Standardizing SBOM within the SW Development Tooling Ecosystem

Many end-user organizations across the world are facing operational and supply chain related questions
about whether the software they are using to do their day-to-day work and support their ongoing business
areas is authentic and unaltered, contains known vulnerabilities, or whether their use is proper and legal
given the licensing terms placed on the constituent parts of that software by its developers. The fact that
software is being used to run more and more of the critical aspects of each of our organization’s business,
embedded, and cyber-physical systems makes it these pressing and unavoidable questions for almost
everyone.

Much attention has focused on identifying the needs for Software Bill of Materials (SBOM) information in
end-user organizations, which extends to understanding the software content of their operational systems, the
supplier communities of that software, whether that equipment has software embedded or they are directly
supplying software. At the same time the software development tools ecosystem organizations, those who
will be key in supplying the tools that are foundational to supplying automated SBOM information, need to
be engaged and the SBOM standardization needs to support and help the integration of the different
development, assessment, and analysis tools into the emerging DevSecOps abilities being explored across the
market.

Minimal Common Information Needs

The following discussion explores several different ways an SBOM can be used to help understand and
address software supply chain and operations risks in end-user organizations and identifies the minimal
information needed in a SBOM to support those uses'. Following that is a discussion on the role that this
same data could have in tool-to-tool exchanges within the software tools ecosystem and ideas about how that
data could be captured as a specific tool-to-tool information exchange standard.

To be useful to end-user organizations an SBOM needs to include the basic information that enables
correlating and connecting related information about the software as it moves through the supply chain and
into operations. It is also critical that the SBOM be as small and concise as possible to help ease the
integration and adoption and keep management of SBOM data as simple as possible. A key idea in driving
that minimalization is to aim at having the data in the SBOM static and fixed. Any information that will
change and evolve over time should be separately managed so it can be correlated and linked to the SBOM,
but it should not be included in the SBOM. That does not mean that an SBOM is static. Better information
or more refined information about a specific version of software may be created, discovered, or recovered
and an updated SBOM authored with the new/revised information could be provided.

For example, information about what components contain components is something key to understanding the
nature of the software linked to an SBOM. Once the component is created this information does not change
and provides the organizational context for understanding what other software components were included by
the developers of the components and having it in the SBOM seems essential to the functionality of SBOMs
in an enterprise.

However, information about vulnerabilities in the software should be separate from the SBOM since new
ones are being discovered all the time and the knowledge about what to do about the vulnerability, how to
mitigate it and address it also changes. To be operationally useful any organization planning to utilize
SBOMs for security of their systems will need to have activities that can connect the information in the
SBOMs to their vulnerability management activities, but that mapping is a separate activity, one enabled and
enhanced by future pervasive existence of SBOMs for all of the software in the enterprise.

On the other hand, an example of one type of information that could be considered for inclusion in the
SBOM is the licensing terms for the software when it is created. Organizations can change licensing terms
whenever they like but for a specific version of the software that licensing is fixed at the point of
release/creation and can safely be included in the SBOM. If the licensing terms of software are of concern
the organization would need an organizational ability to understand and map the terms of licensing of the
specific SBOMs for the different versions of software they will have in their enterprise and use they will

! Based primarily on the National Telecommunications and Information Agency’s (NTIA’s) Software Transparency efforts
<www.ntia.doc.gov/SoftwareTransparency>

www.ntia.doc.gov/SoftwareTransparency

Standardizing SBOM within the SW Development Tooling Ecosystem

need to analyze and determine the relevance of any changes to those licenses from one version of the
software to another, but the germane licensing information would be available in the SBOMs for the different
versions of the software.

Finally, for those with higher assurance concerns, information about the creator of the software, the source
location of the components that are included in the software, and the compilation details, options, and tools
used to build the software, would be a extremely valuable type of information to include in the SBOM since
this information is static once the software is created, and by moving through the supply chain along with the
software, that information would be readily available to downstream consumers of that software. This type of
assurance information is one that would be very difficult, if not impossible, to obtain otherwise.

Usage Scenarios for end-user use of SBOMs

Usage Scenario 1: helping parties unambiguously refer to, transfer, or purchase a specific software
component would require the ability to articulate the component author, component name, and the version of
the software as well as other components that may be utilized by that component, or communicating that
there are no other components being utilized. If that cannot be stated, then the unknown state of utilization
of other components needs to be communicated. The author of the SBOM should also be conveyed,
allowing it to be different than the component author, as well as the time/date of the SBOM itself.
Consideration for denoting the basis of the information captured is being discussed. For example, created
from either: a) build tool; b) SCA type tools; ¢) parsing a package manager; or d) manual. Depending on the
specific part of the SBOM information, some approached may be more “accurate” or “repeatable” than
others but having the information will allow the recipient of the SBOM to make their own assessment in a
more straight-forward manner. Finally, a way to bind that information to the actual software and provide a
unique binding to it through either a hash of the software, a GUID, or a UUID, must be included in the
SBOM.

Usage Scenario 2: helping determine whether appropriate choices were made for securing the software
during the creation process would require, in addition to the basic unambiguous reference information from
Usage Scenario 1, information about the compilation and formulation options used in transforming the
source components and parts into the resultant software. For example, were address space layout
randomization (ASLR), data execution prevention (DEP), solutions that monitor for stack overflows, or that
invalidate writes to adjacent memory in stacks invoked? Another example would be when dynamic linking is
used, what is the intended operating system environment? This information will allow that those dynamic
libraries in the SBOM be the specific ones for that environment versus all versions. Finally, was
reproduceable compilation used? When done for each software component this is known as pedigree.

Usage Scenario 3: helping determine whether the software is authentic would require, in addition to the basic
unambiguous reference information from Usage Scenario 1, capturing information about the organizations
that handled or were involved in the creation or the sourcing of the software and its constituent parts. This is
often referred to as provenance and focuses on establishing the chain-of-custody of the software and is
traditionally accomplished by using signing techniques to validate the source of each item as it moves along
the supply chain.

Usage Scenario 4: helping determine whether the software and SBOM information are unaltered would
require, in addition to the basic unambiguous reference information from Usage Scenario 1, information
about the integrity of that software, its constituent parts, and the SBOM itself, as they pass along the supply
chain. This is often accomplished by using a hash of the software components in the SBOM and using
signing techniques to ensure the integrity of the SBOM as it passes along each link of the supply chain from
the creators of the software to the users of it.

Usage Scenario 5: helping determine whether the planned use of the software item is aligned with its
intellectual property constraints would require the basic unambiguous reference information from Usage
Scenario 1 and the license(s) for the software and its components. This is often attempted by mapping the
information available in public open source repositories about current license terms for the software
components but having the information for a specific piece of software included in the SBOM would

Standardizing SBOM within the SW Development Tooling Ecosystem

eliminate uncertainty and limit the additional effort needed to obtain authoritative information upon which to
make decisions.

Usage Scenario 6: helping determine whether there are any known software vulnerabilities in a software
item or any of the constituent parts would require the basic unambiguous reference information from Usage
Scenario 1. Determining whether there are known vulnerabilities is normally accomplished by mapping the
up-to-date information available in publicly known vulnerability repositories about known vulnerabilities to
the software components in a software item. By encouraging indexing public repositories with SBOM
identities this mapping will be more effective and efficient, and possibly automatable. Capturing and
conveying information about the non-impact of vulnerabilities in incorporated components is of strong
interest and could be accommodated by including a notes/comment field where statements about such
analysis could be conveyed.

Usage Scenario 7: helping determine whether the software and its components are secure, safe, and resilient
would require the basic unambiguous reference information from Usage Scenario 1 but would be correlated
to that information, not included in the SBOM itself. This is currently accomplished either by the developing
organization or another, providing the results of static, dynamic, threat and other evaluations and analysis
and providing an assurance case representing how the claims of safety, security, and resilience are supported
by evidence, thus providing evidence-based assurance about the software, tied to the SBOM for the
software.

Usage Scenario 8: helping determine what the software providing a service is at the point of execution
would require the basic unambiguous reference information from Usage Scenario 1. This could be
accomplished by the service providing the SBOM Usage Scenario 1 information for archival logging at the
point that software service is invoked so it would be available for retrospective analysis about vulnerabilities
found to have been in the software that was used by the service. Having this information would allow further
analysis of whether the vulnerability in the service was exploited when the organization used it. This does
not replace the need to investigate the full functionality of the service being invoked and having confidence
that its functionality does not include harmful capabilities. If Usage Scenarios 2, 3, 4, and 5 are of interest to
an organization, the fields needed to provide pedigree, provenance, integrity, and intellectual property
constraints would need to be logged.

Usage Scenario 9. Helping determine whether a required/desired sequence of steps for the software and its
components has been completed in a specified order, and with no additional steps would require, in addition
to the basic unambiguous reference information from Usage Scenario 1, and the provenance information
from Usage Scenario 4, a list of ordered steps, and requirements for each step. This information is referred to
as supply chain sequence integrity and provides assurance to the downstream consumers that software has
completed expected/required steps, and that no unexpected and potentially malicious steps have been
inserted into the documented supply chain sequence. This could be of great utility where validating whether
the specified tool chain of a DevSecOps environment were followed.

Enabling Tool-to-Tool SBOM Exchanges

To enable tool-to-tool use within the iterative software development/integration and testing ecosystem of
tools, a very small SBOM standard format/structure that the software tool ecosystem can utilize as they move
code and components through their workflows from partner tool to partner tool is prudent and essential.

When someone at a development shop has a need to externalize the SBOM information, the SPDX file
format® and SWID structure’ may be capable and appropriate for that exportation, but in discussions with
many of the software development tool creators they don't seem to see either SWID or SPDX as something

2 The Software Package Data Exchange (SPDX®) specification <spdx.github.io/spdx-spec/>

3 SWID Tag: “ISO/IEC 19770-2:2015 establishes specifications for tagging software to optimize its identification and
management” or NIST Internal Report (NISTIR) 8060:Guidelines for the Creation of Interoperable Software
Identification (SWID) Tags <doi.org/10.6028/NIST.IR.8060>

https://doi.org/10.6028/NIST.IR.8060

Standardizing SBOM within the SW Development Tooling Ecosystem

they would utilize internally within their community when interacting with other tools.

The native, internal use of a standard SBOM is key to getting consistent and broad uptake in the market and
moving of this data to the places it is needed. This is especially true of the software provenance (i.e., chain of
custody) information and the pedigree (i.e., formulation/compilation choices) information since it is
extremely hard to recover or extract that information accurately and consistently after the fact.

The Software Development Tooling Ecosystem

Historically software was created from scratch, starting with an empty file and then creating the overall
design and flow of the needed functionality. Typical examples included specific nuances of handling
interactions with the user (user interface), storing and retrieving information, and communication with other
applications and services, as well as all of the general “housekeeping” activities entailed with well-behaved
and operationally efficient software that performs well in-use. Software was compiled into a binary form
that would run on the target system, utilizing standard interfaces with the operating system through standard
libraries and functions that were linked at the time of compilation. Figure 1 depicts the typical components
of a software compilation environment.

Open source b

components
. Libraries
Compilers .
. Other documents:
Multimedia, text

Source files \ W
Yy »

Developed by

organization ceeeennnnnes Makefiles

/ " Generated code
Purchased » Dynamic
components libraries

External

Binarie:
= executables

Figure 1: Software compilation components

In this type of development environment, the compiler is the main tool, along with the code editor that
provides the mechanisms for creating and modifying the source files. These main components in turn work
with the code repositories that open source and purchased components come from. Integrated Development
Environments (IDEs) are suites of more elaborate linked code editors that are often used as the development
tool of choice in large enterprises and focused coding groups.

The contemporary approach to building much of today’s software has evolved towards more of an assembly
and refinement approach, where the development starts with an “off-the-shelf” framework that has basic
input/output, screen handling, house-keeping, and interactions already in place. The interactions with a host
operating system are already implemented, and the developer can immediately work to see what supporting
functional components are needed for the specific application functionality they are creating. Additionally,
the applications can be tailored for different environments, such as embedded, web, cloud, mobile, or others
with appropriate orchestration of platform specific versions and features brought together as part of the build
capabilities.

With this style of development, the ability to find licensing information and vulnerability information for the
third-party components and frameworks can become a critical element of an organization’s build operations.

Standardizing SBOM within the SW Development Tooling Ecosystem

The unfortunate truth is that most third-party components use other third-party components, so finding out
what those components are and what licensing or patching issues are related to them has spawned a
collection of techniques and capabilities for recovering this type of information about the software

composition.
@

ulnerability
Information

[Licensin]
pa Package Repos \ ‘ |nformatign
/ (PublicE Private) \

TecE / /
\ Source Code
(Public & Private)
Operations / ‘
: Software Composition
Build choreography Analysis Capabilities
Developer
“Desktops”
A o

Figure 2: Software Development Tooling Ecosystem

Finally, the software that is created or modified will need to be tested and hopefully put into operations.
Figure 2 illustrates the numerous paths that software components (or information about software
components) can be expected to flow between, throughout the different parts of the software development
tooling ecosystem.

The Software Development Tooling Ecosystem Member Organizations

Within the various grouping of capabilities depicted in Figure 2 there are many products (both open source
and closed source) that would need to incorporate native SBOM related abilities to create, manipulate,
manage, test, and control the software and its SBOM. For the foreseeable future, a large but hopefully
diminishing amount of the software components available for reuse by third parties will not have SBOMs
created by the original authoring organization and so the Software Composition Analysis community,
identified below, will be often relied upon to create and populate SBOMs for these components. The
objective of this effort is to have one structure that both communities can leverage and provide SBOMs
where desired. The following six tables provide listings of the capabilities available today to support
development and composition analysis efforts.

The 6 tables illustrate some of the current members of: 1) IDEs; 2) Frameworks; 3) Cloud Tools; 4) Source
Code & Package Repositories; 5) Build Choreography Capabilities; and 6) Software Composition Analysis
Capabilities. Additional tables for testing tools and operational management tools that could utilize and
leverage SBOMs will be created as that data is gathered.

Table 1: IDEs

Android Studio Code Blocks Goland MPLAB Spiralogics
AppCode CodeCharge Studio IDLE NetBeans Application
Atom Codelobster Intelli) IDEA PhpStorm Architecture
BlueJ CodePen LINX Pycharm WebStorm
CLion DataGrip Microsoft Visual Rider Xcode
Cloud9 IDE Eclipse Studio RubyMine Zend Studio

Standardizing the Software Bill of Materials (SBOMs) within the SW Ecosystem

NET

Angular
Ansible
Apache Spark
ASP.NET
Bootstrap
Chef

Azure
AWS CodeBuild

Amazon ECR
Assembla

Azure Container
Registry
Beanstalk
Bitbucket

Ansible
Autorabit
Bamboo
Bitrise
Buildkite

Black Duck Software Composition
Analysis (Synopsys)
CAST Highlight (CAST Software)

Finate State

Table 2: Frameworks/Libraries/Tools

Cordova
CryEngine
Django
Drupal
Express
Flask
Flutter

Cloud Foundry

Google Cloud Build

Hadoop
HTML5 Builder
Laravel
Node.js
Pandas
Puppet

React Native

Table 3: Cloud Tools
Kwatee
Pivotal

Table 4: Source Code & Package Repositories

Codebase
Docker
GitHub
GitLab
Glitch

Google Container
Registry

JFrog Artifactory
JFrog Xray

inedo
Kubernetes

Table 5: Build & Build Choreography Capabilities

Buildroot
CircleCl
CMake
CruiseControl
Final builder

GCC
Gitlab CI
GoCD
Integrity
Jenkins

Table 6: Software Composition Analysis Capabilities

FlexNet Code Insite (Flexera)

lon Channel

Insignary

SourceClear

React.js Visual Online
Ruby on Rails Vue.js
Spring Xamari
TensorFlow
Torch/PyTorch
Unity D
Unreal Engine
Red Hat
Launchpad Savannah
Maven SourceForge
Nexus (Sonatype) SourceRepo
Phabricator Subversion
ProjectLocker Unfuddle
Repository Hosting
Strider CD Vagrant
TeamCity
Terraform
Travis Cl
Urbancode
Sonatype
Snyk
WhiteSource

Standardizing the Software Bill of Materials (SBOMs) within the SW Ecosystem

Potential SBOM Elements to support the Described Usage Scenarios

Within the nine Usage Scenarios discussed on pages 2 and 3 of this paper there were several elements of
information described as the scenarios were elaborated. The following will attempt to capture the minimal
elements to support the Usages described. The potential SBOM elements, shown in the middle of Figure 3
will be mapped to the Usages they are needed for and current thoughts on external information that would be

correlated to the SBOM will be shown in the right-side of the subsequent Figures 4 through 12.

Usages

Refer, Transfer or Purchase
efinition of what it

9 ree
(history of how ifwas produced)

Provenance
(chain of custody of it)

)
1
)
Integrity]
]
]
1
)

basis of

Constraints

Known SW Vulns
(known fixes are applied to it)

Assurance
(secure-safe-resilient)

SBoM of a SW Service

(SBoM of sw delivering service)

1
2|
3|
4.
5 [Intellectual Property
6!
7|
8|
9|

Supply Cham Sequence J
Integrity

SBoM elements Correlated Info

Author of SBoM .

[JEr——— SBoM Time-Stamp

R € suppiier

mé‘%iﬂé’?%fé?‘s

SBoM Hash/Signature

Item Hash/Signature

Figure 3: Software Bill of Materials Potential Elements for Discussion

Usage Scenario 1

Usages

1 [Refer Transfer or Purchase
efinition of what it

J

SBoM elements Correlated Info

Author of SBoM
® e SBoM Time-Stamp

PO ‘ Supplier .

Com orgFents

None

rces, ex s, patches)
.
= ‘ Version
® nmm————
® nmmm———

____U

Item Hash/Signature

Figure 4: Software Bill of Materials Potential Elements for Refer, Transfer, or Purchase

Standardizing the Software Bill of Materials (SBOMs) within the SW Ecosystem

Usage Scenario 2

Usages SBoM elements Correlated Info
7
EM population meta
2| i | [oo None
° . Supplier .
® === e RN S cnetl |
: Version J

P

Created Using
Item Hash/Signature

Figure 5: Software Bill of Materials Potential Elements for Pedigree

Usage Scenario 3

Usages SBoM elements Correlated Info
(E5BoM population methodll)

— Nome

3[Provenance] . ‘; Supplier J
(chain of custody of it) Y —) mé%%%@ﬁ?,tt B

‘ Version .

Item Hash/Signature

Figure 6: Software Bill of Materials Potential Elements for Provenance

Standardizing the Software Bill of Materials (SBOMs) within the SW Ecosystem

Usage Scenario 4

Usages SBoM elements Correlated Info
F

EM population met@
b M Time-St
. SBol me‘ amp " Nona
. r Supplier t. %
I Bl 2mRonents il §s
ri * -

4 [L -] . E veson |5
® mmm—— = =
PO =
I— a

L

Item Hash/Signature

Figure 7: Software Bill of Materials Potential Elements for Integrity

Usage Scenario 5

Usages SBoM elements Correlated Info

Author of SBoM
EM population met@
¢ —— SBoM Time-Stamp None

.
. Supplier
* = e S TRROBED s

M
N

Version

f
J

5 [Intellectual Property

H 0 mmm——— "
Constaints

Item Hash/Signature

Figure 8: Software Bill of Materials Potential Elements for Intellectual Property Constraints

Standardizing the Software Bill of Materials (SBOMs) within the SW Ecosystem

Usage Scenario 6

Usages SBoM elements Correlated Info

Author of SBoM
EM population met@

O cncnaad _—‘ -
o 280M Time-Stamp Vulnerability Knowledge Bases
* € suppier T Vulnerability Management Systems
® mmmmmee Com nts
Bources SR ORRDSS tehes

= Version j

ﬁ

6 Known SW Vulns
(known fixes are applied to it)

=

Item Hash/Signature

Figure 9: Software Bill of Materials Potential Elements for Known Software Vulnerabilities

Usage Scenario 7

Usages SBoM elements Correlated Info

Author of SBoM
@ population metE

: 1 Notes on exploitability of vulns
. € swpiee 9 Vulnerability Knowledge Bases
* ‘““" Weakness Knowledge Bases
: & veson D Assessment R.esults
. _______ Design Review
Y Code Review
Attack Surface Analysis
Static Analysis
7 Acenan Dynamic Analysis
{ (secure-safe-resilient) J Fuzz Testing
Pen Testing
Blue Teaming
Red Teaming

Organized as an Assurance Case

Figure 10: Software Bill of Materials Potential Elements for of Assurance

Standardizing the Software Bill of Materials (SBOMs) within the SW Ecosystem

Usage Scenario 8

Usages SBoM elements Correlated Info

Author of SBoM
@ population metg
" 7 @St e tam
. (ESBom Time stamp I Logging SBOMs of Services Used
PO ‘ Supplier .

[J——— Com nts
sources, executables, patches|
.

o ‘ Version '

Item Hash/Signature

~

8 { SBoM of a SW Service
(SBoM of sw delivering service)

Figure 11: Software Bill of Materials Potential Elements for SBOM of a Software Service

Usage Scenario 9

Usages SBoM elements Correlated Info

Author of SBoM
‘BoM population methl)‘
& ——— Desired sequence of ordered

. € supplier software supply chain steps,
S Components 3 and requirements for each
sources, executables, patches):

. step for a specific project of

. ‘ Version :' interest

Item Hash/Signature

Supply Chain Sequence
9 [ppylntegrityq]

Figure 12: Software Bill of Materials Potential Elements for Supply Chain Sequence Integrity

11

