)
f //

|=

{{

GL?(P)

|=

##
strandruns

B
f
gl

traces

Fig. 1. Consistency of cross-tool semantics

Cremers [16] found additional flaws using Scyther [15]. In such situations it can be
quite difficult to determine exactly what the cause of the difference is. Small differences
in any of the first three aspects of the framework could result in important differences
in the conclusions drawn. This has the potential to undermine some of the transparency
gained by including the self-assessment evidence to begin with.

Ideally the first three aspects of the assessment framework (i.e. protocol description,
adversary model, and protocol goals) could be described rigorously in a manner that
is independent of the tool or underlying formalism used to verify them. For example,
many tools assume a so-called Dolev-Yao adversary model. Although some details vary
depending on which cryptographic primitives are being considered, there is generally
a common understanding of what is involved in this adversary model. However, this
is typically not the case for the other aspects. The particular syntax for describing a
protocol is closely tied to the underlying semantics which is entirely tool-dependent.
Similarly, security goals are frequently expressed in a stylized manner that is tightly
coupled to the tool or underlying formalism. It is this last point that we begin to address
in this work, by demonstrating how a particular language of security goals can have a
consistent interpretation in two chosen tools: CPSA and ProVerif.

We adopt a security goal language GL for safety properties first introduced in the
strand space context [21]. GL contains both protocol-specific and -independent vocab-
ulary. Security goals take the so-called “geometric” form:

∀x . Φ =⇒ Ψ

where Φ, Ψ are built from atomic formulas using conjunction, disjunction, and existen-
tial quantification. Any protocol P induces the protocol-specific language GL(P). It was
designed with limited expressivity in order to capture security goals that are preserved
by a class of protocol transformations. The limited expressivity is advantageous for the
current work because GL talks only about events, message parameters and the relevant
relations among them. While some tools may represent and reason about more types
of events than others, there is a common core set of events such as message transmis-
sion and reception that every tool must represent and reason about. As a consequence,
all statements of security goals related to this core set of events and parameters are
independent from the particular formalism that might be used to verify them.

2

In this paper we aim to demonstrate how to cross-validate results between the two
tools CPSA [27] and ProVerif [7]. This requires us to demonstrate how to consistently
interpret goal formulas relative to the underlying formalisms used by the two tools, in
this case strand spaces and the applied π calculus respectively. Figure 1 diagrammati-
cally depicts what is required for the consistency of such cross-tool semantics.

We draw the reader’s attention to several aspects of this diagram. First, the two
triangles represent standalone logical semantics for the goal language GL with respect
to each of the execution semantics of the two tools. In Section 3 we describe the left
triangle: the strand space semantics for CPSA of GL(P) relative to a notion of executions
we call “strand runs.” We cover the right triangle in Section 4 by giving the semantics of
GL?(P) relative to a trace execution semantics of the applied π calculus for ProVerif.

We explicitly depict two different logical languages GL(P) and GL?(P) because
applied π processes P can represent strictly more events than strand spaces. In particu-
lar, P may represent the internal events required to parse received messages. Thus we
imagine an embedding f : GL(P) → GL?(P) on the goal language. We can therefore
only hope to get consistent answers from CPSA and ProVerif on goals expressible in
GL(P), or equivalently, its image under f .

Of course, if the corresponding predicates of GL(P) and GL?(P) refer to essentially
different things, we cannot expect consistent results. In Section 5 we present a relation
Bfloc(P, P) that characterizes when a protocol P and process term P represent the “same
thing.” The idea is to ensure that the two formulations of each of the roles are locally
bisimilar. Here again the applied π calculus is generally more expressive than strand
spaces, so we actually describe a compiler that transforms a strand space protocol P
into a bisimilar process term P .

Finally, in Section 6 we demonstrate how the local bisimulationBfloc lifts to a global
bisimulation Bfgl on the operational semantics of the two sides. We then show that this
bisimulation respects security goals in the sense that any goal satisfied on the left by a
strand run is also satisfied on the right by a corresponding trace. The converse cannot
be true for all goals because traces are totally ordered whereas strand runs may be only
partially ordered. However, we conjecture that for any goal that is insensitive to the
inessential orderings of a trace, if a trace satisfies the goal then so does a corresponding
strand run.

1.1 Related Work

We have described above how this paper connects to the protocol verification frame-
work described by Matsuo et al. [23] and standardized in the ISO in [22]. Although the
use of formal logics to express protocol security goals is not new [9,17], our focus on
using such a logic to connect distinct verification formalisms seems to be new. There
was a lot of work in the early 2000s detailing the connections between the various pro-
tocol analysis formalisms being developed at the time [10,6,14,26]. This work tended
to focus on connecting the underlying execution semantics of the various formalisms
without explicit reference to formal security goals. Thus, in reference to Fig. 1, only
the outside edges were described. By filling in the details of the internal connections,
explicitly relating the execution semantics to a security goal language, it is easier for a
practitioner to understand how the two sides relate.

3

There have been several related projects that unite a variety of protocol valida-
tion tools into a single tool suite. Most notably, the AVISPA [2] and AVANTSSAR [3]
projects provide a unified interface to several backend tools. The available toolset seems
to be limited to bounded verification, whereas in this paper we connect two formalisms
capable of unbounded verification. Their protocol description language, ASLan++, how-
ever might be a good candidate for formalism-independent protocol descriptions.

Many tools have also embarked on establishing indistinguishability properties of
protocols, also sometimes called privacy-type properties. In this area, logical languages
to express goals are less developed. However, we consider this an important area to
pursue the present cross-tool logical program also.

2 A Simple Example

In this section we introduce an example protocol, and mention the goals that it achieves.
We then show how to formalize the goals it achieves in a first order language introduced
for the strand space formalism [21,28].

A Simple Example Protocol. As a minimal example, consider the Simple Example
Protocol (SEP) used by Blanchet [8] and many others [13]. In this protocol, an initiator
A chooses a session key s, which it signs and then encrypts using the public encryption
key of an intended peer B. It then waits to receive in exchange a sensitive payload d,
delivered encrypted with s.

A→ B : {|[[s]]sk(A)|}pk(B)

B → A : {|d|}s

One is traditionally interested in whether confidentiality is assured for d, and whether
A authenticates B as the origin of d or B authenticates A as the origin of s. Actually,
SEP already indicates why this way of expressing the goals is too crude. In Fig. 2 (a),
we show the assumptions needed for a conclusion, from A’s point of view, and the
conclusion that B behaved according to expectations. That is, the protocol is successful

If A has a run of the protocol apparently with
B;

and B’s private decryption key pk(B)−1 is
uncompromised;

and the session key s is freshly chosen,

then B transmitted d with matching parame-
ters,

and d remains confidential.

(a)

If B has a run of the protocol apparently with
A;

and B’s private decryption key pk(B)−1 and
A’s signature key sk(A) are both uncom-
promised;

and the session key s and payload d are
freshly chosen,

then A took the first step of an initiator ses-
sion, originating the key s, with some in-
tended peer C.

(b)

Fig. 2. Main goal achieved by SEP from the points of view of each role

4

fromA’s point of view. However, the story is different fromB’s point of view, as shown
in Fig. 2 (b). Although B certainly can’t know whether A receives the final message,
the fact that A’s intended peer is some C who may differ from B is troublesome. If
C’s private decryption key is uncompromised, then the adversary can recover s and A’s
signature, repackaging them for B, and using s to recover the intended secret d.

The goal language. We wish to express protocol security goals, such as those in Fig. 2,
in a language that is independent of the underlying formalism used to verify the goals.
We adopt a first order goal language developed in the context of the strand space for-
malism. It was originally designed by Guttman [21] to limit expressiveness in order to
ensure goals in the language are preserved under a certain class of protocol transfor-
mations. The limited expressivity was leveraged by Rowe et al. [28] to measure and
compare the strength of “related” protocols. We believe the limited expressivity makes
it possible for the formal statement of security goals to be independent of any underly-
ing verification methodology or formalism. Although the goal language was originally
developed for the strand space formalism and incorporated into CPSA, the main purpose
of this paper is to provide a semantics of the language for the applied π calculus that is
consistent with the strand space semantics so that it might be used also by ProVerif.

As suggested by the informal goal statements of Fig. 2, the language needs predi-
cates to express how far a principal progressed in a role, the value of parameters used
in messages, the freshness of values, and the non-compromise of keys. We explain each
of these in turn.

The progress made in a role is expressed with role position predicates. For exam-
ple, predicates of the form InitDone(n) or RespStart(m) say that an initiator has
completed its last step, or that a responder has completed its first step. Each role posi-
tion predicate is a one-place predicate that says what kind of event its argument n,m
refers to.

At each point in a role, the agent will have bound some of its local parameters to
concrete values. The parameter predicates are two place predicates that express this
binding. For example, if n refers to an initiator’s event, we would use Self(n, a) to ex-
press that the initiator’s local value for their own identity is a. Similarly, SessKey(m, s)
would say that the value bound to the local session key parameter is referred to by s.

The role position predicates and the parameters predicates are protocol-dependent
in that the length of roles and the parameter bindings at various points depend on the
details of the protocol.

The goal language also contains protocol-independent predicates that apply to any
protocol. These predicates appear in Table 1. They help to express the structural prop-
erties of protocol executions. Preceq(m,n) asserts that either m and n represent the
same event, or else m occurs before n; Coll(m,n) says that they are both events of the
same local session. m = n is satisfied when m and n are equal.

The remaining predicates are used to express that values are fresh or uncompro-
mised. This way of expressing freshness and non-compromise comes from the strand
space formalism, but it is possible to make sense of them in any formalism. The idea
is to characterize the effects of local choices as they manifest in executions. Randomly
chosen values cannot be guessed by the adversary or other participants, so they may
only “originate” from the local session in which it is chosen, if at all. We will make the

5

Functions: pk(a) sk(a) inv(k)
ltk(a, b)

Relations: Preceq(m,n) Coll(m,n) =
Unq(v) UnqAt(n, v) Non(v)

Table 1. Protocol-independent vocabulary of languages GL(Π)

meaning of “origination” more precise for each of the formalisms, but the intuition is
that Unq(v) says that v is a randomly chosen value, UnqAt(n, v) specifies the node at
which it originates, and Non(v) says that v is never learned by the adversary. Within
this language we can formally express the two goals of Fig. 2 as we have done in Fig. 3
for the second goal.

A formal semantics for this language has already been given with respect to the
execution model of strand spaces [21]. Our main contribution is to provide a consistent
semantics for this language with respect to the execution model of the applied π cal-
culus. To simplify this task we assume that messages have the same representation in
both formalisms. We now provide the necessary details of the underlying term algebra
for modeling messages.

Term algebra. We will use an order-sorted term algebra to represent the values ex-
changed in protocols. There is a partial order of sorts S ordered by <. We assume
the existence of a top sort > that is above all other sorts. We build terms from sorted
names and variables. We call <-minimal sorts basic sorts and terms of those sorts are
called basic values. The set of names is the disjoint union of names for each basic sort:
N =]s∈SNs, whereNs = N 0

s]N ν
s is the disjoint union of two sets. We also consider

two disjoint sets of variables X =]s∈SXs andW =]s∈SWs. Variables in X will be
bound to parts of messages received by protocol participants, while variables inW will
be used by the intruder.

We write T (Σ,A) to denote the set of terms built from set A using signature Σ
in the usual way. A term is ground if it contains no variables. An environment is map
from N ∪ X ∪W that maps names to names and variables to terms. The result of ap-
plying an environment σ to a term u is denoted σ(u). We only consider sort-respecting
environments in that for every term u : s, σ(u) : s′ with s′ ≤ s. Environments also
respect the difference between N 0

s and N ν
s . Environments can be updated so that, for

example, σ[x 7→ v] is the environment that maps x to v and otherwise acts like σ.
We identify a subset of terms called messages by partitioning Σ into constructor sym-

∀n, b, a, s, d . RespDone(n) ∧ Self(n, b)∧ ∃m, c . InitStart(m) ∧ Self(m,a)∧
Peer(n, a) ∧ SessKey(n, s) ∧ Datum(n, d)∧ ⇒ Peer(m, c) ∧ SessKey(m, s)∧
Non(sk(b)) ∧ Non(sk(a)) ∧ Unq(s) UnqAt(m, s) ∧ Preceq(m,n)

Fig. 3. Formalized goal achieved by SEP from the responder point of view

6

bols and destructor symbols, Σc] Σd, and letting MSG = T (Σc,N ∪ X). These
are the terms that are sent and received by protocols. For concreteness assume Σc =
{{| · |}s· , {| · |}a· , [[·]]·, ·ˆ·, pk, sk, ltk, (·)−1}, and that Σd = {decs, deca, ver, fst, snd}.

We say that t0 is an ingredient of t, written t0 v t, iff either (i) t0 = t; or (ii)
t = t1ˆt2 and t0 v t1 or t0 v t2; or (iii) t = {|t1|}∗t2 for ∗ ∈ {s, a} and t0 v t1; or (iv)
t = [[t1]]t2 and t0 v t1. The key of a cryptographic operation does not contribute to the
ingredients of the result; only the plaintext does.

The adversary’s ability to derive messages is represented in two equivalent ways.
In the first method, we partition Σ into Σpub]Σpriv and consider a convergent rewrite
system with rules g(t1, . . . , tn) → t for g ∈ Σd. Since the system is convergent, every
term t has a normal form denoted t↓. The set of messages derivable from some set X
is thus nf (T (Σpub, X)) ∩MSG, where nf (T) produces the set of normal forms of the
set of terms T . In the second method, the adversary uses derivability rules of the form
{t1, . . . , tn} ` t. The set of messages derivable from some setX is the smallest set con-
taining X and closed under `. When each rewrite rule g(t1, . . . , tn) → t corresponds
to a derivation rule {t1, . . . , tn} ` t and vice versa, the two notions of derivability
coincide.

3 Strand Spaces

In this section we present the syntax and execution semantics of strand spaces and
we discuss how the executions furnish semantic models for the formulas of the goal
language GL(P).

Strands. A strand is a sequence of transmission and reception events, each of which
we will call a node. We use strands to represent the behavior of a single principal in
a single local protocol session. By convention, we draw strands with double-arrows
connecting the successive nodes • ⇒ •. We use single arrows • → • to denote the type
of node (transmission vs. reception).

We write +t for a node transmitting the term t and−t for a node receiving t, and we
write msg(n) for t if n is a node ±t. We write dmsg(n) for the pair ±msg(n), i.e. the
message together with its direction, + or −.

If s is a strand, we write |s| for its length, i.e. the number of nodes on s. We use
1-based indexing for strands, writing s@i for its ith node. Thus, the sequence of nodes
along s is 〈s@1, . . . , s@|s|〉. A message t originates at a node n = s@j iff (i) n is
a transmission node; (ii) t v msg(n); and (iii) t is not an ingredient of any earlier
msg(m) where m = s@k and k < j.

Protocols. A protocol P is a finite sequence of strands, called the roles of P, together
with possibly some auxiliary assumptions (detailed below) about fresh values. Regard-
ing P as a sequence instead of a set will be convenient in Sec. 5.

The messages sent and received on these strands contain parameters, which are
the names, nonces, keys, and other data occurring in the messages. The parameters
account for the variability between different instances of the roles. More formally, a
P-instance is a triple consisting of a role ρ ∈ P, a natural number h ≤ |ρ|, and
an environment σ that assigns messages to precisely those variables and names in ρ

7

{|[[s]]sk(A)|}apk(B) {|d|}ss
��

{|[[s]]sk(A)|}apk(B)

��
{|d|}ss

•
OO

+3 • • +3 •
OO

Fig. 4. The SEP protocol.

that occur in its first h nodes. If ι = (ρ, h, σ) is an instance, then the nodes of ι are
nodes(ι) = {(ι, j) : 1 ≤ j ≤ h}. The transmission and reception nodes of ι are denoted
nodes+(ι) and nodes−(ι) respectively. The message of a node is msg((ρ, h, σ), j) =
σ(msg(ρ@j)). The idea is that the nodes are the part that has already happened. When
h = 0, then nodes(ι) = ∅.

Each P-instance ι = (ρ, h, σ) corresponds to a regular strand s of P by applying σ
to ρ up to height h. That is dmsg(s@i) = σ(dmsg(ρ@i)) for each i ≤ h and |s| = h.
An interesting subtlety arises when two roles have a common instance. That is (ρ, h, σ)
and (ρ′, h, σ′) may satisfy σ(dmsg(ρ@i)) = σ′(dmsg(ρ′@i)) for each 1 ≤ i ≤ h.
This can represent a branching role that has a fixed trunk and alternate continuations.
In the present paper we restrict our attention to non-branching protocols in the sense
that no two roles share a common instance. This eases our connection to the applied π
semantics later. We leave for future work the consideration of how to relate results for
branching protocols.

P may make role origination assumptions rlunique, stipulating that certain expres-
sions involving the parameters originate at most once. These assumptions apply to all
instances of the role. Formally, rlunique is a function of the roles of P and a height, re-
turning a finite set of expressions: rlunique : P× N→ P(MSG). The set rlunique(ρ, i)
gives ρ its unique origination assumptions for height i. We require that the image of
rlunique consist only of terms inN ν

s for the appropriate sort s, and that all other names
in roles are chosen from the sets N 0

s .
We will assume that each protocol P contains the listener role, which consists of a

single reception node x→•. Each instance witnesses for the fact that the message instan-
tiating x has been observed unprotected on the network. Thus, we use the listener role to
express confidentiality failures. We also include a kind of dual to the listener role called
a blab role that discloses a basic term to the adversary for it to use in deriving messages
for reception. A blab strand witnesses for the fact that the adversary has managed to
guess a value.

The two roles in Fig. 4 make up a strand-style definition of the SEP protocol (in
which the listener and blab roles have been omitted).

Candidate strand runs. For the purposes of this paper, we slightly alter the no-
tion of execution used for strand spaces. We argue in the appendix that this new no-
tion preserves the semantics of GL(P). The notion of execution we consider, called
a candidate strand run, or frequently, just a candidate, is a pair I = (I,�) where
I = 〈ι1, . . . , ιk〉 is a finite sequence of P-instances, and � is a partial order extend-
ing the strand succession orderings of nodes(ιi). We further require that I respect
the rlunique assumptions of the roles. More formally, if ιi = (ρ, h, σ) and i ≤ h,
then if a ∈ rlunique(ρ, i), then σ(a) originates at most once in I. The nodes of I are
nodes(I) = {(i, n) : 1 ≤ i ≤ k ∧ n ∈ nodes(ιi)}.

8

A reception node of I is realized if the adversary is in fact able to deliver msg(n)
in time for each reception node n. This means that msg(n) should be derivable from
previously transmitted messages. More formally, if I = (I,�) is a candidate and n ∈
nodes−(I), then n is realized in I iff

{msg(m) ∈ nodes+(I) : m ≺ n} ` msg(n).

A candidate I = (I,�) is a strand run, or just a run, iff, for every n ∈ nodes−(I), n is
realized in I. We write Runs(P) for the set of strand runs of P.

Operational semantics. The operational semantics of strand runs is obtained by defin-
ing an immediate successor relation on candidates and restricting it to runs. We first
rely, however, on a localized notion of successor for instances.

If ι = (ρ, h, σ) and ι′ = (ρ′, h′, σ′) are instances, then ι′ is an immediate successor
of ι iff (i) ρ = ρ′; (ii) h + 1 = h′; and (iii) σ′ restricted to the domain of σ agrees
with σ. If ι′ is an immediate successor of ι, then it extends σ to choose values for any
new parameters that occur in msg(ρ@h+ 1), but not in nodes(ι). This local successor
relation lifts to a global successor relation on candidates.

One candidate I ′ = (I ′,�′) is an immediate successor of another candidate I =
(I,�) when there is one new node n in I ′, and the only change to the order is that some
old nodes may precede n. More formally, I ′ = (I ′,�′) is an immediate successor of
I = (I,�) iff, letting I = 〈ι1, . . . , ιk〉,

1. nodes(I ′) = nodes(I) ∪ {n}, for a single n 6∈ nodes(I), i.e. either
(a) dom(I ′) = dom(I) and there is a j ∈ dom(I) s.t. I ′(j) is an immediate

successor of ιj , and for all k ∈ dom(I), if k 6= j then I ′(k) = ιk; or else
(b) I ′ = 〈ι1, . . . , ιk, ι′k+1〉, and ι′k+1 has height h = 1; and

2. There is a set of nodes M ⊆ nodes(I) such that �′=� ∪{(m,n) : m ∈M}.

The empty candidate NullRun = (〈〉, ∅) is a strand run, since it has no unrealized
nodes. We regard it as the initial state in a transition relation, which is simply the “im-
mediate successor” relation restricted to realized strand runs. We will write SP for the
immediate successor relation restricted to strand runs of P, i.e. SP(I, I ′) iff I, I ′ are
runs of P and I ′ is an immediate successor of I.

Definition 1. Let P be a protocol. The operational semantics of P is the state machine
MP = (Runs(P),NullRun, SP) where the set of states is Runs(P), the initial state is
NullRun, and the transition relation is SP.

A sequence of runs 〈R1, . . . , Ri〉 is an MP-history iff R1 = NullRun and, for every
j such that 1 ≤ j < i, SP(Rj , Rj+1).

A run R is P-accessible iff for some MP-history 〈R1, . . . , Ri〉, R = Ri. ///

By induction on the well-founded partial orders �R, we have:

Lemma 1. Every P run is P-accessible. ///

9

Syntax and semantics of GL(P). GL(P)’s protocol-dependent vocabulary contains
one role position predicate P ρi (·) for each role node ρ@i of P, and a collection of role
parameter predicates P ρp (·, ·), one for each parameter p in role ρ.

Candidates furnish models for the language GL(P) for security goals [21,28]. Can-
didates that are actually runs are the most important: They determine whether a protocol
P achieves a formula Γ ∈ GL(P). In particular, P achieves Γ iff, for every realized run
R and assignment η of objects in R to free variables in Γ , R satisfies Γ under η, typ-
ically written R, η |= Γ . The details of the semantics, using a slightly different notion
of execution than the one used here, are in [21]. We show in the appendix that the
semantics for runs is equivalent.

4 The Labeled Applied π Calculus

In this section we describe the triangle on the right side of Figure 1. We introduce a
version of the applied π calculus [1]; we define a trace-based execution semantics; and
we show how to extract GL?(P) from a protocol P , giving it a semantics with respect
to the traces. Our process calculus is adapted from that of Cortier et al. [12] from which
the following description borrows.

Applied π calculus syntax. Protocols are modeled as processes built on an infinite set
of channel names Ch, using the following grammar.

P,Q = 0 | in(c, x) . P | out(c, u) . P | let x : s = v in P else Q

| (P | Q) | new n : s . P | sum n′ : s . P | !new tid . out(c, tid) . P

| ` . P

Here c, c′ ∈ Ch, x ∈ X , n ∈ N ν
s , and n′ ∈ N 0

s . We assume u ∈ MSG is a constructor
term; v ∈ T (Σ,N ∪ X) can be any term. In this grammar, replication and channel
restriction new tid occur only together.

We include the operator sum n′ : s, acting as an infinite summationP (n1)+P (n2)+
. . . for ni ∈ N 0

s (sse e.g. [20]). It binds parameters that might not be freshly chosen,
e.g. agent names. Other processes may make sum choices that collide with this, but
these choices never collide with the fresh choice new n : s. Although verification could
be difficult with infinite choices, under reasonable restrictions it suffices to consider a
bounded number of agents [11,12]. Similar results may apply equally to other types of
values.

The labels ` are also prefixes. They implement the begin-end events in ProVerif and
many other approaches, e.g. [29,19]. They signal the occurrence of steps mentioned in
security goals such as authentication properties.

The free variables, free names, and free channels of P are denoted fv(P), fn(P),
and fc(P) respectively. P is a basic process iff P contains no parallel or replication
operators, and all else branches in P are 0.

Modeling protocols. The roles of protocols are formalized as replicated processes
!new tid . out(c, tid) . P where P is a basic process. It is no restriction to assume that
every role uses the same channel tid since each replicated session will instantiate tid

10

A := sum a : agt.sum b : agt.new s : skey.InitStart.out(tid , {|[[s]]sk(a)|}apk(b)).
in(tid , z).let d : data = decs(z, s) in InitDone.0

B := sum a : agt.sum b : agt.in(tid , z).let x : > = deca(z, sk(b)) in

let s : skey = ver(x, pk(a)) in RespStart.new d : data.

RespDone.out(tid , {|d|}ss).0
P := !new tid .out(c, tid).A |!new tid .out(c, tid).B |

!new tid .out(c, tid).sum v : s.Blabs.out(tid , v).0 | . . .

Fig. 5. Applied π representation of SEP.

with a distinct fresh channel. Any parameters p : s assumed to be freshly chosen during
every local session of a role will be bound new p : s in P . Other parameters of the local
session will be bound sum p : s in P .

Each protocol includes blab roles, namely replicated processes !new tid . sum p :
s.out(tid , p). We must also include versions that send f(p) for each f ∈ Σpriv. The
representation of SEP is shown in Fig. 5, where the remaining blab processes are elided.

Operational semantics. Our operational semantics includes traces, namely sequences
of events, i.e. pairs (p, E) consisting of the prefix p of the process being reduced, to-
gether with the environment E that results from the reduction. A prefix p is either
in(c, x : >), out(c, u), or ` for some label `. The trace joins together the begin-end
events that the ProVerif semantics use with the message events in other semantics such
Cortier et al.’s [12]. The labels help to provide semantics for role position predicates and
parameter predicates, much as ProVerif etc. express authentication properties. Trans-
mission and reception events reconstruct the semantics of origination.

The operational semantics acts on configurations C, which are triples:

S is a trace, namely a sequence of pairs of a prefix and an environment. It records the
successive prefixes that have undergone reduction, and the environment in force
when each reduction had occurred.

PE is a multiset of pairs (P, E) of a process and an environment. Each process is a
subexpression of the original process expression, and represents possible future
behavior. The environment records the bindings in force for its names and variables.
We use it to remember the association of these values with the names and variables
occurring in the original expression.
The multiset operator is essentially the parallel operator, which obeys the usual
associative-commutative structural rules, with unit 0.

φ is a frame. It associates variables w ∈ W to transmitted messages. It indicates which
messages from the regular participants the adversary is acting on.

The operational semantics (see Fig. 6 and Fig. 9 in the appendix), is a transition relation
−→ on configurations. In the IN rule, we do not substitute the new binding into the

11

IN : S; (in(c, x : >).P, E)] PE ; φ −→ S.(in(c, x : >), E ′);
(P, E ′)] PE ; φ

OUT : S; (out(c, u).P, E)] PE ; φ −→ S.(out(c, u), E);
(P, E)] PE ; φ[w 7→ E(u)]

LB : S; (`.P, E)] PE ; φ −→ S.(`, E); (P, E)] PE ; φ
SESS : S; (!new c′.out(c, c′).P, E)] PE ; φ −→ S; (P, E ′)] PE ; φ

where, in IN: E ′ = E [x 7→ φ(R)↓] for some R ∈ T (Σpub,W);
OUT: w ∈ W is fresh;
SESS: E ′ = E [c′ 7→ ch] where ch ∈ Ch is fresh

Fig. 6. Some reduction rules

process expression, but simply accumulate it in the environment. In the OUT rule, the
environment is consulted, producing the same effect the substitution would have had.

Reducing a prefix p to produce an environment E simply appends (p, E) to the end
of the trace. This retains the particular value to which a variable or name is bound
when each prefix is executed. The role parameter predicates get their semantics from
the bindings in E when a label is reduced, and the role position predicates get theirs
from which label ` it is.

Goal language syntax. The goal language GL?(P) for a process P contains the same
protocol-independent vocabulary as shown in Tab. 1. Its protocol-dependent vocabu-
lary consists of event predicates, which are like role-position predicates of GL(P), and
environment predicates, which are akin to parameter predicates.

Event predicates are one-place predicates. For each ` occurring in P , `(·) will be a
(one-place) event predicate; it holds true of index i in trace S if the event S(i) = e is of
the form (`, E).

The environment predicates are two-place predicates. For each name or variable u
occurring in P , u(·, ·) will be a (two-place) environment predicate. It will be true of
pairs i, v when e is an event (`, E) at index i in the trace, v is a message in normal form,
and E(u) = t maps the name or variable u to t. When u is not bound in E , u(·, ·) is
false for i and every t.

Goal language semantics. Suppose that 〈〉;P ; ∅ −→∗ S;Q;φ, so that S is a trace
of P . The semantics of GL?(P) is presented in Figure 7. The clauses are particularly
simple, because we arranged for S to hold just the information needed to express them.
In particular, retaining the environments E in S makes the semantics of the environment
predicates very easy.

The predicate Coll(·, ·) says that two events belong to the same instance (“session”)
of a role. By tying process replication to channel restriction, we ensure that E(tid)
identifies the session that an event belongs to.

The final three predicates Unq(·), UnqAt(·, ·), and Non(·) rely on origination, which
thus must be determined by S. This is why we included inputs (in(tid , x), E) and out-
puts (out(tid , u), E) in traces.

12

S, η |= `(m) iff S(η(m)) = (`, E)

S, η |= u(m, v) iff S(η(m)) = (`, E) and E(u) = η(v)

S, η |= v = v′ iff η(v) = η(v′)

S, η |= Preceq(m,n) iff η(m) ≤ η(n)

S, η |= Coll(m,n) iff S(η(m)) = (`m, Em),S(η(n)) = (`n, En) and

Em(tid) = En(tid)

S, η |= Unq(v) iff η(v) uniquely originates in S
S, η |= UnqAt(m, v) iff η(v) uniquely originates at S(η(m))

S, η |= Non(v) iff η(v) does not originate in S

Fig. 7. Formal semantics of GL?(P), when 〈〉;P ; ∅ −→∗ S;Q;φ

Message t originates at S(i) = (p, E) if p = out(tid , u), t v E(u) and for all j < i,
if S(j) = (p′, E ′) with E ′(tid) = E(tid) and p′ = out(tid , u′) or p′ = in(tid , u′) then
t 6v E ′(u′). A message t uniquely originates at S(i) if t originates at S(i) and for all
j 6= i, t does not originate at S(j). Similarly, we say t originates uniquely in S if it
originates at S(i) for some unique i.

5 Compiling Strand Protocols to the Applied π Calculus

The previous two sections described the left and right triangles of Fig. 1. Each triangle
makes sense in isolation: given a security goal and a protocol description, we can choose
to use either formalism to validate that the protocol achieves the goal. However, we
want goals verified in one formalism to hold in the other also. We thus expect to receive
the same answer when evaluating the same protocol in either formalism. This of course
requires a useful notion of sameness for descriptions of protocols in the two formalisms.
However, a syntactic criterion for this would be difficult.

Instead, in this section we will briefly summarize a compiler (written in Prolog) that
translates strand protocols P = 〈ρ1, . . . , ρk〉 to processes P in the applied π calculus.
Details of the compiler can be found in Appendix A. We designed it to correlate the
goal languages GL(P) and GL?(P) smoothly, when P is an output from input P.

We implement labels ` by expressions pos(i, j), and also use each label ` as a one
place role position predicate `(x) in GL?(P). The compiler associates each label used
in the output with a node by constructing an injective functionΛ : Labs(P)→ nodes(P)
where Λ(pos(i, j)) = ρi@j. The action of the function f : GL(P) → GL?(P) on role
position predicates (see Fig. 1) is inverse to Λ. More precisely,

Λ(f(τr(ρi@j))) = ρi@j, (1)

for all roles ρi and nodes ρi@j on it. We have written τr here for the map from role
nodes to role position predicates, which partly determines the function P → GL(P).
Thus, Λ is essentially inverse to f ◦ τr.

13

!new tid . out(c, tid).
pos(2, 1). out(tid , {|[[s]]sk(a)|}apk(b)).

in(tid , x1). letx2 : > = decs(x1, s) in let d : D = x2 in pos(2, 2).0

Fig. 8. Translation of SEP initiator

The compiler also translates each parameter u of ρi, which may be either a name or
a variable, to the same name or variable u in its target output. We use u as a two-place
parameter predicate in GL?(P), where in this case f must satisfy:

f(τp(ρi, u)) = u, (2)

where we write τp for the map from roles ρi and parameters u to parameter predi-
cates in GL(P). The function f is the identity function on protocol-independent vo-
cabulary, so equations 1–2 characterize the translation f . There will also be other
names and variables used in the process output by the compiler, which is why the map
f : GL(P)→ GL?(P) is an embedding in this direction.

For simplicity, our compiler makes an assumption: It is designed to compile pro-
tocols whose roles are disjoint, in the sense that there are no strands that are com-
mon instances of distinct roles. Roles with overlapping instances are used to represent
branching protocols, in which choices are made by principals or determined by the mes-
sages they receive. We have not refined our compiler to emit corresponding if-then-else
expressions in the target π calculus. Throughout the remainder of this paper, we will
assume that each strand-based protocol P has disjoint roles.

Compiler sketch. If the compiler translates the tail nj+1 ⇒ . . . ⇒ nk of role ρi to a
process P , then it prepends some code to P to translate nj ⇒ nj+1 ⇒ . . . ⇒ nk. In
particular, if dmsg(nj) = +t, then it emits a label followed by an output:

pos(i, j) . out (c, t) . P.

If t has a parameter that appears as an ingredient in t for the first time, the compiler
should wrap this parameter in a new-binding.

If dmsg(nj) = −t, then the situation is more complicated. It must emit an input
in (c, x) with a fresh variable x followed by a sequence of let bindings that destructure
the received message. We insert the label pos(i, j) after this destructuring sequence.
This is because its presence in a trace should imply that the expected message structure
was present in the message bound to x. Message components that must equal known
values will be checked, and previously unknown message components will be bound to
fresh variables. When one of these components is represented by a parameter d in −t,
the compiler re-uses d. Thus, parameters in ρi will also appear in its translation.

Having translated the content of a role ρ to a process P0, the compiler wraps this and
emits !new tid . out(c, tid) . P0. The compiler does not rebind tid inside P0, although
it is convenient to use it as the public channel for input and output. As an example, the
initiator role of SEP (left side of Fig. 4) yields the process expression shown in Fig. 8.

14

The first line shows the wrapping; the second line, the label and output for the first
node of the role; the third line, the input, destructuring, and label for the second node,
and the null termination. The tricky part of the compiler is computing the sequence of
destructurings and checks. For this we use a simple flow analysis to determine choices
for the participant’s initial knowledge, followed by a backtracking analysis to explore
the feasible combinations of destructuring input components vs. building known terms
and checking equality with input components. This backtracking made the compiler
convenient to implement in Prolog.

In both the input and the output case, the compiler emits code to add two entries
to the trace for each single node of the source role ρ. Thus, we will correlate a single
transmission node of ρ to a label followed by an output in the target process P . We will
correlate a single reception node of ρ to an input followed by a label (confirming that
destructuring has succeeded) in the target process P .

We codify this in a transition relation on configurations C. We say that a con-
figuration C2 = (S2;PE2;φ2) is an immediate successor of a configuration C1 =
(S1;PE1;φ1) iff C1 −→+ C2 and for some values of the remaining variables, either

S2 = S1.(`, E).(out (c, u), E) or else S2 = S1.(in (c, x), E).(`, E ′).

Semantic correctness criterion. Intuitively, a role ρ and a (replicated) process term
P represent the “same” activity if they can produce corresponding sequences of ob-
servable events. This suggests a kind of local bisimulation between role instances ι and
basic processes P . However, we will correlate nodes on the strand side with pairs on the
process side, whether a label-out pair or a in-label pair. We use the map Λ from labels
back to nodes to define the correspondence.

Now, because basic processes retain only their future events, whereas instances con-
tain both their past and their potential future, we actually correlate ιwith a basic process
and its environment, together with the trace S which retains information about the past.

We begin by defining an auxiliary predicate BΛ0 , parameterized by the function Λ
above, which captures the notion that the instance and the process have the same past.
This predicate uses only the labeled entries in the trace, and ignores the inputs and
outputs that it also contains.

Definition 2. 1. If S is the sequence S = 〈(p1, E1), . . . , (pk, Ek)〉, then let S|̀tid t be
the subsequence of S which contains (pi, Ei) iff pi is a label `i and Ei(tid) = t.

2. Let ι be an instance, and let S be a trace and E an environment. BΛ0 (ι;S, E) holds
iff, letting ι = (ρ, h, σ) and T = S|̀tidE(tid),
(a) E restricts to σ, i.e. dom(σ) ⊆ dom(E), and E(x) = σ(x) for all x ∈ dom(σ);

and
(b) for all j such that 1 ≤ j ≤ h, letting T (j) = (`j , Ej),

dmsg(ι, j) = Ej(dmsg(Λ(`j))). ///

Condition (a) of Item 3 ensures that the parameters common to both formalizations
have been bound in the same way by the two environments. Condition (b) ensures that
if we apply Λ to the label of the jth event and then apply the environment in effect at
that event, we get the same directed message as the jth node of the instance ι. Thus

15

the successive messages sent and received in S that are attributable to tid match the
messages that ι has sent and received so far.

Thus, given Λ, the input and output events in the trace are effectively redundant.
We include them so that the GL? semantics of Section 4 may be defined using only the
intrinsic content of P and its reduction sequences. We would not want the semantics to
be well-defined only for processes in the range of the compiler.

Lemma 2. Let BΛ0 (ι;S, E), T = S|̀tidE(tid), and θ be an order-preserving bijection
between nodes(ι) and events of T . Then for any atomic formula φ with a role position
predicate, or parameter predicate, ι, η |= φ iff S, θ ◦ η |= φ. ///

We next need to describe what it means for an instance and a process to have the
same possible futures. We thus define BΛ1 to be the largest bisimulation that respects
BΛ0 . We use the immediate successor relation on configurations by injecting P, E to the
singleton multiset PE = {P, E}.

Definition 3. Let BΛ1 be the most inclusive relation such that BΛ1 (ι;S, P, E) implies
BΛ0 (ι;S, E), and moreover:

1. for all ι′ such that ι′ is an immediate successor of ι with new node n, there exist
S ′, P ′, E ′, φ, φ′ such that S ′; {P ′, E ′};φ′ is an immediate successor of S; {P, E};φ,
and BΛ1 (ι′;S ′, P ′, E ′).

2. for all S ′, P ′, E ′, φ, φ′, if S ′; {P ′, E ′};φ′ is an immediate successor of S; {P, E};φ,
then there is an immediate successor ι′ of ι and BΛ1 (ι′;S ′, P ′, E ′). ///

We can also lift the BΛ1 relation from an individual instance and basic process to a
relation between a protocol P and a fully replicated process expression. In particular,
we will assume that the roles in P are ordered, so that we can correlate them with parts
of a process expression.

Definition 4. Let σ0 be the empty environment; let [tid 7→ v] be the environment with
domain {tid} and range v; and let S0 = 〈〉 be the empty trace.

Suppose that P = 〈ρ1, . . . , ρk〉, and let P be of the form:

|j∈{1,...,k}!new tid . out(c, tid) . Pj .

Then P represents P via Λ iff, for each j such that 1 ≤ j ≤ k, BΛ1 (ιj , S0, Pj , Ej),
where ιj = (ρj , 0, σ0), and Ej is of the form [tid 7→ v] for some v. ///

The above definition serves as a semantic correctness criterion for a compiler that takes
a strand space protocol P and produces an applied π process P . The next section shows
why this is the case by lifting the local bisimulations to a global bisimulation and
demonstrating that goal satisfaction is preserved when Definition 4 is met.

6 Bisimulation and preserving goals

Correctness: The idea. Λ, as generated by the compiler, and f : GL(P) → GL?(P)
are closely related, as shown in Section 5 (Eqs. 1–2). Hence, the behavioral match

16

between compiler input P and output P carries over to ensure that the goal formulas of
GL(P) are preserved in GL?(P). We will not in fact prove that the compiler is correct—
in the semantic sense of Def. 4—that its output P represents its input P via Λ, although
we believe it. What we do prove is that if P represents P, and the runs of P all achieve
a security goal Γ , then the traces generated by P achieve f(Γ).

The bisimulation. To do so, we demonstrate a weak bisimulation between the strand
space operational semantics and the applied π reduction semantics. The bisimulation
is between run-protocol pairs (R,P) on the one hand and trace-configuration pairs
(S,PE) on the other.

The initial configuration of |1≤j≤k Pj is 〈〉, {(P1, E0), . . . , (Pk, E0)}, ∅, and it evolves
only to configurations S,PE , φ where PE splits into two parts:

{(P1, E0), . . . , (Pk, E0)}] {(BP1, E1), . . . , (BP j , Ej)};

The latter is a multiset of pairs where each BP i is a basic process. That is, the initially
given replicated processes always remain unchanged, and all the additional processes
can correspond to individual strand instances ι. We now formalize this correspondence
via a bijection θ between labeled events and the nodes of these instances.

Definition 5. BΛθ (R,P;S,PE) iff θ is an bijection between nodes(R) and label events
(`, E) of S that preserves the orderings of R such that the following both hold:

1. θ induces a bijection between P-instances ι of R and basic processes P, E of PE
such that BΛ1 (ι;S, P, E).

2. There is a bijection ζ between roles ρ of P and replicated members of PE such that,
for some fresh channel v, letting ι = (ρ, 0, σ0), BΛ1 (ι; S0, ζ(ρ), [tid 7→ v]).

We write BΛ(R,P;S,PE) iff, for some θ, BΛθ (R,P;S,PE). ///

Lemma 3. Suppose BΛ(R,P;S,PE), and let Rout = {msg(m) : m ∈ nodes+(R)}
and Sout = {E(u) : S(i) = (out(tid , u), E) for some i.}. Then Rout ` t iff Sout ` t.

Proof (Sketch.). Being in the BΛ relation ensures that Rout = Sout. ut

Lemma 4. BΛ(R,P;S,PE) is a bisimulation.

Proof. We begin by showing that S,PE simulates R,P. By assumption, there is some
θ that matches the instances ι of R to the unreplicated process environment pairs P, E
of PE so that BΛ1 (ι;S, P, E). Let φ = φ(S) be the environment associated with trace
S. The run R can advance in one of two ways, (a) some current instance is extended to
a successor instance, or (b) some new instance is created from a role of P. In the first
case, since BΛ1 (ι;S, P, E), the configuration S;PE ;φ can evolve similarly if either the
new node in the extended instance is a transmission, or, in case it is a reception −m, if
Sout ` m. But since the run R could only have advanced with a reception if Rout ` m,
Lemma 3 ensures that Sout ` m, as required.

In the second case, we note that we can first silently create a new unreplicated basic
process BPj+1 with environment Ej+1 = [tid 7→ v] for some fresh channel v by per-
forming a SESS reduction. Condition 2 of Def. 5 ensures thatBΛ1 (ι′;S, BPj+1, Ej+1)
where ι′ is the 0-height prefix of the new instance ι. We can thus proceed to argue as in
the first case above. The proof of the reverse simulation is similar. ut

17

Theorem 1. Suppose that |1≤j≤k Pj represents P via Λ, and let θ be the bijection with
empty domain. Then BΛθ (∅,P; 〈〉, {(P1, E0), . . . , (Pk, E0)}).

Proof. Condition 1 of Def. 5 is vacuously satisfied. Since |1≤j≤k Pj represents P via Λ,
Def. 4 applies which ensures Condition 2 holds. ut

Lemma 5. Suppose that BΛθ (R,P;S,PE), where θ : nodes(R) → Labs(S). Let θ̂ ex-
tend θ to MSG also by acting as the identity. Let φ be an atomic formula of GL(P).

1. If R, η |= φ, then S, θ̂ ◦ η |= f(φ).
2. If φ does not contain Preceq, then S, θ̂ ◦ η |= f(φ) implies R, η |= φ.

Proof (Sketch). Lemma 2 takes care of the cases for role position predicates and param-
eter predicates. The bisimulation relation ensures that origination, message equality, and
local session orderings are preserved. Since θ only preserves orders from R to S, we
must exclude Preceq for Condition 2. ut

Theorem 2. If P represents P via Λ and P achieves ∀x̄ . Φ =⇒ Ψ , where only ∨,∧,∃
appear in Φ and Ψ , then P achieves f(∀x̄ . Φ =⇒ Ψ). ///

The converse is false, since the execution model of P is linear, while the runs of P are
partially ordered. In particular, the formula ∀n,m . n � m∨m � n holds of P , but need
not hold of P. However, we conjecture that P achieves a security goal ∀x̄ . Φ =⇒ Ψ ,
where Φ, Ψ use only ∨,∧,∃, if P satisfies f(∀x̄ . Φ =⇒ Ψ) and either

1. � does not appear in Ψ ; or else
2. ∨ does not appear in Ψ .

In the first case, we transport satisfying instances from traces of P back to correspond-
ing runs of P, as in Clause 2. The second appears to be true because if Ψ is ∨-free, its
Preceq-containing atomic formulas are satisfied in all traces of P . Thus, they hold in
all interleavings, whence they must be true in the corresponding partially ordered P run.

7 Conclusion

In this paper, we studied a particular case of the cross-tool security goal problem for
protocol standardization. We showed how to correlate statements in a goal language for
a strand space tool with statements in a related language for applied π. We proved that
if a strand-based protocol achieves a security goal, then related protocols in applied π
achieve the corresponding goal. We conjecture that the converse is true for a large set
of security goals also. We provided a compiler to produce a related applied π protocol.

These technical contributions support the protocol verification framework codified
in ISO/IEC 29128. A goal language that does not depend on the underlying verification
tool allows for greater transparency for published standards: it allows practitioners to
independently verify the same results using the tool of their choice.

We view this paper as a start on a program to which many hands may contribute,
adapting the semantics of different tools to this or a comparable security goal lan-
guage. Although the languages GL(P) express only safety properties, rather than in-
distinguishability properties also, it seems likely that a similar program could equally
apply to indistinguishability properties.

18

References

1. Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication.
In 28th ACM Symposium on Principles of Programming Languages (POPL ’01), pages 104–
115, January 2001.

2. A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. Hankes
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA tool for
the automated validation of internet security protocols and applications. In Kousha Etessami
and Sriram K. Rajamani, editors, CAV, volume 3576 of Lecture Notes in Computer Science,
pages 281–285. Springer, 2005.

3. Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Alberto Calvi,
Alessandro Cappai, Roberto Carbone, Yannick Chevalier, Luca Compagna, Jorge Cuéllar,
Gabriel Erzse, Simone Frau, Marius Minea, Sebastian Mödersheim, David von Oheimb, Gi-
ancarlo Pellegrino, Serena Elisa Ponta, Marco Rocchetto, Michaël Rusinowitch, Moham-
mad Torabi Dashti, Mathieu Turuani, and Luca Viganò. The AVANTSSAR platform for the
automated validation of trust and security of service-oriented architectures. In Tools and
Algorithms for the Construction and Analysis of Systems - 18th International Conference,
TACAS 2012, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, pages 267–
282, 2012.

4. David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction for secu-
rity protocols. In 26th International Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1.4, 2015, pages 497–510, 2015.

5. David A. Basin, Cas J. F. Cremers, Kunihiko Miyazaki, Sasa Radomirovic, and Dai Watan-
abe. Improving the security of cryptographic protocol standards. IEEE Security & Privacy,
13(3):24–31, 2015.

6. Stefano Bistarelli, Iliano Cervesato, Gabriele Lenzini, and Fabio Martinelli. Relating mul-
tiset rewriting and process algebras for security protocol analysis. Journal of Computer
Security, 13(1):3–47, 2005.

7. Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In 14th Computer
Security Foundations Workshop, pages 82–96. IEEE CS Press, June 2001.

8. Bruno Blanchet. Vérification automatique de protocoles cryptographiques: modèle formel et
modèle calculatoire. Automatic verification of security protocols: formal model and compu-
tational model. Mémoire d’habilitation à diriger des recherches, Université Paris-Dauphine,
November 2008.

9. Michael Burrows, Martín Abadi, and Roger Needham. A logic of authentication. Proceed-
ings of the Royal Society, Series A, 426(1871):233–271, December 1989.

10. Iliano Cervesato, Nancy A. Durgin, and Patrick Lincoln. A comparison between strand
spaces and multiset rewriting for security protocol analysis. Journal of Computer Security,
13(2):265–316, 2005.

11. Hubert Comon and Véronique Cortier. Security properties: two agents are sufficient. Science
of Computer Programming, 50(1-3):51–71, March 2004.

12. Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. Bounding the number of agents,
for equivalence too. In Principles of Security and Trust - 5th International Conference, POST
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pages 211–232,
2016.

13. Veronique Cortier and Steve Kremer, editors. Formal Models and Techniques for Analyzing
Security Protocols. Cryptology and Information Security Series. IOS Press, 2011.

19

14. Federico Crazzolara and Glynn Winskel. Events in security protocols. In CCS 2001, Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security, Philadel-
phia, Pennsylvania, USA, November 6-8, 2001., pages 96–105, 2001.

15. Cas Cremers and Sjouke Mauw. Operational semantics and verification of security proto-
cols. Springer, 2012.

16. Cas J. F. Cremers. Key exchange in ipsec revisited: Formal analysis of ikev1 and ikev2. In
Computer Security - ESORICS 2011 - 16th European Symposium on Research in Computer
Security, Leuven, Belgium, September 12-14, 2011. Proceedings, pages 315–334, 2011.

17. Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol composition logic
(PCL). Electr. Notes Theor. Comput. Sci., 172:311–358, 2007.

18. Joseph A. Goguen and José Meseguer. Order-sorted algebra I: equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer
Science, 105(2):217–273, 1992.

19. Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security, 12(3/4):435âĂŞ–484, 2004.

20. J.F. Groote and M.R. Mousavi. Modeling and analysis of communicating systems. MIT
Press, Cambridge, MA, 2014.

21. Joshua D. Guttman. Establishing and preserving protocol security goals. Journal of Com-
puter Security, 22(2):201–267, 2014.

22. ISO/IEC. Information Technology - Security techniques — Verification of Cryptographic
Protocols, 2011.

23. Shin’ichiro Matsuo, Kunihiko Miyazaki, Akira Otsuka, and David A. Basin. How to eval-
uate the security of real-life cryptographic protocols? - the cases of ISO/IEC 29128 and
CRYPTREC. In Financial Cryptography and Data Security, FC 2010 Workshops, RLCPS,
WECSR, and WLC 2010, Tenerife, Canary Islands, Spain, January 25-28, 2010, Revised
Selected Papers, pages 182–194, 2010.

24. C. Meadows. The NRL protocol analyzer: An overview. The Journal of Logic Programming,
26(2):113–131, 1996.

25. Catherine Meadows. Analysis of the Internet Key Exchange protocol using the NRL protocol
analyzer. In Proceedings, 1999 IEEE Symposium on Security and Privacy. IEEE CS Press,
May 1999.

26. Dale Miller. Encryption as an abstract data type. Electr. Notes Theor. Comput. Sci., 84:18–29,
2003.

27. John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol shapes analyzer,
2009. http://hackage.haskell.org/package/cpsa.

28. Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measuring protocol strength with
security goals. International Journal of Information Security, Accepted: Forthcoming.

29. Thomas Y. C. Woo and Simon S. Lam. A lesson on authentication protocol design. Operating
Systems Review, pages 24–37, 1994.

A Appendix

A.1 Equivalence of two strand space semantics

The new operational semantics presented in Section 3 is only inessentially different
from the usual strand space semantics in terms of realized skeletons. In order to demon-
strate this, we now present the usual notion of execution for strand spaces, and demon-
strate the equivalence of the two semantics.

20

http://hackage.haskell.org/package/cpsa

Skeletons. A skeleton A for P is a structure that provides partial information about a
set of executions of P. It consists of (i) a finite sequence of regular strands (or equiva-
lently, instances) of P; (ii) a partial ordering �A on the nodes of A extending the strand
succession orderings; and (iii) two sets of terms uniqueA and nonA representing terms
that may originate on at most one node and terms that must not originate respectively.
We assume that A inherits the origination assumptions from the roles of the protocol in
that the set uniqueA ⊇ σ(rlunique(ρ, i)) for every instance ι = (ρ, h, σ) of A and every
i ≤ h.

A skeleton A is realized iff, for every reception node n ∈ nodes−(A), msg(n) is
derivable from previously transmitted messages and guessable values. More formally,
T ∪ (B \ X) ` msg(n) where T = {msg(m) | m ∈ nodes+(A) ∧ m ≺A n}, B is
the set of basic values, and X = uniqueA ∪ nonA is the set of all non-guessable basic
values.

We can correlate the realized skeletons of any protocol P (that excluded blab roles)
with the P′-accessible runs, where P′ = P ∪ {blabs}. The idea is to add blab nodes for
all the basic values the adversary is allowed to guess. More formally, let

BA = {b | ∃n ∈ nodes(A) . b is a subterm of msg(n) ∧ b is a basic value}

and let B′ be a set of blab nodes, one for each element of BA \ (uniqueA ∪ nonA). We
say that a realized skeleton A and a run R are related iff nodes(R) = nodes(A) ∪ B′,
and �A=�R ∩(nodes(A)× nodes(A)).

Lemma 6. Let P′ = P ∪ {blabs}. Every realized P-skeleton A has a related P′ run R.
Every P′ run R has a related realized P-skeleton A. ///

Lemma 7. Let P′ = P ∪ {blabs}, and let A be a realized P-skeleton, and R a related
P′ run. Then for any atomic formula φ and any variable assignment η of variables to
nodes and terms in A, A, η |= φ iff R, η |= φ. ///

Lemma 7 in fact lifts to goal formulas Γ as a natural corollary. The set of goals
achieved by P′ is essentially the same as that achieved by P. In particular, any goal Γ
true of a skeleton A is also true of some related run R. Similarly, as long as the Γ does
not express anything explicitly about the blab nodes, if the formula is true ofR it is also
true of A. It is therefore no danger to use the operational semantics of runs instead of
the skeleton semantics when forming a connection to the applied π semantics.

A.2 Remaining Reduction Rules

The reduction rules omitted in Section 4 are gathered in Fig. 9. As usual, we assume
that !P is structurally equivalent to P | !P .

A.3 Compilation

In this section we describe our translation of a strand space role into a labeled applied
π-calculus process term.

21

E ′ = E [n 7→ n′] with n′ fresh fromN ν
s

NEW
S; (new n : s.P, E)] PE ;φ −→ S; (P, E ′)] PE ;φ

E ′ = E [n 7→ n′] with n′ ∈ N 0
s

SUM
S; (sum n : s.P, E)] PE ;φ −→ S; (P, E ′)] PE ;φ

E ′ = E [x 7→ v↓] with v↓: s ∈MΣ
LET

S; (let x : s = v in P else Q, E)] PE ;φ −→ S; (P, E ′)] PE ;φ

v↓6∈ MΣ or ¬v↓: s
LET-FAILS; (let x : s = v in P else Q, E)] PE ;φ −→ S; (Q, E)] PE ;φ

NULLS; (0, E)] PE ;φ −→ S;PE ;φ

PARS; (P | Q, E)] PE ;φ −→ S; (P, E)] (Q, E)] PE ;φ

Fig. 9. Remaining reduction rules

At a high level, the translation takes a transmission event +m to out(tid ,m), and it
takes a reception event −m to in(tid , z).P where P is a sequence of let bindings that
attempt to parse the received term according to the structure of the expected term. The
complexity of the latter translation is due to the use of pattern matching for receptions
in strand spaces that is absent in processes. If we are to preserve the semantics of the
goal language under this translation to the process calculus, we must ensure that re-
ceptions based on pattern matching succeed on a given message m if and only if the
corresponding sequence of let bindings succeeds on the same message. This requires
some care.

One issue is that there may be several sequences that can be used to verify the
structure of a message. Since the parsing process binds some values and requires others
already to be bound, some sequences are sensible with respect to some initial input and
others are not.

We start with a strand space trace (a sequence of events) constructed from message
terms derived from the order-sort signature in Fig. 10. We compute the relation between
a strand space trace and a process calculus term two steps.

1. Perform a flow analysis to find a set of input basic values (See Fig. 11).
2. Translate the trace into a process calculus expression relative to a given set of inputs

(See Fig. 14).

The algorithm has been simplified by ignoring role unique origination assumptions,
but their processing is sketched near the end of this appendix. Most of the algorithm
described here has been implemented in Prolog. The Prolog implementation operates
on a many-sorted algebra isomorphic to the order-sorted algebra as described in [18,
Sec. 4]. We leave that translation implicit in this document.

22

Sorts: >, D, S, A, N
Subsorts: D < >, S < >, A < >, N < >
Operations: (·, ·) : >×> → > Pairing

{| · |}(·) : >× S→ > Symmetric encryption
{| · |}(·) : >× A→ > Asymmetric encryption
(·)−1 : A→ A Asymmetric key inverse
pk : N→ A Public key for name

Equation: (x−1)−1 = x for x : A

Fig. 10. Simple Crypto Algebra Signature

The signature in Fig. 10 is a simplification of the one used by CPSA. The Simple
Example Protocol initiator role using this signature is:

init(a, b : N, s : S, d : D) = [+{|{|s|}pk(a)−1 |}pk(b),−{|d|}s]. (3)

A.4 Flow Analysis

∅, ∅, C � I, A

C � I

I, A, [] � I, A

I1, A1,M �+ I2, A2 I2, A2, C � I3, A3

I1, A1,+M :: C � I3, A3

I1, A1,M �− I2, A2 I2, A2, C � I3, A3

I1, A1,−M :: C � I3, A3

Fig. 11. Flow Analysis

The aim of the flow analysis C � I (see Fig. 12) is to find a set of basic values that
allow a procedural interpretation of a trace, in particular, a procedural interpretation of
the implied pattern matching that is part of a strand space reception event.

There are two ways to interpret the reception of a pair, either the left part is matched
first or the right part. A decryption key might or might not become available based on
this choice.

There are two ways to interpret the reception of an encryption. If its decryption key
in known at the point of the match, the contents of the encryption can be extracted.
Alternatively, if the encryption has been seen previously or can be constructed, then an
equality check implements the match.

Fig. 13 explores the various possibilities. The flow analysis for the initiator trace is:

I = {{pk(b), pk(a)−1, s}, {d, pk(b), pk(a)−1, s}}, (4)

23

M ∈ A
I,A,M �+ I, A

I1, A1,M �+ I2, A2 I2, A2, N �+ I3, A3

I1, A1, 〈M,N〉�+ I3, A3

I1, A1,M �+ I2, A2 I2, A2, N �+ I3, A3

I1, A1, {|M |}N �+ I3, A3
[N : S or N : A]

M is a basic value and not in A
I,A,M �+ {M} ∪ I, {M} ∪A

Fig. 12. Send Flow Analysis

I1, A1,M �− I2, A2 I2, A2, N �− I3, A3

I1, A1, 〈M,N〉�− I3, A3

I1, A1, N �− I2, A2 I2, A2,M �− I3, A3

I1, A1, 〈M,N〉�− I3, A3

I1, {{|M |}N} ∪A1, N �+ I2, A2 I2, A2,M �− I3, A3

I1, A1, {|M |}N �− I3, A3
[N : S or N : A]

I1, A1, {|M |}N �+ I2, A2

I1, A1, {|M |}N �− I2, A2

M is a basic value
I, A,M �− I, {M} ∪A

Fig. 13. Receive Flow Analysis

24

where b, a : N, s : S, and d : D. Notice the second solution makes little sense. It
assumes that the initiator’s initial knowledge includes d, the data it is seeking from a
responder. We rely on human intervention to choose sensible sets of input terms.

A.5 Code Generation

[], E1, N, `� 0, E2

T1, E1 �+ T2 C,E1, N, `
′ � P,E2

+T1 :: C,E1, N1, `� pos(N, `). out(c, T2).P, E2
[`′ := `+ 1]

x, T, pos(N, `).P1, E1 �− P2, E2 C,E2, N, `
′ � P1, E3

−T :: C,E1, N, `� in(c, x).P2, E3
[x : > fresh, `′ := `+ 1]

Fig. 14. Code Generation

Code generation has the form C,E1, N, ` � P,E2, where C is a strand space
trace, E1 and E2 are maps from strand space terms to process calculus terms, N, ` are a
natural numbers, and P is a process calculus term in a language that has been extended
with one new production:

P ::= pos(N1, N2).P | . . .

where N1 and N2 are a natural numbers. The form pos(N, `) asserts we are translating
the `th send or receive in the trace of the N th role of the protocol.

An analysis begins with an environment E0 mapping each input term computed by
the flow analysis to itself. To compute the process calculus term P for a given strand
space trace C and role number N , find P such that C,E0, N, 1� P,E2 (See Fig. 14).

(T, x) ∈ E
T,E �+ x

T1, E �+ x1 T2, E �+ x2
〈T1, T2〉, E �+ 〈x1, x2〉

T1, E �+ x1 T2, E �+ x2
{|T1|}T2 , E �+ {|x1|}x2

[T2 : S or T2 : A]

Fig. 15. Send Code Generation

To handle role unique origination assumptions, the send code generator in Fig. 15
must prefix the code with a new form for each name that uniquely originates in the
transmitted message.

25

(T, y) ∈ E
x, T, P,E �− let ok = eq(x, y) inP,E

y, T1, P1, E1 �− P2, E2 z, T2, P2, E2 �− P3, E3

x, 〈T1, T2〉, P1, E1 � let〈y, z〉 = x inP3, E3
[y, z : > fresh]

z, T2, P1, E1 �− P2, E2 y, T1, P2, E2 �− P3, E3

x, 〈T1, T2〉, P1, E1 � let〈y, z〉 = x inP3, E3
[y, z : > fresh]

(T2, y) ∈ E1 z, T1, P1, {({|T1|}T2 , x)} ∪ E1 � P2, E1

x, {|T1|}T2 , P1, E1 � let z = dec(x, y) inP2, E2
[z : > fresh, T2 : S]

E ` {|T1|}T2

x, {|T1|}T2 , P, E � let ok = eq(x, {|T1|}T2) inP, {({|T1|}T2 , x)} ∪ E
Analogous cases for asymmetric encryption omitted.

T : s is a variable
x, T, P,E � let T : s = x inP, {(T, T)} ∪ E

Fig. 16. Receive Code Generation

(T, x) ∈ E
E ` T

E ` T1 E ` T2

E ` 〈T1, T2〉

E ` T1 E ` T2

E ` {|T1|}T2

Fig. 17. Term Synthesis

26

A.6 Translation Relation

The relation comp(N,C, P) relates a role number and the role’s strand space trace with
a process calculus term if

1. C � I ,
2. E0 is an environment generated from I , and
3. C,E0, N, 1� P,E2.

Note that a translation is interesting only if I induces a sensible interpretation of C.

Blanchet Initiator Example. Assume the initiator is the second role in the protocol.
The initiator trace C is defined in Eq. 3. The initial environment generated from the first
input set in Eq. 4 is:

E0 = {(pk(b), pk(b)), (pk(a)−1, pk(a)−1), (s, s)},

where b, a : N and s : S.
The process term P that satisfies C,E0, 2, 1� P,E2, is:

pos(2, 1).
out(c, {|{|s|}pk(a)−1 |}pk(b)).
in(c, x1).
letx2 : > = dec(x1, s) in
let d : D = x2 in
pos(2, 2). 0

Blanchet Responder Example. Assume the responder is the first role in the protocol.
The responder trace is the one in Eq. 3 after interchanging sends and receives. A sensible
set of input basic values is {d, pk(a), pk(b)−1}. After inserting the new form by hand,
the process term is:

in(c, x1).
letx2 : > = dec(x1, pk(b)−1) in
letx3 : > = dec(x2, pk(a)) in
let s : S = x3 in
pos(1, 1).
new d : D.
pos(1, 2).
out(c, {|d|}s). 0

27

	Cross-Tool Semantics for Protocol Security Goals

