
© 2019 The MITRE Corporation. All rights reserved.

DevSecOps – Security and Test Automation

Vibha Dhawan

Rock Sabetto

March 2019

The author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE's

concurrence with, or support for, the positions, opinions, or viewpoints expressed by the author.

Approved for Public Release; Distribution Unlimited. 19-0769

| 2 |

Purpose

▪ Clearly describe how Security and Testing can be integrated into a
DevSecOps environment without compromising speed, security, or
quality

▪ Provide a baseline of the terminology, methodologies, processes,
environments, and automation technologies used in DevSecOps
programs

© 2019 The MITRE Corporation. All rights reserved.

| 3 |

Bottom Line Upfront

▪ DevSecOps Value Proposition

– Programs can realize significant value by implementing DevSecOps. But,
testing and security should not be sacrificed

▪ Shift Left

– Programs must truly shift Security and Test to the left to realize time and cost
savings

▪ Agile and DevSecOps go together

– DevSecOps must be fed by Agile software development. Security user
stories must be part of each sprint

▪ Automation is key

– Security and test automation can reduce delivery time, improve quality and
security, and eliminate human error

© 2019 The MITRE Corporation. All rights reserved.

| 4 |

Outline

▪ DevSecOps Background

▪ Security and Testing Considerations for DevSecOps

▪ DevSecOps Processes and Technical Considerations

▪ Platform Deployment Options in DevSecOps

▪ Conclusion

© 2019 The MITRE Corporation. All rights reserved.

| 5 |

© 2019 The MITRE Corporation. All rights reserved.

DevSecOps Background

| 6 |

DevSecOps

▪ DevOps – the union of people,
process and tools to achieve building,
testing and releasing of software more
frequently and reliably

▪ DevOps can also be referred to as
DevSecOps to emphasize the
importance of security

▪ DevSecOps is not Agile software
development. Agile feeds new code /
functionality into DevSecOps

© 2019 The MITRE Corporation. All rights reserved.

| 7 |

What is Agile + DevSecOps

▪ No silos exist between Development, Test, and Operations

– More teamwork and information sharing

– Better integration throughout the lifecycle

▪ Iterative development and deployment

– Design, develop, test, and deploy incremental changes

– Deploy changes to business users faster

▪ Automate as much as possible

– Reduce delivery time

– Improve quality and security

– Eliminate human error

▪ Streamlined, repeatable, routinized processes

– Faster delivery cycles – satisfied customers

▪ Culture, Practices and Tools all part of the DevSecOps equations

– Empowered, trained teams leverage technologies to make it happen

© 2019 The MITRE Corporation. All rights reserved.

| 8 |

DevSecOps Value Proposition

Traditional Development Challenges DevSecOps Benefits

➢ Repetitive, Manual Processes

➢ Deployment requires Days to Weeks

➢ Not Repeatable – Error prone

➢ Human intervention causes inconsistencies

➢ Frequent downtime

➢ Easier – less technical skill required

➢ Teams work in silos

➢ Early security testing not performed on the code

➢ Automated configuration and software deployment

➢ Deployment takes Minutes

➢ Continuous and repeatable process

➢ Consistent

➢ Minimum downtime

➢ Harder – more technical skill needed

➢ Continuous collaboration

➢ Early, automated security testing during coding

© 2019 The MITRE Corporation. All rights reserved.

| 9 |

DevSecOps is a union of Culture, Practices and Tools
providing continuous delivery to the end user

Security Built-in Throughout

© 2019 The MITRE Corporation. All rights reserved.

| 10 |

DevSecOps applies automation to deliver functionality:
Speed, without sacrificing security and test rigor

© 2019 The MITRE Corporation. All rights reserved.

| 11 |

DevSecOps Opportunities and Risks

Opportunities

• Speed and Repeatability

• Automation of testing

• Automation of security policy enforcement

• Continuous improvement

• Agility

• Can be integrated seamlessly with Agile
development

• Removes post-Agile sprint/release
chokepoints

Risks

• Security and Test

• Organizations must fundamentally relook
their value proposition.

• Physical Ownership

• Infrastructure is no longer the model
(exceptions include private / community
clouds)

• Shared Responsibilities:

• Security and test responsibilities are now
shared by programs, CSOs, and third
parties (e.g. 3PAO, CASB)

• System architecture

• Must address security and test equities

© 2019 The MITRE Corporation. All rights reserved.

| 12 |

© 2019 The MITRE Corporation. All rights reserved.

Security and Test Considerations for
DevSecOps

| 13 |

Security Considerations

▪ Security should be built into the entire DevSecOps process

– Agile process that feeds DevSecOps also must be secure

– Security user stories must be in the backlog

▪ Embed security throughout software lifecycle to identify vulnerabilities
earlier, perform faster fixes therefore reduce cost

▪ Continuous monitoring to ensure devices, tools, accounts, etc. are
continuously discovered and validated

© 2019 The MITRE Corporation. All rights reserved.

| 14 |

Shift Left: Security and Test Considerations

Security

• Security processes

• Security tools

• Security access (i.e., to DevSecOps
environment)

• Security tool visibility (i.e., across the
pipeline)

• Security reporting

Test

• Test events

• Test environments

• Test tools

• Test access (i.e., to DevSecOps
environment)

• Test data

• Test reporting

Programs must: plan/budget for these items, integrate them into architectures, and write

them into RFPs

They won’t magically appear at a program Operational Readiness Review (ORR)
© 2019 The MITRE Corporation. All rights reserved.

| 15 |

Test Oversight Influence Areas

Type Artifacts to Influence Proactive Measures

Input Acquisition Strategy, SOW

Technical Requirements,

Program TEMP

• Acquisition. Develop and communicate the Test Strategy (including security test activities), including:

major test events, automation strategy and requirements (e.g., needed tools / standards), required

access to Dev/Test environments, plan for test data

• Required Test Artifacts. Ensuring the contract(s) mandates test plans, test cases, test reports, traceability

matrices, shared with the govt. Formats, ability to comment are important

• Testability. Requirement for testability of contractor-derived requirements, testable code including

security

Pre-

Develop

Architecture, Use Cases,

Scenarios, System/Functional

Requirements

• Interfaces. Understand and define interfaces, both internal and external systems

• Test Environment. To model / influence the test environment to closely mirror production (and

development)

• Test Data. Identify test data sources and ability to access (or emulate); security use cases

During-

Develop

Design Specs, Demos, Test

Events, Test Cases

• New Interfaces and Data Sources. What is the developer changing? Understand how the developer is

deriving requirements, interfaces, and functionality

• Traceability. Do the developer’s changes align to the system-level requirements and architecture?

• Observe. Automated testing, live test events / demos

• Risk Assessment. Is the evolving design going to work? What new risks have been introduced?

Output Test Reports, Working

Software, Data Model(s)

• Review of Test Outputs. Increased visibility to stakeholders of metrics around tests (automated test suite

vs manual test time, code coverage, etc.)

• Recommendations. How can we reduce risk without killing the benefits of “agility”? TEST AUTOMATION!

© 2018 The MITRE Corporation. All rights reserved.

| 16 |

Test Event Levels, Challenges, DevSecOps
Considerations

Test Level Conducted

By

Overseen

By

Focus Area Challenges (bolded words are

important)

DevSecOps

Unit Contractor FFRDC / SETA Code Automation Access and Tools

Test Output Access

Test Traceability

• Automate unit tests

• Any failed unit tests fail the DevSecOps

Pipeline

• Development, security, and test work together

Integration Contractor Oversight

body: DT&E

Interface / API Interfaces / Interface Design

Test Environment

Test Data

External Systems

• User Stories are the “requirements” to be
tested

• Each User Story should have corresponding

automated tests and acceptance criteria,

including Security User Stories

System Mission

Owner

Oversight

body: DT&E /

OT&E

End-to-End

Functionality

Test Environment

Test Data

External Systems

• Automated user functional tests via tools

(e.g., UFT, Selenium, OWASP Zap)

Acceptance Operator Oversight

body: OT&E

End-to-End

Operations

 Not slowing everything down!

Timely Validation, Feedback Loop Feasibility

(what can actually be changed)

• Automated acceptance tests

Release Contractor Oversight

body: OT&E

Deployment Successful delivery of working software • Minimize manual system installation

• Treat Infrastructure as Code and use

deployment automation

© 2019 The MITRE Corporation. All rights reserved.

| 17 |

Continuous Delivery Testing – Software Release
Approaches

Continuous Delivery Test Techniques Description

• Blue Green Deployment This requires 2 identical infrastructures to host the application.

• Green environment runs the current version of the application.

• Blue environment hosts the new version of the software to be tested.

• User load is then incrementally shifted from the previously accepted version to the new version .

• If there are any issues encountered in the new version, rollback can be done easily to the

older accepted version.

• This technique increases availability and reduces risk of the application.

• Canary Releases This testing is often automated and includes a limited set of early adopter users.

These users assist in identifying issues before the application is released to a wider range of users.

• A/B Testing This method compares two versions of a single webpage or app to determine which one performs

better over the other.

A/B testing is an experiment in which 2 variants of a page are shown to users randomly and then

determine which version performs better.

© 2019 The MITRE Corporation. All rights reserved.

| 18 |

Additional Test Types – Leveraged as Needed

▪ Smoke Testing

▪ Functional Testing

▪ Security Testing

▪ Performance Testing

– Load Testing

– Stress Testing

– Spike Testing

▪ Regression Testing

▪ Compliance Testing

© 2019 The MITRE Corporation. All rights reserved.

| 19 |

© 2019 The MITRE Corporation. All rights reserved.

DevSecOps Processes and Technical
Considerations

| 20 |

Continuous

Integration

Continuous

Delivery

Security

Logging and Monitoring

Agile + DevSecOps Pipeline

DevSecOps Pipeline

Automating build, secure / test, deploy, and monitor

Agile Development

Developing functionality based

upon user needs

Sprint

Backlog

Product

Backlog

Final

Product

2 weeks

Security: is part of the entire process, from Backlog through Production Operations

© 2019 The MITRE Corporation. All rights reserved.

| 21 |

Agile SCRUM – Team Composition

▪ Design Decisions. Many design
choices are made by the Agile
team. Programs need to ensure
that these decisions are:

– Consistent with the program
architecture

– Compliant with the security
approach

– Testable

▪ Variance. Organizational
composition and roles will vary
from program to program

▪ Multiple Teams (e.g., Scaled
Agile Framework (SAFE)). Most
large programs will have multiple
Agile development teams
contributing to a common
architecture.

Others Stakeholders:

• Operators
• External System Owners and

Operators
• External Government or

Commercial Data Providers /
Consumers

• IT Administrators
• Cloud Service Providers
• Security: CASBs, MSSPs
• SETA Contractors
• FFRDCs

Legend:
Team Name / Level – Blue Font
Government – White Font
Contractor – Black Font
Leader – Underline FontAcquisition

Operational
Leadership

Contractor
Executives

Test
Oversight

Program Manager

Product
Owner

Test
Engineer

Scrum Master

Developers

SCRUM

PROGRAM TEAM

EXTENDED TEAM

Testers

Chief
Engineer

Architect

Contracts

Finance

Security
Oversight

System
Engineer

Security
Engineer

Portfolio Manager

Contractor
PM

User
Community

© 2019 The MITRE Corporation. All rights reserved.

| 22 |

Agile SCRUM – Test and Security

▪ Contractor Testing. Resources
are embedded in the SCRUM.
Test coverage includes application
functionality and security

▪ Government Testing. Should
take place at the end of each
sprint, and can be done via a test
event or other verification method
(e.g., demo, report, etc.). Test
coverage should include
application functionality and
security

▪ Testing Environments.
Government can test in either (or
both) Test and Pre-Prod
environments

▪ Tailoring Roles. Government vs.
Contractor roles and
responsibilities should be adapted
for specific program needs

Others Stakeholders:

• Operators
• External System Owners and

Operators
• External Government or

Commercial Data Providers /
Consumers

• IT Administrators
• Cloud Service Providers
• Security: CASBs, MSSPs
• SETA Contractors
• FFRDCs

Legend:
Team Name / Level – Blue Font
Government – White Font
Contractor – Black Font
Leader – Underline FontAcquisition

Operational
Leadership

Contractor
Executives

Test
Oversight

Program Manager

Product
Owner

Test
Engineer

Scrum Master

Developers

SCRUM

PROGRAM TEAM

EXTENDED TEAM

Testers

Chief
Engineer

Architect

Contracts

Finance

Security
Oversight

System
Engineer

Security
Engineer

Portfolio Manager

Contractor
PM

User
Community

© 2019 The MITRE Corporation. All rights reserved.

| 23 |

Continuous Integration (CI)

Agile Scrum Team*

Development Team –
Builds and Tests

secure functionality

Security

Build
Source

Control

Static Code

Analysis
Unit Test

Artifact

Repository

Logging and Monitoring

Check

in

Feedback

Packaging

*DoD programs will typically have

multiple Agile teams developing in

parallel. Security user stories are

part of the backlog

Feedback loop ensures continuous error correction and vulnerability remediation at each stage in the DevSecOps pipeline

© 2019 The MITRE Corporation. All rights reserved.

| 24 |

Continuous Delivery (CD)

Continuous Delivery promotes the working software from lower environments to

higher environments after security and tests are satisfied

Security

Dynamic

Code Analysis

Integration &

Performance Testing

Production

 Release

Logging and Monitoring

Configuration Deployment

© 2019 The MITRE Corporation. All rights reserved.

| 25 |

DevSecOps Tools - Examples

▪ Security

– Snort, Splunk, Fortify SCA, Vault, OWASP Zap, SonarQube

▪ Source Control

– GitHub, GitLab, Bitbucket, Artifactory

▪ Continuous Integration Tools

– Jenkins, Bamboo

▪ Testing Tools

– JUnit, Selenium, JMeter, TestNG, SoapUI

▪ Config/Provisioning Tools

– Ansible, Chef, Puppet

▪ Logging and Monitoring Tools

– ELK (Elasticsearch, Logstash & Kibana) Stack, Splunk

▪ Release Orchestration

– Kubernetes, OpenShift

▪ Containers

– Docker, Docker Swarm

© 2019 The MITRE Corporation. All rights reserved.

Security: Tools used throughout the

process, regardless of the specific tools

being used

Example: Snort signatures are applied to

all flows that are visible

Example: Splunk collects and

aggregates all logs that are available

throughout the process

CI-CD on Cloud

© 2019 The MITRE Corporation. All rights reserved.

CSPs (IaaS/PaaS)

| 26 |

Application Development (CI/CD)

Environment Provisioning

Develop / Check
In Code

Compile
Code

Unit Test Package
Deploy

Application

Version Control Artifact Repository

Build Infrastructure
Code

Build and Test
VMs and

Containers
Automate Deploy

Dev

Ops

Multiple

Environments

Dev

Test

Pre-Prod

Prod

CSPs (IaaS/PaaS)

| 27 |

CI-CD System in Operations

Application Development (CI/CD)

Environment Provisioning

Risk: Privilege Accounts

compromised

Mitigation: Deploy identity

governance and PAM tools

Risk: API is not secure

Mitigation: API security testing

and continuous monitoring

Risk: Misconfiguration of SaaS

Mitigation: Perform scans to

identify and fix potential

misconfigurations and identify

shadow IT

Risk: CAP becomes bottleneck

Mitigation: Direct connect to

CSP (policy dependent), or use

VPN with split tunnel +

whitelisted IPs

Version Control Artifact Repository

Dev

Ops

Multiple

Environments

Dev

Test

Pre-Prod

Prod

User

CSP SaaS

CASB

IDAM

CSPs (IaaS/PaaS)
CAP

Risk: User Identity

Compromised

Mitigation: Ensure all accounts

and devices are continuously

validated

© 2019 The MITRE Corporation. All rights reserved.

| 28 |

Security in DevSecOps

▪ Embed security throughout software lifecycle to identify vulnerabilities
earlier, perform faster fixes therefore reduce cost.

▪ Different aspects of DevSecOps security in the software lifecycle
including tools
– Static Code Analysis – Scans for vulnerabilities in the code after coding but before unit testing during development

(e.g. SonarQube)

– Configuration Management and Compliance – Know how your application is configured and whether it follows your
policies (e.g., Ansible, Chef, Puppet)

– Dynamic Code Analysis – Scan your code for vulnerabilities in how it performs. Execute unit tests to find errors
(e.g., SonarLint, VeraCode)

– Vulnerability Scanning – Automatically identify known issues in your application for penetration testing (e.g.,
Nessus)

– Infrastructure as Code – Ensures the application is deployed securely and without errors in a repeatable manner
(e.g., Ansible)

– Continuous Monitoring – Information on how the application is running, collected and monitored to identify issues
and feed future improvements. This is done in production environment. (e.g. Splunk, AppDynamics)

– Container Security monitor and protect containers (e.g., BlackDuck)–
© 2019 The MITRE Corporation. All rights reserved.

| 29 |

DevSecOps Security Tools – Examples

Security

Tool

Description Focus Area Test

Oversight

Open

Source

Snort It is a Network intrusion detection and prevention system. Scrutinizes each packet

on the network for anomalies and monitors traffic real time.

IDS OT&E Yes

Fortify SCA Static code analyzer helps to identify security vulnerabilities efficiently in source

code during development.

Code Security DT&E No

Gauntlt Gauntlt provides hooks to a variety of security tools and puts them within reach of

security, dev and ops teams to collaborate to build rugged software.

Security Test

Automation

DT&E Yes

HashiCorp

Vault

Improves how software teams store important keys, tokens, passwords, and other

secrets in their projects. Vault is an environment- and infrastructure-agnostic open

toolset for secrets management.

Credential

Protection

DT&E Yes

Sonar Qube Continuous inspection of code quality to perform automatic reviews with static

analysis of code to detect bugs, code smells, and security vulnerabilities.

Code Security DT&E Yes

OWASP Zap Used to identify security vulnerabilities in an application while it is being

developed. Useful in penetration testing.

Vulnerability

Scanning

DT&E and OT&E Yes

© 2019 The MITRE Corporation. All rights reserved.

| 30 |

DevSecOps Testing Tools – Examples
Testing

Tool

Description DT&E

Applicability

URL Focus Area

JUnit Open source, automated unit test framework for Java programming

language

Applicable for DT

and OT

http://junit.org Unit Testing

Selenium Suite of tools to automate web application testing across many

platforms. Supported by many popular browsers such as Firefox,

Chrome. Robot framework built on top of Selenium enables

continuous testing.

Applicable for DT

and OT

http://docs.seleniumhq.org Unit, System, Integration

Testing

SoapUI Open-source web service testing application framework for SOAP

and REST APIs

Applicable for DT

and OT

https://www.soapui.org Unit, Functional and

Integration Testing

Rational

Functional

Tester

It is capable of Functional, API, Performance Testing and Regression

testing.

Applicable for DT

and OT

https://www.ibm.com/us-

en/marketplace/rational-

functional-tester

Functional Testing

JMeter Load testing tool for analyzing and measuring performance of

services, with a focus on web applications

Applicable for DT

and OT

http://jmeter.apache.org/ Performance (Load) Testing

TestNG Testing framework to cover all categories of tests: unit, functional,

end-to-end, integration etc.

Applicable for DT

and OT

http://testng.org/doc/index.html Unit and Integration Testing

Unified

Functional Test

(UFT)

Automates functional and regression testing for applications and

environments.

OT only https://www.microfocus.com/en-

us/products/unified-functional-

automated-testing/overview

System Testing

© 2019 The MITRE Corporation. All rights reserved.

http://junit.org/
http://docs.seleniumhq.org/
https://www.soapui.org/
https://www.ibm.com/us-en/marketplace/rational-functional-tester
http://jmeter.apache.org/
http://testng.org/doc/index.html
https://www.microfocus.com/en-us/products/unified-functional-automated-testing/overview

| 31 |

Cloud Native (AWS, Azure) DevSecOps Testing and
Security Tools

▪ DevSecOps Pipeline

– AWS CodePipeline

– Azure DevOps

▪ Infrastructure Provisioning

– AWS Cloud Formation

– Azure Automation, Azure Resource Manager

▪ Security

– AWS Inspector, AWS GuardDuty, AWS CloudWatch

– Azure Security Center, Azure AD, Azure Application Insights

© 2019 The MITRE Corporation. All rights reserved.

| 32 |

© 2019 The MITRE Corporation. All rights reserved.

Platform Deployment Options:
Containerization verses Virtualization

| 33 |

Containerization vs. Virtualization

▪ In DevSecOps, software applications can be deployed in Containers or Virtual Machines
(VMs)

▪ VMs

– Self-contained computing unit with host operating system (OS)

– Each application runs dedicated software binaries/ libraries (bins/libs) and a guest OS

– Managed by a hypervisor

▪ Containers

– All applications share the OS and software bins/libs

– Containers are managed by a controller. Example: Docker Daemon (which sits in a sibling
container)

© 2019 The MITRE Corporation. All rights reserved.

| 34 |

Containers vs. VMs

© 2019 The MITRE Corporation. All rights reserved.

VM Environment

Infrastructure (Server)

Host Operating System

Hypervisor

Guest OS Guest OS Guest OS

Bins/Libs Bins/Libs Bins/Libs

App 1 App 2 App 3

VM

Container Environment

Infrastructure (Server)

Operating System

Docker Engine*

Bins/

Libs

App 1

Bins/

Libs

App 2
Container(s)

Bins/Libs

App 3 App 4

*Docker Engine is the runtime controller for container and images

Source: Docker.com

http://www.Docker.com

| 35 |

Containers vs. VMs Comparison Criteria

© 2019 The MITRE Corporation. All rights reserved.

Criteria Virtual Machines Containers
Popular Examples VMWare vSphere, Microsoft Hyper-V Docker, Google Kubernetes, Red Hat OpenShift

Hosting Environment On or Off Premise cloud environments On or off premises cloud environments

Runtime

Environment

Full OS with dedicated resources; one or more microservices

per VM

Shared OS, resources per container; single microservice per

container

Portability Microservice portability is tied to the portability of selected

VMs

Microservices are decoupled from the OS, allowing greater

portability

Security VM security tools and procedures are more mature Larger number of services and interfaces to monitor and

protect

Scalability VMs can be automatically scaled based on demand Containers can be automatically scaled based on demand

Performance Dedicated resources in a VM mean more overhead Better performance than VMs due to smaller footprint than

VMs

Admin Burden Less time/effort to spin up and configure vs. physical machines.

However, more time to spin up than containers

Simpler packaging and deployment vs. VMs

Interoperability VMs with separate OSs may complicate cross-service

communications, plug-and-play interoperability

Single-OS microservice deployments are more interoperable

Agility Requires some degree of planning and coordination Single-function containers can support faster development

lifecycle

Market Trend Still popular but losing ground to container deployment Increasingly popular option for app migrations and microservice

deployment

| 36 |

© 2019 The MITRE Corporation. All rights reserved.

Containers vs. VMs – Security Examples

Infrastructure (Server)

Host Operating System

Hypervisor

Guest OS Guest OS Guest OS

Bins/Libs Bins/Libs Bins/Libs

App 1 App 2 App 3

Infrastructure (Server)

Operating System

Docker Engine

Bins/

Libs

App 1

Bins/

Libs

App 2

VMs

Container(s)

Bins/Libs

App 3 App 4

AWS, Azure:

Infrastructure Provisioning: AWS Cloud Formation, Azure Automation, Azure Resource Manager

Security: AWS Inspector, AWS GuardDuty, AWS CloudWatch, Azure Security Center, Azure Application Insights

Container Security:

Black Duck,

Twistlock

Vulnerability

Scanning,

Windows

Defender,

Image

Management,

Patching

Application testing: JUnit, SonarQube, SonarLint

| 37 |

Conclusions

▪ DevSecOps Value Proposition

– Programs can realize significant value by implementing DevSecOps. But,
test and security should not be sacrificed.

▪ Shift Left

– Programs must truly shift Security and Test to the left to realize time and cost
savings

▪ Agile and DevSecOps go together

– DevSecOps must be fed by Agile software development. Security user
stories must be part of each sprint.

▪ Automation is key

– Security and test automation can reduce delivery time, improve quality and
security, and eliminate human error

© 2019 The MITRE Corporation. All rights reserved.

| 38 |

© 2019 The MITRE Corporation. All rights reserved.

Appendix

| 39 |

Acronyms

Acronym Description

3PAO Third Party Assessment Organization

API Application Programming Interface

AWS Amazon Web Services

CAP Cloud Access Point

CASB Cloud Access Security Broker

CSO Cloud Service Offering

CSP Cloud Service Provider

DT Development Test

DT&E Developmental, Test and Evaluation

FFRDC Federally Funded Research and

Development Center

IaaS Infrastructure as a Service

Acronym Description

MSSP Managed Security Service Provider

ORR Operational Readiness Review

OT Operational Test

OT&E Operational Test and Evaluation

PaaS Platform as a Service

PAM Privileged Access Management

RFP Request for Proposal

SAFE Scaled Agile Framework

SETA Systems Engineering and Technical

Assistance

VPN Virtual Private Network

© 2019 The MITRE Corporation. All rights reserved.

| 40 |

Periodic Table of DevSecOps Tools

© 2019 The MITRE Corporation. All rights reserved.

| 41 |

References

▪ https://www.mitre.org/sites/default/files/publications/MITRE-Defense-
Agile-Acquisition-Guide.pdf

▪ https://xebialabs.com/

▪ https://www.docker.com/resources/what-container

© 2019 The MITRE Corporation. All rights reserved.

https://www.mitre.org/sites/default/files/publications/MITRE-Defense-Agile-Acquisition-Guide.pdf
https://xebialabs.com/
https://www.docker.com/resources/what-container

| 42 |

MITRE is a not-for-profit organization whose sole focus is to operate

federally funded research and development centers, or FFRDCs.

Independent and objective, we take on some of our nation's—and

the world’s—most critical challenges and provide innovative,

practical solutions.

Learn and share more about MITRE, FFRDCs,

and our unique value at www.mitre.org

© 2019 The MITRE Corporation. All rights reserved.

http://twitter.com/MITREcorp
http://www.facebook.com/MITREcorp
http://www.linkedin.com/company/mitre
http://www.youtube.com/mitrecorp
https://plus.google.com/+MitreOrgFFRDCs/posts
http://www.mitre.org/

	DevSecOps – Security and Test Automation
	Purpose
	Bottom Line Upfront
	Outline
	DevSecOps Background
	DevSecOps
	What is Agile + DevSecOps
	DevSecOps Value Proposition
	DevSecOps is a union of Culture, Practices and Tools providing continuous delivery to the end user
	DevSecOps applies automation to deliver functionality: Speed, without sacrificing security and test rigor
	DevSecOps Opportunities and Risks
	Opportunities
	Risks

	Security and Test Considerations for DevSecOps
	Security Considerations
	Shift Left: Security and Test Considerations
	Security
	Test

	Test Oversight Influence Areas
	Test Event Levels, Challenges, DevSecOps Considerations
	Continuous Delivery Testing – Software Release Approaches
	Additional Test Types – Leveraged as Needed

	DevSecOps Processes and Technical Considerations
	Agile + DevSecOps Pipeline
	Agile SCRUM – Team Composition
	Agile SCRUM – Test and Security
	Continuous Integration (CI)
	Continuous Delivery (CD)
	DevSecOps Tools -Examples
	CI-CD on Cloud
	CI-CD System in Operations
	Security in DevSecOps
	DevSecOps Security Tools – Examples
	DevSecOps Testing Tools –Examples
	Cloud Native (AWS, Azure) DevSecOps Testing and Security Tools

	Platform Deployment Options: Containerization verses Virtualization
	Containerization vs. Virtualization
	Containers vs. VMs
	VM Environment
	Container Environment

	Containers vs. VMs Comparison Criteria
	Containers vs. VMs – Security Examples
	Conclusions

	Appendix
	Acronyms
	Periodic Table of DevSecOps Tools
	References

