
Automated Adversary Emulation: A Case for Planning and Acting with
Unknowns

Doug Miller, Ron Alford, Andy Applebaum, Henry Foster, Caleb Little, and Blake Strom
The MITRE Corporation

7515 Colshire Drive
McLean, Virginia 22102

{dpmiller, ralford, aapplebaum, hfoster, clittle, bstrom}@mitre.org

Abstract
Adversary emulation assessments offer defenders the
ability to view their networks from the point of view of
an adversary. Because these assessments are time con
suming, there has been recent interest in the automated
planning community on using planning to create solu
tions for an automated adversary to follow. We devi
ate from existing research, and instead argue that auto
mated adversary emulation – as well as automated pene
tration testing – should be treated as both a planning and
an acting problem. Our argument hinges on the fact that
adversaries typically have to manage unbounded un
certainty during assessments, which many of the prior
techniques do not consider. To illustrate this, we pro
vide examples and a formalism of the problem, and dis
cuss shortcomings in existing planning modeling lan
guages when representing this domain. Additionally,
we describe our experiences developing solutions to this
problem, including our own custom representation and
algorithms. Our work helps characterize the nature of
problems in this space, and lays important groundwork
for future research.

-

-
-
-
-

-

-
-
-

Introduction
To best understand the security of their systems, network

defenders often use offensive testing techniques and assess
ments. These types of assessments come in many forms,
ranging from penetration tests – where a team of “white
hats” probe the network to identify weaknesses and vulner
abilities – to full-scale red team or even adversary emula
tion exercises, wherein a team fully emulates an adversary,
beginning with reconnaissance, tool and infrastructure de
velopment, and initial compromise, and only ending when
they reach the specified adversary’s goals. As opposed to
pure defensive analysis, offensive testing can provide con
crete measures of the security of a network by illustrating
real attack paths that an adversary could take.

-

-
-

-

-

While offensive testing has clear benefits for defenders,
it can be difficult for them to actually employ: these tests
can be increasingly costly, time-consuming, and personnel
constrained. In lieu of easy-to-access offensive testing, an
emerging trend in the security community is to launch au
tomated offensive assessments. Tools in this space range

-

in capability, from those that focus on technique execution
(Smith, Casey 2017) to those that seek to fully emulate an
adversary by engaging the full post-compromise adversary
life-cycle (Applebaum et al. 2016).

Similarly, the automated planning community has re
cently taken an interest in security assessments and tests.
(Bozic and Wotawa 2017) identify the natural application
of automated planning to security: attacks are typically de
scribed as a sequence of steps that ultimately achieve a goal,
similar in many ways to a plan. They argue that by using
automated planning, we can construct tests that we can run
against our systems that can identify weaknesses; the au
thors specifically identify how planning can be used to as
sess web applications (e.g., SQL injection) as well as the
SSL/TLS protocol. Other recent applications include using
automated planning and plan recognition to identify larger
attack paths (Amos-Binks et al. 2017) as well as vulnerabil
ity assessment (Khan and Parkinson 2017).

-

-

-
-

-

More specific to offensive testing is the line of work dedi
cated towards using automated planning specifically for pen
etration tests. Obes, Sarraute, and Richarte (2010) present
a model that leverages a deterministic planner alongside a
domain description of exploits and connectivity to diagram
paths that adversaries could take. Followup work in Sar
raute, Buffet, and Hoffmann (2012) expands the model by
adding in uncertainty – leaving the core security domain the
same – and now using a Partially Observable Markov De
cision Process (POMDP) to solve the problem. Shmaryahu
et al. (2017) would later acknowledge this POMDP model’s
success and accuracy, but note its shortcomings – mainly
in time-to-compute – as a motivation for using partially ob
servable contingent planning, an approach they argue lies
between that of full-knowledge classical planning and multi-
belief POMDPs.

-
-

-

-

-

Recognizing the wide array of work on automated plan
ning for penetration testing, Hoffman (2015) offers a survey
of the literature where he identifies the two main dimensions
of existing research: how the approach handles uncertainty
from the point of view of the adversary, and how the at
tack components interact with each other. Hoffman similarly
enumerates eight key assumptions, and surveys the literature
mapping each to its appropriate assumptions as well as how
the approach maps to the two dimensions he identifies.

-

-

Despite all of the work dedicated to using automated plan-
Copyright
c 2018, The MITRE Corporation. All rights reserved.
Approved for public release. Distribution unlimited 18-0944-1.

○c

mailto:@mitre.org

ning for penetration testing, little has been done to investi
gate how the planning portion of the problem relates back to
the acting portion for the problem – most of the approaches
assume that the plan will be generated before execution, with
the “acting” portion merely following the plan’s script. As
per Ghallab, Nau, and Traverso (2014), this problem space
is not unique in only considering the planning portion of the
problem, but for the solutions that have been developed to
be commonly deployed, we believe that the field must start
embracing acting as part of its paradigm.

-

Contribution In this paper, we argue that automated ad
versary emulation – and its cousin, automated penetration
testing – is not strictly a planning problem, but rather a joint
planning and acting problem. Our argument hinges on a
unique characterization of the uncertainty that adversaries
face when targeting a network – specifically, that real adver
saries work in the face of unbounded uncertainty, wherein
they are unable to enumerate the outcomes of a sensing ac
tion without actually executing it. This makes it all-but-
impossible to create an a-priori plan or policy to account for
all states, and, accordingly, adversaries that target systems in
the wild tend to interleave planning and acting concurrently.

-

-

-

Our views in this paper are influenced heavily by our
prior research in (Applebaum et al. 2016) and (Applebaum
et al. 2017), as well as our implementation and testing of
the CALDERA automated adversary emulation system1. As
part of this body of work, we consider the task of adver
sary emulation as opposed to the traditional penetration test
ing, and in doing so, the specific techniques we consider
in this paper are much more varied than those in the litera
ture which focus exclusively on vulnerabilities and exploits.
This paper expands on how the adversary emulation problem
should be modeled and describes the integrated planning and
acting techniques that we have developed to facilitate auto
mated adversary emulation.

-
-

-

-

Building Automated Adversary Emulation
The goal of automated adversary emulation is to provide

defenders with a tool that is able to execute a full-scale as
sessment of their network, operating in a way that is sim
ilar to a real adversary. Such a tool has significant utility
for defenders, including providing a baseline for what their
network looks like to an adversary, generating training data,
identifying weaknesses and/or misconfigurations, and test
ing in-place security measures and tools, all the while pro
viding useful empirical evidence for a defensive blue team
to build upon. We contrast this with a tool that, for example,
only identifies attack paths without executing them: such a
tool can provide a map of what the network looks like, but
typically will fail to achieve other use cases as it abstracts
away important, hard-to-measure details and lacks the real
ism of actual execution. Specific goals driving automated
adversary emulation include:

-
-

-
-

-

1. Intelligent. The system should choose and chain actions
in ways similar to how an adversary would.

2. Low Overhead. Defenders should be able to use the tool
without needing explicit configuration details, as these are
not only time consuming to collect, but are almost impos
sible for defenders to fully track.

-

3. Realism. The system should execute the same techniques
that a real adversary would, and, like a real adversary,
should start at initial compromise and only end after
achieving (or failing to achieve) a specific set of goals.

4. Modular. Users of the system should be able to run as
sessments with techniques of their choosing, as well as
have the ability to add new techniques.

-

Adversary Model In the context of this paper, we use
the MITRE ATT&CK framework2 as our adversary model,
specifically focusing on post-compromise techniques – i.e.,
those used after an adversary has breached a network – that
target enterprise systems. ATT&CK provides added insight
into the adversary’s lifecycle by decomposing it into the
top-level tactical goals that adversaries try to achieve and
the techniques that adversaries use to achieve those goals.
ATT&CK is unlike other threat models in that it was built by
analyzing publicly available threat reports – each technique
in ATT&CK is grounded in that it has either been used ac
tively by real advanced persistent threats, or that it is com
mon knowledge for red teamers. Moreover, whereas other
threat models tend to overly focus on vulnerabilities and ex
ploits, ATT&CK describes behaviors commonly employed
by real adversaries, which increasingly involve re-using be
nign, normal functionality (e.g., built-in system tools) to
achieve malicious effects. These features position ATT&CK
well within the context of our goals.

-
-

-

-

Characterizing Uncertainty in Automated
Adversary Emulation

Cyber intrusions can be broken down into a series of con
stituent actions executed by the adversary. These actions
typically fit into two buckets: actions that expand the adver
sary’s foothold, and actions that expand on what the adver
sary knows. Depending on the circumstances, some actions
can span both categories by expanding on the adversary’s
foothold while also providing new knowledge. To illustrate
this, below we describe three common actions – taken from
the ATT&CK framework – that adversaries typically execute
during engagements.

-

-
-

Exploiting a Vulnerability When most people think of
cyber attacks, they think of zero-days and exploits used
against vulnerable software. With this technique, the ad
versary expands its foothold by exploiting a vulnerability –
i.e., a buffer overflow, remote code inclusion, SQL injection,
etc. – on a target system in order to gain access or achieve
a malicious effect. Adversaries can have a variety of end
goals when using this technique, though common ones in
clude exploiting a remote system for lateral movement and
exploiting a local kernel vulnerability for privilege escala
tion. To successfully launch this technique, an adversary

-

-

-

1https://github.com/mitre/caldera 2attack.mitre.org

https://attack.mitre.org
https://github.com/mitre/caldera

need only have access to the knowledge the vulnerability ex
ists, the right exploit code, and know that the vulnerability is
present on the target. This technique expands the adversary’s
foothold and is an action the adversary takes to acquire new
access which can be a new system or level of privilege.

-

Remote System Discovery In order for an adversary to
operate against a network, they need to know exactly what
systems are on that network. Consider the case for an adver
sary who just successfully phished an employee within an
enterprise; after enumerating the details of the compromised
host, they would likely try to seek out another host within
the internal network so that they can enlarge their foothold.
Before expanding laterally, the adversary would need to dis
cover the remote systems first. Depending on the platform,
there are many ways to achieve this (e.g., ping) – in Win
dows enterprise systems, the common way is running the
net view command, which will return a list of all hosts in
the local domain. This technique is an example of a knowl-
edge gaining technique.

-

-

-

Credential Dumping Credential dumping is a favorite for
red teamers and real adversaries targeting enterprise sys
tems. To run this technique, an adversary only needs ele
vated (i.e., SYSTEM) access on a target host. After running
it, the technique will extract all cached domain credentials
(i.e., passwords and/or hashed passwords) from the running
host; cached credentials include all of the credentials of the
accounts of users that have logged on since the last reboot.
Extracted credentials can be useful later for the adversary
as they laterally move through the network, using the stolen
credentials to access capabilities they would not otherwise
be able to access. This technique both gains new knowledge
(e.g., what accounts exist) as well as expands the adversary’s
territory (i.e., by gaining access to credentials).

-
-

Central to each three of these actions is the concept of un-
certainty. While not covered here, we note that some actions
can also create new domain objects (for example, remotely
copying a file from a compromised host to an uncompro
mised host as a means for lateral movement). This can pose
an interesting problem for planning, as many representations
do not allow for the creation of new domain objects.

-

Managing Uncertainty
Uncertainty factors into each of these techniques in vastly

different ways. Consider the first technique, exploiting a
vulnerability. In executing this technique, we can charac
terize two main sources of uncertainty:

-

• Is the target susceptible to this exploit?

• Was the exploit technique executed successfully?

Both of these questions are enumerable: each is a simple
yes or no question, making it easy to construct contingency
plans that branch over all scenarios. Additionally, these out
comes are sensible, in that we can execute other techniques
that e.g. check to see if a target is susceptible to an exploit
or determine if an exploit ran successfully. Indeed, the ap
proach in (Shmaryahu et al. 2017) explicitly models sensing
actions for both. After successfully executing this technique,

-

-

the adversary will have a new foothold (in the case of lateral
movement) or have elevated privileges on an already com
promised host (in the case of privilege escalation).

-

The uncertainty when dumping credentials, however, is
different. Unlike exploiting a vulnerability, the uncertainty
in dumping credentials is specifically in the technique out
put. When dumping credentials, we know that the adversary
will obtain all cached credentials, but in practice the adver
sary will rarely have any apriori knowledge of what these
cached credentials are. This makes it much harder to encode
than exploiting a vulnerability, as the adversary may get:

-

-

• no credentials;

• credentials for accounts it has never heard of;

• credentials that it can not currently use; or

• credentials that it can immediately use.

In fact, these outcomes tend to occur together: the adversary
will likely obtain credentials for accounts it has not heard
of while also obtaining credentials for accounts that it has
heard of. Enumerating each of these states is possible at the
abstract level, but this approach decouples the action from
the grounded solution – i.e., references to the objects in the
environment, such as John’s account or Pete’s workstation –
making it hard to link the consequences of dumping creden
tials to enabling actions in the future, and further making it
difficult to do goal-based planning to achieve real objectives.

-

At a more abstract level, adversaries tend to execute tech
niques that deal with unbounded uncertainty when targeting
systems; while some of the uncertainty can be characterized,
the uncertainty is typically hard to qualify in a way that can
be explicitly bound without losing too much precision. We
contrast this description with bound uncertainty. To under
stand the distinction, consider an action that scans a target
for running services to discover exploits. We might consider
such an action as being able to identify vulnerability 1, vul
nerability 2, ..., etc., where the quantity of vulnerabilities is
a known, finite amount that reflects the adversary’s toolkit.
Scanning for vulnerabilities, then, is a mapping from the un
known state into one where zero or more vulnerabilities –
that have already been enumerated beforehand – are known.
By contrast, dumping credentials can result in any number
of real accounts being discovered, and while each individual
account may have some sort of mapping, it is hard for the
adversary to explicitly bound the uncertainty, as it does not
know the accounts that it does not know.

-

-

-

-

This kind of scenario is commonplace, and while adver
saries will target networks with specific goals in mind, they
will often bring about those goals in non-specific ways. Ad
versaries typically approach networks with a mental play-
book – based on their goals, experience, and results – spec
ifying how they should generally behave, describing their
tactical goals as well as the constituent actions they should
use throughout the intrusion. How these actions are ordered
is left to the adversary to determine at run-time: because of
the extreme uncertainty that adversaries have when operat
ing against networks, conformant or contingent plans are too
difficult for an adversary to construct when operating in a
network. Nonetheless, as we seek to automate the adversary

-

-

-

-

emulation process, it is critical that we attempt to provide as
much detail – and intelligence – that we can in order to have
the most accurate results.

Formal Problem Description

We define our planning problem in two stages: first, the
large, agent-agnostic description of the problem, and the
smaller adversary-oriented view of what the problem looks
like. For the former, we define the general description of
the problem as a quadruple: π = hP, A, I, Gi, where P is
a set of propositions, A a set of actions, I ⊂ P the starting
state (i.e., a set of propositions), and G ⊂ P the goal propo
sitions. For every proposition p ∈ P , p can be assigned a
truth value of either true or false. Each action a ∈ A is a
double, {prea, posta}, where prea is the set of propositions
that must be true to execute action a (i.e, the preconditions),
and posta is the set of propositions that will be true after
executing a. In our model, we assume that the truth of P is
static – i.e., a proposition p’s truth value remains the same
unless changed by the adversary.

-

A solution to π is a sequence of actions S =
{a1, a2, ..., an} such that, when started from I, executing
the actions of S in sequence would result in the propositions
in G all being true (or false, if specified as such). We refer to
this as an conformant solution.

In our scenario, a conformant solution to π is unrealistic
due to the adversary’s uncertainty: because the agent has
unbounded uncertainty, it is unlikely for our adversary to be
able to construct an explicit solution before acting. Thus,
we redefine our problem as follows: let πi be a tuple πi =
hFi, A, I, Gi, where Fi ⊆ P is the set of propositions that
the adversary knows exist at time i, regardless of whether the
adversary knows their truth value. At first glance, it might
seem that if a proposition p ∈ Fi, then the adversary knows
the truth value of p, however this is not always the case.
As an example, an adversary may dump credentials and find
that joe is a user account. Because joe is a user account, the
adversary can infer that joe may be a domain admin – i.e.,
domain(joe) ∈ Fi – but while the adversary can infer this
proposition exists, it does not know if it is true.

The differentiator between π and πi is in the space of
propositions – an actor working with π has a fully enu
merated proposition space, while an actor working with πi
knows that the proposition space is only a subset of what
truly exists. Because of this, solving πi is different than
solving π in that the former necessitates acting: the agent
must perform discovery actions to identify unknown propo
sitions, with planning beyond this point particularly diffi
cult. We can contrast that with an agent working with π
who knows that there are no new propositions to be gained
during an operation, and thus can plan for all contingencies.
Under this formalism, then, the adversary emulation prob
lem should not be treated as a strict planning problem, but
rather as a selection problem, where the agent seeks to find
the best action now, to maximize its chances of achieving G
in the future.

-

-
-

-

Representing Planning Problems for
Adversary Emulation

The formalism of πi in the previous section calls for the
representation of a set of propositions to denote the cyber
domain, but is agnostic as to the particular language that
represents the propositions. At first glance, this may seem to
be a relatively unimportant detail, but our experiments have
shown that this situation mandates nuance when represented
as a planning problem. Generally, we have observed the fol
lowing guidelines when tackling this problem:

-

Object-oriented description. Our representations allow
us to reason about the objects (i.e., hosts, users, accounts,
etc.) typically found in networks in contrast to e.g. state
based approaches. This approach offers many benefits, and
is particularly relevant as objects in the cyber domain are
well-structured; for example, networks are typically com
prised of multiple hosts, each of which have standard
ized fields such as fully qualified domain name, user ac
counts that are administrators, operating system, etc. More
abstractly, this guideline lends itself well towards object
oriented planning (Katz, Moshkovich, and Karpas 2016).

-

-
-
-

-

Parameterized actions. We tend to refer to our action
space as a set of ungrounded, parameterized actions; collo
quially, we might traditionally refer to these as techniques.
This, in large part, is due to the uncertainty problem men
tioned before: suppose we have a technique of dumping
credentials from a host. In a traditional representation, we
would have n instances of this action represented in A,
where n is the number of hosts in the network; i.e., dump
ing credentials on host 1 is an action, dumping credentials
on host 2 is an action, etc. However, because the adversary
does not know all of the hosts on the network, it might only
have access to a subset of A alongside the ungrounded, pa
rameterized version of the action.

-

-

-

-

Deterministic action outcome. Executing an action will
always result in the same outcome in the same environment.
This has likewise been acknowledged in the POMDP ap
proach (Sarraute, Buffet, and Hoffmann 2012), where un
certainty is instead modeled in the adversary’s belief space
of what the current state is (which indeed more accurately
represents what penetration testers do in practice). Alterna
tive approaches, such as the one in (Durkota 2014), abstract
this uncertainty instead into the action’s outcome.

-
-

-

Monotonic action consequences. Our representations are
all delete-free. This assumption appears to be consistent
with the literature – no representations that we have seen
explicitly model deletes – although we note that the solution
techniques such as using POMDPs (Sarraute, Buffet, and
Hoffmann 2012) or contingency planning (Shmaryahu et al.
2017) are robust enough to handle deletes if the model does
include them.

Early Work in K
Our first attempt (Applebaum et al. 2016), (Applebaum et

al. 2017) at modeling this problem was to use a representa-
tion encoded in the K (Eiter et al. 2000) planning language,

Figure 1: Example encoding of an enterprise system. Each box
represents an individual workstation with edges representing al
lowed traffic flows. The name of the workstation is on the first
line within each box, with authorized remote logins in black and
local administrators in blue. Active logins are denoted by italics.
The red box around 1pers signifies the adversary’s foothold there.

-

which we could solve using the DLVK3 planning system. We
initially chose K as the implementation language due to its
ability to express uncertainty, our familiarity in Datalog, the
ability to encode inferences and axioms, and the availabil
ity of the DLVK solver, which itself gave us a fair degree of
flexibility during use.

-

The initial data model that we constructed was simple:
it only contained two types of objects, accounts and hosts.
Our fluents described both the state of the network – includ
ing hosts that were connected and which accounts could log
in where – as well as the state of the adversary. This in
troduced our first challenge, in that we could have a fluent
which described the state of the world, and then we would
need a corresponding fluent to denote when the adversary
was aware of that state. As an example:

-

-

connected(X, Y) requires host(X), host(Y).
knowsConnected(X, Y) requires host(X), host(Y).

Above, the first first predicate connected(X, Y) de
notes that two hosts in the model can communicate over the
network and the second adds it to the adversary’s knowledge
base. To discover these connections, the adversary has ac
cess to a simple action:

-

-

executable enumerateHost(X) if hasFoothold(X),

escalated(X), not hostEnumerated(X).
caused knowsConnected(X, Y) if connected(X, Y)

after enumerateHost(X).
caused hostEnumerated(X) after enumerateHost(X).

In words, for the adversary to execute the
enumerateHost action, it must have an escalated
foothold (i.e., executing under root or SYSTEM) on a host
and have not previously enumerated it. After execution, it
will know all valid connections to or from that host.

Using this problem encoding, we were able to construct
plans over our model for the adversary to achieve arbitrary
goals. As an example walkthrough, consider the network
represented in Figure 1. From this view, we can see a clear
path from the adversary’s initial foothold on pers1 to reach

pers4 with the following plan: dump credentials on pers1
to obtain steve’s credentials, use steve to remotely log in
to pers5, use steve again to move from pers5 to pers3,
dump credentials on pers3 to obtain ritchie’s credentials,
and then use ritchie’s account to remotely login to pers44.

This representation is useful in mapping out the weak-
nesses in the generated networks from a general perspective,
but stops short of being able to entirely represent the features
needed for automated adversary emulation: from the adver
sary’s point of view, the adversary only has partial view of
the network and cannot deterministically reason about the
consequences of actions. In Figure 1, the adversary only
has a foothold on pers1, and without doing anything, only
knows that pers1 exists, nevermind any of the accounts it
would need to laterally move to pers4 (or even that pers4
exists). Consider the action to dump credentials:

-

executable dumpCreds(X) if hasFoothold(X), escalated(X).
caused knowsCreds(A) if activeCreds(A, X)

after dumpCreds(X).

It is easy to see when the adversary can dump credentials:
it only needs an escalated foothold on a host to do so. How
ever, the exact consequences to the adversary are unknown
and unbounded: this predicate can only be evaluated after
running this technique, as the active credentials on a host
are unmeasurable from the adversary’s point of view.

-

Developing a Planning and Acting Environment To fa
cilitate experiments with the DLVK format, we developed
a turn-based simulation system wherein an adversary agent
could maintain its own internal state, interfacing with a
global agent that had full visibility of the world. Our ad
versary agent starts with a simple view of the world – it has
an initial foothold on the network – as well as the action def
initions and inference rules that are used in the real model.
It does not, however, know anything about the network: it is
unaware of what hosts and accounts exist, what the topology
looks like, what the trust relationships are, etc. Instead, the
adversary learns these features as it executes actions.

-

-

-

During a simulation run, the adversary sends its
chosen action to the global agent, which first checks
to see if the action is legal, and, if so, determines
what changes should be made to the real model and
which new knowledge should be passed to the adver
sary. As an example, looking at Figure 1, the adver
sary would gain knowsRemote(steve, pers1)
and knowsCreds(steve) after executing
dumpCreds(pers1).

-
-

Pythonic Representation
Our work using K was useful as a testbed for us to de

velop planning algorithms. However, from an implementa
tion standpoint, it had several weaknesses, primarily in con
verting from it to what our tool was executing and what it
needed for technique execution; K did not follow the object-
oriented guideline we would ideally follow. This led us to
develop a custom representation that easily facilitated both
planning and acting.

-
-
-

3http://www.dlvsystem.com/k-planning-system/

4Note that in our model the adversary would have to perform
some knowledge gathering actions throughout this plan as well.

http://www.dlvsystem.com/k-planning-system

Actions in CALDERA are each represented as a Python
class. Each class contains fields that describe how the tech
nique is executed and implemented, some metadata, and
then a Python representation of the logic. At a high level,
the logic provides information on the pre and postcondi
tions of the actions, represented in a way that talks strictly
about the objects that are involved5. Treating pre and post
conditions as restrictions on objects meshed well with our
implementation: the logic explicitly maps to the objects in
the database schema and couples well with the action exe
cution code. The internal data model features 15 top level
objects, each of which has a set of fields. Field values can
either be integers, strings, references to other objects, lists
of things, booleans, or dates. Example objects and fields
include: Remote Access Trojans (RATs), which have host
(object), elevated (boolean), and username (string) fields,
and Hosts, which have admins (list), fully qualified domain
name (string), and hostname (string) fields, amongst others.

-

-

-

-

One of the downsides of the Pythonic representation is
difficulty for human operators to read. For example, con
sider the following action to copy a file to a network share:

-

preconditions = [("rat", OPRat),
("share", OPShare({"src_host": OPVar("rat.host")}))]

postconditions =
[("file_g", OPFile({’host’: OPVar("share.dest_host")}))]

preproperties = [’rat.executable’, ’share.share_path’]
postproperties = [’file_g.path’]

This syntax defines four main components: preconditions,
which must be true to execute the technique, postconditions,
which at least will be true after executing the technique,
pre-properties, which are things that must be defined to ex
ecute the technique, and post-properties, which are things
that will be defined after executing the technique. Parsing
each of these, the first precondition states the the identi
fier rat must be of type OPRat. The second requirement
states that share must be of type OPShare, where the
src_host field is equal to the rat’s host field. The post
condition states that a new object file_g of type OPFile
will be created, where the host field of the new file_g
object is equal to the original share’s dest_host field.
The pre-properties specify the rat’s executable and the
share’s share_path fields must also be defined, and the
post-properties state that the file_g’s path field will be
defined after execution.

-

-

-

This representation facilitates reasoning over objects as
opposed to strictly properties, and is handy in the cyber do
main: most of the techniques either add knowledge or create
objects, with modifying objects an atypical use case. In fact,
both adding knowledge and creating objects are represented
the same in the Pythonic representation – both involve the
agent adding new objects (either those that are discovered or
those that are created) to its knowledge base.

-

Converting the Pythonic Representation Instead of rea
soning directly with the Pythonic representation, we created

-

Figure 2: Workflow of plan-and-act paradigms considered for au
tomated adversary emulation.

-

an intermediary language that converted the Python require

ments to Datalog6. For example, the copy action above was
converted as follows:

-

Parameters:
EXECUTABLE, HOST, RAT, SHARE, SHARE_PATH, SRC_HOST

Preconditions:
has_property(RAT, executable, EXECUTABLE)
has_property(RAT, host, SRC_HOST)
has_property(SHARE, dest_host, HOST)
has_property(SHARE, share_path, SHARE_PATH)
has_property(SHARE, src_host, SRC_HOST)
oprat(RAT)
opshare(SHARE)

Postconditions:
+ defines_property(FILE_G, path)
+ has_property(FILE_G, host, HOST)
+ opfile(FILE_G)

This conversion is relatively straightforward: we see
predicates like oprat(RAT), which declare that the
RAT parameter must be of type oprat, matching the
Pythonic requirement. Under the preconditions, the second
and fifth predicates mandate that the host property of
RAT must be the same as the src_host property of
SHARE. For preproperties, note that the first precondition –
has_property(RAT, executable, EXECUTABLE)
– is the only one to specify a requirement on EXECUTABLE;
this parameter must merely be defined, but does not need to
be explicit.

While the Pythonic code is dense, its Datalog trans
lation is very straightforward. Each object requirement
is specified as a type restriction in Datalog. Each pre-
property or postproperty is specified as an unbounded
has_property statement on that object. Preconditions
and postconditions are specified with type requirements as
well as specific restrictions over properties, again leveraging
the has_property predicate.

-

Choosing Adversary Techniques
In this section, we discuss some of the practical solutions

that we have experimented with to solve the planning and
acting problem for automated adversary emulation, describ
ing theoretical algorithms that work in our K environment as

-

5A full description of the syntax can be found at
http://caldera.readthedocs.io/en/latest/

add_technique.html

.

6For ease of integration, we avoided converting to K – which
required the DLV solver – and instead converted to native Datalog.

http://caldera.readthedocs.io/en/latest/add_technique.html
http://caldera.readthedocs.io/en/latest/add_technique.html

well as the one implemented in CALDERA. All of the algo
rithms discussed in this section leverage the same planning
and-acting paradigm (visualized in Figure 2):

-
-

1. Obtain and update the world state.

2. With the world state, use the precondition model to iden
tify which actions are valid at the current time step.

3. Building off of step 2, construct a set of plausible plans.

4. Evaluate each plan constructed in the previous step.

5. Execute the first action in the highest rated plan.

6. Observe the responses, stopping if the goal state has been
observed and going back to step 1 otherwise.

-

This paradigm operates in a way that is fire-and-forget: even
though the algorithms construct plans, they only execute the
first action in the plan, completely re-planning each time
they have to construct new plans.

Evaluating Plans
All of our techniques evaluate plans based on the metric

first proposed in (Applebaum et al. 2016). This technique
assumes we have access to some reward function R : A →
R that maps each action to some numeric reward. Then,
given a set P of plans, where each plan is a sequence of
actions a1, ..., an: for a plan p ∈ P , we define its score as:

n Σ R(ai)
S(p) =

i
i=1

In words, each plan is assigned a score that represents a de
creasing weighted sum over its constituent actions. We note
that this is in fact very similar to using a finite horizon over
a Markov decision process (MDP) to calculate reward, al
though here we use a linearly decreasing score as opposed
to an exponential one that is typically used in MDPs. In line
with the guidelines that we discussed in the previous sec
tion, the scoring algorithm treats each action as ungrounded
– dumping credentials, for example, on host 1 would yield
the same reward as dumping credentials on host 2, regard
less of any differences in hosts 1 and 2.

-

-

-

-

Constructing Plans
The difficulty in constructing real plans stems primarily

from the knowledge disparity facing the adversary: there
are propositions in the world-space that the adversary is
unaware of. In the generalized case, reasoning over all
unknown propositions would be challenging, however, by
leveraging our representation – i.e., that we have a data
schema, ungrounded action definitions, and a feel for what
the world should look like – we can still approximate what
might be considered “good” solutions to this problem. Thus,
our initial approach worked as follows:

1. Construct a fictional world P ′ .

2. Merge ′ P with Fi. In the case that some proposition in
P ′ conflicts with Fi, defer to the known proposition to
ensure consistency.

3. Initialize an empty set of plans, P .

4. For each action type – i.e., for each ungrounded action –
obtain the set of plans that executes that action the soon
est. For example, if we can dump credentials – regardless
of the host – at time step three and no sooner, add all plans
of length three that dump credentials to P . Repeat this for
each action type.

5. Return P .

-

This process is executed multiple times each time step in a
Monte-Carlo style simulation: after each individual run, P
would be evaluated and the best action would be recorded.
After running all of the Monte-Carlo trials, each “best” ac
tion would be given a vote, and the action with the most
votes would be executed. Experimenting in our K domain,
this setup performed reasonably well, outperforming strate
gies that iterated through actions in a discrete sequence (i.e.,
a finite-state machine) as well as a greedy strategy that
skipped the plan construction step.

-

-

In practice, however, this technique was unfeasible as it
required full world simulation when constructing P ′. This is
largely impractical as the more the planner needs to “guess”
what the real world looks like, the more inaccuracies it will
add. Moreover, creating the entire network and reasoning
over it was a time consuming procedure.

To improve on this procedure, we created a variant of the
above approach that differed only in how it constructed the

′ P initial fictional world. Instead of trying to fully simu
late what the world might look like, the planner would make
small increments to Fi based on a fixed set of rules that
would enumerate some of the potential configurations. For
example, if the planner knew some hosts existed, but did not
know the admins on those hosts, the planner would guess
who the admins were, with probabilities for guessing that a
known or unknown account was an admin. This slight modi
fication provided significant performance increases over our
initial approach; the full results of these tests can be found
in (Applebaum et al. 2017).

-

-

While these two approaches provided strong laboratory-
based results, they both sat too far away from the actual
CALDERA implementation. Both approaches proved to be
too intensive for the large data model that CALDERA was
using – how do we, for example, simulate what a random
process might look like, given that it has 15 different fields?
How many processes should we infer exist? Moreover, the
representation in K did not lend itself well to meeting our
guidelines for modeling this domain.

Instead, we developed a relatively simplistic approach
that leveraged our Pythonic data representation, converted
to Datalog. To get plans, the planner would explore each
possible action – in sequence – popping its execution onto a
stack and recursing, stopping when it reaches a fixed depth;
in essence, the planner explores all possible plans of a fixed
length starting at the current state via a depth-first search
over the action space. This approach is fairly immature as
opposed to traditional planning techniques, however we de
veloped several heuristics to help reduce redundancy and op
timize the search:

-
-

• The algorithm never explores the same action twice.

• If two actions have the same effects, only explore one.

To understand this, consider the following action to iden
tify all hosts running in a domain:

-

Parameters:
RAT

Preconditions:
oprat(RAT)

Postconditions:
+ defines_property(HOST_G, fqdn)
+ defines_property(HOST_G, os_version)
+ ophost(HOST_G)
+ oposversion(OS_VERSION_G)

To check if this action is valid, the planner runs a Data
log query to ground its preconditions, in this case returning
all objects of type oprat. After execution, it will create a
new host – “+ ophost(HOST_G)” – with the associated
properties; from an execution standpoint, the planner, when
considering this action, will internally execute it, adding the
appropriate facts to the knowledge base. In this case, since
the postconditions are not tied to the preconditions or pa
rameters, all of the facts will be brand new – that is, it will
know that it needs to create new objects to match the condi
tions. Once it finishes exploring this path, it will pop these
postconditions off its stack and move on to the next branch
in the tree. To avoid complexity, if multiple RATs match the
precondition, it will only explore the paths with one of them
since the postconditions are the same, regardless of the RAT.
Note that instead of explicitly declaring its in-practice func
tionality – discovering all hosts – the representation only
adds one new host to the knowledge base.

-

-

-

-

Interestingly, this approach completely eschews the need
to simulate or guess what the unknown propositions in the
world are by leveraging its representation. While we have
not conducted any rigorous trials to showcase its efficacy,
we have found that, with this algorithm and representation,
CALDERA is able to successfully achieve full compromise
of setup lab environments. Prior to deploying the techniques
in this paper, CALDERA leveraged a hard-coded finite-state
machine: by comparison, the planning-based approach is
smoother, easier to vary, more adaptable, and much easier
to extend, in addition to some efficiency boosts. We note
that, because the new approach is much easier to extend and
adapt, other researchers were able to use our public imple
mentation of CALDERA to integrate their own techniques –
modeling and coding them in our Pythonic representation –
with the planner integrating the new actions seamlessly into
its operations (Bottomley, P. and Beukema, W. 2018).

-

Discussion
Our hope with this paper is twofold: first, to call atten

tion to the need for a planning and acting paradigm within
the security and planning community, and second, to raise
awareness of the particular types of uncertainty considered
in the automated adversary emulation problem. With re
gards to the latter, our primary call-to-action is inspired by
our experiences and design goals: we wish to avoid hav
ing users explicitly input network parameters, or even net
work possibilities, when they run their tests. This con
trasts with approaches previously identified in the literature,

-

-

-
-
-

where they assume access to either a network map, or have
clearly bounded uncertainty with which they can run tradi
tional planning techniques. In our own modeling efforts, we
have found this to be a difficult task.

-

We note that the approaches discussed in this paper have
been designed to exhibit emergent behavior, as opposed to
explicit goals or alternative execution strategies. While this
is similar to real adversaries, who typically have semi-vague
goals (e.g., “exfiltrate all sensitive files”), we believe that
this is an area for further research. As it stands, the cur
rent heuristic approach prioritizes executing “goal actions”
as soon as possible. By contrast, some adversaries may pre
fer to lay-in-wait, achieving their goals on each host simul
taneously – i.e., laterally move to all hosts and then encrypt
them, as opposed to encrypting them as you move through
the network. Similarly, a system that could achieve a specific
goal – i.e., compromise a specific host – would be of great
utility for defenders. Towards this, the heuristic approach
can be modified to exhibit this type of behavior, however
it involves a significant amount of manual analysis of both
goal and reward, and is not guaranteed to be optimal. In
stead, we believe it may be possible to leverage the unique
cyber domain properties to construct a planner that can more
accurately achieve this. As it stands, our current approach
offers a workable solution for smaller problems, but blows
up combinatorially as the depth and domain grows.

-

-
-

-

Most of the formal modeling in the automated planning
community of cyber is either domain specific – i.e., net
work protocols – or heavily focused on exploits. Because
adversaries tend to re-use existing functionality, these lat
ter models lack realism; adversaries do not achieve lateral
movement only through exploits. Instead, an ideal repre
sentation would cover other ordinarily benign activities that
adversaries also use. Based on our experiences, this can be
challenging to do from the adversary’s perspective (i.e., in
bounding the adversary’s uncertainty). Additionally, while
not covered in high detail in this paper, that adversaries cre
ate and reason over new domain objects is a similar encod
ing issue. We are currently developing a translation from
our Pythonic model to PDDL(McDermott et al. 1998), but
have found that we often need to use unnatural constructs to
represent key cyber concepts. We also plan on investigat
ing the use of epistemic planning (Lowe, ¨ Pacuit, and Witzel
2011) to represent the adversary’s changing belief states –
as encoded, maintaining dual states between the world and
the adversary’s knowledge is cumbersome, and we believe
we can leverage existing strategies to optimize our process.

-

-

-

-
-

-

Conclusion Both industry and academia have recognized
the utility of automated adversary emulation and penetration
testing, the former solving it from an implementation-first
perspective, and the latter working on the theory. Neither
side, however, seems to have recognized the key challenges
that make this a hard problem, nor have others formalized
the requirements that an ideal automated offensive solution
should meet. We hope that in publishing this paper, we can
better characterize these challenges and requirements, help
ing others better understand the nature of the problem and
encouraging future research.

-

References
[Amos-Binks et al. 2017] Amos-Binks, A.; Clark, J.; We
ston, K.; Winters, M.; and Harfoush, K. 2017. Efficient
attack plan recognition using automated planning. In Com
puters and Communications (ISCC), 2017 IEEE Symposium
on, 1001–1006. IEEE.

-

-

[Applebaum et al. 2016] Applebaum, A.; Miller, D.; Strom,
B.; Korban, C.; and Wolf, R. 2016. Intelligent, automated
red team emulation. In Proceedings of the 32Nd Annual
Conference on Computer Security Applications, 363–373.
ACM.

[Applebaum et al. 2017] Applebaum, A.; Miller, D.; Strom,
B.; Foster, H.; and Thomas, C. 2017. Analysis of auto
mated adversary emulation techniques. In Proceedings of
the Summer Simulation Multi-Conference, 16. Society for
Computer Simulation International.

-

[Bottomley, P. and Beukema, W. 2018] Bottomley, P.
and Beukema, W. 2018. Signal the ATT&CK:
Part 1. https://www.pwc.co.uk/issues/

cyber-security-data-privacy/research/

signal-att-and-ck-part-1.html.

[Bozic and Wotawa 2017] Bozic, J., and Wotawa, F. 2017.
Planning the attack! or how to use ai in security testing? In
IWAISe: First International Workshop on Artificial Intelli
gence in Security, 50.

-

[Durkota 2014] Durkota, K. 2014. Computing optimal poli
cies for attack graphs with action failures and costs. In
STAIRS, 101–110.

-

[Eiter et al. 2000] Eiter, T.; Faber, W.; Leone, N.; Pfeifer,
G.; and Polleres, A. 2000. Computational Logic — CL
2000: First International Conference London, UK, July 24–
28, 2000 Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg. chapter Planning under Incomplete Knowledge,
807–821.

[Ghallab, Nau, and Traverso 2014] Ghallab, M.; Nau, D.;
and Traverso, P. 2014. The actors view of automated plan
ning and acting: A position paper. Artificial Intelligence
208:1–17.

-

[Hoffmann 2015] Hoffmann, J. 2015. Simulated penetration
testing: From ”dijkstra” to ”turing test++”.

[Katz, Moshkovich, and Karpas 2016] Katz, M.;
Moshkovich, D.; and Karpas, E. 2016. Lifting delete
relaxation heuristics to successor generator planning.
Heuristics and Search for Domain-independent Planning
(HSDIP) 61.

[Khan and Parkinson 2017] Khan, S., and Parkinson, S.
2017. Towards automated vulnerability assessment.

[Lowe, ¨ Pacuit, and Witzel 2011] Lowe, ¨ B.; Pacuit, E.; and
Witzel, A. 2011. DEL planning and some tractable cases.
In International Workshop on Logic, Rationality and Inter
action, 179–192. Springer.

-

[McDermott et al. 1998] McDermott, D.; Ghallab, M.;
Howe, A.; Knoblock, C.; Ram, A.; Veloso, M.; Weld, D.;
and Wilkins, D. 1998. Pddl-the planning domain definition
language.

[Obes, Sarraute, and Richarte 2010] Obes, J. L.; Sarraute,
C.; and Richarte, G. 2010. Attack planning in the real world.
In Working Notes for the 2010 AAAI Workshop on Intelligent
Security (SecArt), 10.

[Sarraute, Buffet, and Hoffmann 2012] Sarraute, C.; Buffet,
O.; and Hoffmann, J. 2012. Pomdps make better hackers:
Accounting for uncertainty in penetration testing. In Twenty-
Sixth AAAI Conference on Artificial Intelligence (AAAI-12).

[Shmaryahu et al. 2017] Shmaryahu, D.; Shani, G.; Hoff
mann, J.; and Steinmetz, M. 2017. Partially observable con
tingent planning for penetration testing. In IWAISe: First In
ternational Workshop on Artificial Intelligence in Security,
33.

-
-
-

[Smith, Casey 2017] Smith, Casey. 2017. Red Canary In
troduces Atomic Red Team, a New Testing Framework for
Defenders. https://www.redcanary.com/blog/

atomic-red-team-testing/.

-

https://www.pwc.co.uk/issues/cyber-security-data-privacy/research/signal-att-and-ck-part-1.html
https://www.redcanary.com/blog/atomic-red-team-testing/
https://www.pwc.co.uk/issues/cyber-security-data-privacy/research/signal-att-and-ck-part-1.html
https://www.pwc.co.uk/issues/cyber-security-data-privacy/research/signal-att-and-ck-part-1.html
https://www.redcanary.com/blog/atomic-red-team-testing/

	Automated Adversary Emulation: A Case for Planning and Acting with Unknowns
	Abstract
	Introduction
	Building Automated Adversary Emulation
	Characterizing Uncertainty in Automated Adversary Emulation
	Managing Uncertainty

	Formal Problem Description
	Representing Planning Problems for Adversary Emulation
	Early Work in K
	Pythonic Representation

	Choosing Adversary Techniques
	Evaluating Plans
	Constructing Plans

	Discussion
	References

