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Abstract

The IARPA (Intelligence Advanced Research Projects Activity) prod@mUS (Integrated
Cognitive-neuroscience Architectures for Understanding Sensemakingegetagnsemaking”
challenge problems as described in the BAA (Broad Agency Announcement, 2010). These
problems are needed for conducting experiments with human participants, arseésires
neural-computational models of human performance in Test and Evaluation (T&EuBhgvi
researchers have described the cognitive challenges of sensemakimdaynigliy using
conceptual notions like "framing" and "re-framing", which are not suffig@stpport T&E in
accordance with the BAA. To overcome this limitation, a Bayesian-computatiausd! of
sensemaking was developed by dissecting a prototypical example lojented analysis, and by
defining eight discrete steps in a processing cycle dubbed the Octaloop. This nlodetaiés

the Octaloop model and describes how it was used as a computational basis for design of
ICArUS Phase 1 and Phase 2 challenge problems. Other uses of the Octaloop ®Aayo&d |
experiments are also identified. These uses include structured analytigjtess, training of
critical thinking skills, and automated tools for improving the effectivenesgaifigence
analysis.
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1 Introduction

This document develops a computational model of sensemaking, dubléectdleop used to
support the Intelligence Advanced Research Projects Activity (IARP@gram ICArUS:
Integrated Cognitive-neuroscience Architectures for Understandingi@akmg. Further
background on MITRE’s role in Test and Evaluation for ICArUS is provided in a summary
document (Burns, Fine, Bonaceto, & Oertel, 2014) ti(&arUS: Overview of Test and
Evaluation Materialsavailable ahttp://www.mitre.org/publications

The Octaloop model presented herein was developed as a formal basis for géSignut
challenge problems (Burns, Greenwald, & Fine, 2014; Burns, 2014), including methods for
assessing the performance of human subjects and neural models on these chab&rgs.pr
Details of how the Octaloop was applied to the design of ICArUS challenge prolppess &
Section 6. The Octaloop also offers opportunities for applications to real-wondi@anal
techniques, training, and tools, as outlined in Section 7.

1.1 A Conceptual Theory of Sensemaking

ICArUS challenge problems are designed to pose cognitive challengesialiftgpaporal
sensemaking, including six core processes described in the BAA (2010) as:follows

Learn Frames. Construct mental models from the data; i.e., spatial context frames; event
sequence frames (scripts); semantic relational frames.

Recognize Patterns/ Select a Frame: Based on current data, select the appropriate
frame(s) from memory.

Assessthe Frame: Evaluate the quality of fit between data and frame.

Generate Hypotheses: Use the current frame to generate hypotheses regarding missing
data (either confirming or disconfirming) and to predict the future evolution of the dat

Acquire Additional Data: Search for new data to test and complete the frame; assess
value and uncertainty of data and data sources; decide whether to continue to exploit
current data or to explore new sources.

Reframe: Detect anomalies, coincidences, inconsistencies, and ambiguities in the data.
Accept, modify, or reject frame as needed.

These core processes are based on a conceptual framework by Klein, et al k(807 )as the
"data-frame theory'df sensemaking, which addresses the huifaaulty to understand...
"referred to as judgment, apprehension, apperception, and other processes"


http://www.mitre.org/publications

The data-frame theory defines sensemakirghesdeliberate attempt to understand evelps).
114) and includes the following mental representations and processes (pg. 115):

"The initial account people generate to explain events.

The elaboration of that account.

The questioning of that account in response to inconsistent data.

Fixation on the initial account.

Discovering inadequacies in the initial account.

Comparison of alternative accounts.

Reframing the initial account and replacing it with another.

The deliberate construction of an account when none is automatically recognized.”

As such, the theory includes three classes of mental represerdat&rirames, and the

accounts that result from mental processegeferating, elaboration, questioning, fixation,
discovering, comparison, reframing, andconstruction. Klein, et al. (2007) offer more details in

a section titledThe Data-Frame Theory of Sensemakifog. 118), which state8The data-

frame theory postulates that elements are explained when they are fitted into a stituatur

links them to other elements. We use the feame to denote an explanatory structure that
defines entities by describing their relationship to other entitielsé. same section goes on to
say that!'A frame can take the form of a story, ... map, ... script, ... plan, ... [or other] structure
for accounting for the data and guiding the search for more dgtg."118).

As described above and throughout the chapter by Klein, et al. (2007), the notlates of
frames, andaccounts are not specified with the rigor needed to formally measure and model
sensemaking. For example, it is not cleantities andelements refer todata, and/orframes,
and/oraccounts — or how any of these things can be measured or modeled. Even the central
notion of aframe itself is not precisely specified, as the theory says a frame mighthkerm

of a story, map, script, plan, or any other explanatory knowledge structure.

In short, the data-frame theory does not offer a computational specificatioe roental
representations and processes involved in sensemaking. This limitation is imipectuge the
objective of ICArUS is to develop neural-computational models of sensemaking — andebeca
the assessment of such models in Test and Evaluation (T&E) requires a compgutationa
framework for quantification. More specifically, the BAA (2010) requires tl8df dssess
human performance and neuroscience models in Comparative PerformancenAssESPA),
using a numerical percentage to measure how well a neural model matches humantjadgm
decision-making. Additionally, the BAA (2010) requires that T&E compute normative
(Bayesian) solutions, as benchmarks for measuring cognitive biases of huneatssary

neural models in Cognitive Fidelity Assessment (CFA).



1.2 A Computational Approach to Sensemaking

In light of the BAA requirements for CPA and CFA, MITRE developed a Bayesate! of
sensemaking that entails eight steps called the Octaloop. To support CFA dloe®specifies
Bayesian-computational processes as a basis for assessing thébiasese from heuristic
reasoning under uncertainty. To support CPA, the Octaloop enables quantitative compérisons
sensemaking performance between human subjects and neural models.

Here it is important to note that a Bayesian approach is not contrary to theatiaattieory
cited in the BAA. Rather, the Bayesian Octaloop serves to formalize notions siath, as
frames and theaccountsproduced byenerating elaboration questioningfixation,

discovering comparisonreframing andconstruction Also, the Bayesian Octaloop serves to
formalize core sensemaking processes described in the BAA and listedionSel, which are
based on the data-frame theory.

The remainder of this document is organized as follows: Section 2 describes yppratot
situation (taken from Klein, et al., 2007) in which an intelligence analyst wasjeddn
sensemaking. Section 3 defines key terms, suskrasemakindgrames framing, andre-

framing, as formalized in a Bayesian frameworkhgpothesesonfidenceevidenceand
likelihoods Section 4 details the mathematical formulation by which sensemaking is modeled
a cycle of eight steps dubbed the Octaloop. Section 5 demonstrates how the Octalo®poapplie
the situation in Section 2, by dissecting five consecutive cycles of sekiagrimathe story.

Section 6 discusses how the Octaloop has been applied in design of challenge ghattlems
satisfy all requirements of the ICArUS BAA. Finally, Section 7 exgdraew the Octaloop can

be applied beyond ICArUS challenge problems, to advance the techniques, training, aoid tools
real-world intelligence analysis.



2 Motivation

2.1 A Cycle Called the Octaloop

Below is a story of sensemaking in the context of intelligence analysis, leorfoon Klein, et
al. (2007). Numbers that appear in brackets [ ] refer to steps 1-8 of the Octaloouletaitkd
in Section 4. The names of these eight steps are listed below for referencegurpos

[1] Isolating Evidence

[2] Generating Hypotheses

[3] Estimating Likelihoods

[4] Aggregating Confidence

[5] Prognosticating Consequence
[6] Evaluating Consequence

[7] Anticipating Evidence

[8] Discriminating Evidence

These eight steps constitute a cycle of sensemaking, which is typicallyae@s additional
evidence is accumulated, evaluated, and anticipated. In the narrative belevaréive cycles
of sensemaking, each appearing in a separate paragraph. Typically enencigchnd another
cycle begins at steps [8] and [1] of the Octaloop.

2.2 A Story of Sensemaking

Major A. S. discussed an incident that occurred soon after 9/11 in which he \ea® abl
determine the nature of overflight activity around nuclear power plantsvagapons
facilities. This incident occurred while he was an analyst. He nofiethat there had
been increased reports in counterintelligence outlets of overflightlents around
nuclear power plants and weapons facilities. At that time, all nuclear rpplaets and
weapons facilities were “temporary restricted flight” zones. So itiesint [1] there were
suddenly a number of reports of small, low-flying planes around thesdiéaciht face
value it appeared [2],[3],[4],[7] that this constituted a terrorighreat—that “bad guys”
had suddenly increased their surveillance activities. There had not bear@orys of
this activity prior to 9/11 (but there had been no temporary flight ictgins before 9/11
either).

Major A. S. obtained [8] access to the Al Qaeda tactics manual, whiclarest [1] Al
Qaeda members not to bring attention to themselves. This piece of indorrhalped
him to begin to form [2] the hypothesis that these incidents were bdffjuswas a gut
feeling, it just didn’t sit right. If | was a terrorist | wouldri¥e doing this.” He recalled
thinking [3],[4] to himself, “If | was trying to do surveillance howould | do it?” From
the Al Qaeda manual, he knew they wouldn’t break the rules, which to rant that



they wouldn’t break any of the flight rules. He asked himself,’rifd terrorist doing
surveillance on a potential target, how do | act?” He couldn’t put togethemailsie
story that had a terrorist doing anything as blatant as overflights in an aifidr
restricted area.

He thought [2],[3],[4] about who might do that, and kept coming back to thelges

as some sort of mistake or blunder. That suggested student pilots to hammsédec
“basically, they are idiots.” He was an experienced pilot. He knew diahg training,

it was absolutely standard for pilots to be instructed that if they got thes first thing
they should look for were nuclear power plants. He told us that “an entirerggon of
pilots” had been given this specific instruction when learning to flyaBse they are so
easily sighted, and are easily recognized landmarks, nuclear power plantsyaresgtul
for getting one’s bearings. He also knew that during pilot training the vifigat rules
would instruct students to fly east to west and low—about 1,500 feetalBastadents
would [7] fly low patterns, from east to west, from airport to airport.

It took Major A. S. about 3 weeks to do his assessment. He found [8] all relevant message
traffic by searching databases for about 3 days. He picked [1] the three geographic areas
with the highest number of reports and focused on those. He developedot@ghgpw

where airports were located and the different flight routes between. threall three

cases, the “temporary restricted flight” zones (and the nuclear pgilaarts) happened

to fall along a vector with an airport on either end. This added [2],[3]ddpport to his
hypothesis that the overflights were student pilots, lost and using theanpdeer

plants to reorient, just as they had been told to do. He also checké¢a $ee if any of

the pilots of the flights that had been cited over nuclear plants apaves facilities were
interviewed by the FBI.

In the message traffic, he discovered [8],[1] that about 10% to 15%esfet pilots had
been detained, but none had panned out as being “nefarious pilots.” With this
information, Major A. S. settled [2],[3],[4] on an answer to his dums about who
would break the rules: student pilots. The students were probably fajlatgnal flight
rules, not any sort of flight plan. That is, they were flying by lookingheutvindow and
navigating.



3 Definitions

Section 4 will detail steps of the Octaloop, and Section 5 will demonstrate how isdphe
story of Section 2. But first, Section 3 defines key terms used to characteseens&ing from a
computational perspective.

3.1 Summary of Key Terms

Sensemaking is defined as follows, where wordshald italics appear alphabetically in the
glossary of Section 3.2:

Sensemaking is a recurring cycle of obtainirgyidence and updatingonfidence in
competinghypotheses, to explain andpredict an evolving situation.

The above definition is consistent with literature cited in the BAA, includingnKé al. (2007),
who cite Weick (1995), who cites Louis (1980), who described the process as follows:

"Sensemaking can be viewed as a recurring cycle... The cycle begins as individuals form
unconscious and conscious anticipations and assumptions, which serve as predictions
about future events. Subsequently, individuals experience events that may be discrepant
from predictions. Discrepant events, or surprises, trigger a need for explanation, or post-
diction, and correspondingly, for a process through which interpretations of
discrepancies are developed..."

Moving beyond this definition, a comprehensive understanding of sensemaking ultimately
requires computational modeling at functional, psychological, and biological.l@Viisugh

the latter levels are the main focus of ICArUS modeling, design of a chaleablem (to be
solved by models at the biological and psychological levels) first requims@utational theory
of sensemaking at the functional level, in the Marr (1982) sense of specifghat)is the goal
of the computation..., and what is the logic of the strategy by which it can be carried out?"

With that aim, the notion of a frame is formalized here as follows:

Frames are knowledge structures comprishmgpotheses, evidence, confidencesin
hypotheses, andlikelihoods of evidence.

Notice that this definition of a frame goes beyond that of the data-frameg,tbeoause here a
frame always represents data (ieeidence) as well as other knowledge and beliefs (i.e.,

hypotheses, likelihoods, andconfidences) needed to make sense of data. The reason is that
likelihoods are needed for computing confidences in hypotheses, and likelihoods dfeayo
data (evidence) — simply because a likelihood is the probability of evidereeahypothesis.



The data-frame theory instead suggests a frame is everything excapttisganeeded to make
sense of data. Besides excluding data from the frame, that definition sayshanky frame is
not and fails to specify what a frame is. The more formal definition above inagliame cannot
exclude data, if the frame is to be useful for making sense of data. The aboveodedindi
specifies exactly what else besidsslence (data) is needed in order to make sense of a
situation, namelyypotheses, likelihoods, andconfidences. Only when all these components of
frames are made explicit, as in the formal definition above, is it possible to @hgwtframes
might be "learned” and "assessed" and "re-framed" per the BA&'sensemaking processes
listed in Section 1.1. In particular, the notiongraiming andre-framing are formalized here as
follows:

Framing is the formation o€onfidences acrosshypotheses, based omvidence and the
likelihoods of thatevidence being caused by variolypotheses.

Re-framingis a revision ohypotheses and/orconfidences acrosshypotheses, based on
evidence and thiekelihoods of thatevidence being caused by variolnypotheses.

According to these definitions, there are two differences between framdhge-framing. First,
framing is an initial formation of confidences across hypotheses, wherf@sning is the
subsequent revision of a frame formed earlier. Second, in re-framing some corspdhleat
frame may not be re-formed. In particular, re-framing may involve a revisicontitiences
across a set of hypotheses without changing the categoricalhsgotifeses itself. Later Section
5 will identify this type of re-framing across fixed hypotheses in the seaiseg story of
Section 2, as well as a type of re-framing in which new hypotheses are generated.

In all the above definitions, a distinction betwdwspotheses andevidence is especially

important — because it reflects the causal structure (Pearl, 2000) that srerBemaking in
bothexplanation andprediction. This causal structure is: hypothesesvidence; where
hypotheses are possible causes of evidential effects (i.e., ealsféscts), and inferencing can
proceed either forward (in the direction of the arrow) or backward. In backmfardncing, a
sensemaker is explaining evidence. In forward inferencing, a sensespkedicting evidence.

The distinction betweeconfidence andlikelihood then parallels the distinction between
hypotheses andevidence. That is, confidence refers to the probability of a hypothesis given some
evidence, whereas likelihood refers to the probability of some evidence diypotaesis.

3.2 Glossary of All Terms

Below is a more comprehensive set of definitions, in alphabetical order, inclulidafighed
terms that appear toold italics above:

Bayesian refers to the use of Bayes Rule for updating beliefs/potheses given

evidence. Bayes Rule is mathematical specification for tppier probabilities of
hypotheses and conditionalikelihoods of evidence are combined to compupesterior
probabilities of hypotheses. Bayesian also refers to the optimal computation of expected



utility in decision-making situations, as the produgrabability andutility summed
across all possible outcomes of an action that may be chosen.

Confidenceis a measure of belief in the truth ofigpothesis, given somevidence (or
prior to someavidence). Confidence is quantified byprobability.

Evidence s factual information (i.e., data) about an uncertain situation, obtained by direct
observation or some communication (e.g., from a source of intelligence).

Explanations are backward inferences to compaotefidences in hypotheses, given
evidence.

Frames are knowledge structures comprismgpotheses, evidence, confidencesin
hypotheses, andlikelihoods of evidence.

Framing is the formation o€onfidences acrosshypotheses, based omvidence and the
likelihoods of thatevidence being caused by variolypotheses.

Hypotheses are possiblexplanations of evidence, involving causal reasons fevidence
as reflected biikelihoods.

| nferencing is the assignment a@bnfidences to hypotheses (backward inferencing) or
the assessment bkelihoods for evidence (forward inferencing).

Likelihood is a measure of belief in the occurrence of sewdence, given ahypothesis.
Likelihood is quantified byprobability.

Posterior refers to the result of Bayesian update, in whiclprior probabilities (of
hypotheses) are combined with conditionikelihoods (of evidence givenhypotheses) in
order to computeosterior probabilities (of hypotheses givenevidence). This is a
backwardnference, resulting in thexplanation of a situation.

Predictions are forward inferences to compliteslihoods of evidence, givenhypotheses.
Prior refers to theprobability of ahypothesis before obtaining somavidence.

Probability is a mathematical measure of belief in the truth lofmthesis or occurrence
of someevidence, quantified by a number in the range 0-1.

Re-framing is a revision ohypotheses and/orconfidences acrosshypotheses, based on
evidence and thiekelihoods of thatevidence being caused by variolnypotheses.

Sensemaking is a recurring cycle of obtainirayidence and updatingonfidence in
competinghypotheses, to explain andpredict an evolving situation.

10



Utility is a mathematical measure of value or consequence for the outcome of an action
that may or may not be chosen among a set of possible actions.

11



4 Formulation

4.1 A Cycle of Sensemaking

Based on the formal definitions of Section 3, and the anecdotal motivation in Sectionl2, a cyc
of sensemaking can be characterized in termghat is computedt each step of the cycle.
Previous research (Burns, in press; 2012; 2011; 2010; 2007; 2006; 2005) has shown that a
Bayesian approach (Edwards, 1961; 1954; Fischhoff & Beyth-Marom, 1983) provides a useful
framework for analyzing the process of sensemaking (and its product calletion

awareness", see Klein, et al., 2007, pp. 119-120) from a computational perspective, including
various heuristics and biased deviations relative to Bayesian norms.

Using the Bayesian approach, a cycle of sensemaking is formally expmesisedallowing
eight steps dubbed tifactaloop

4.2 Eight Steps of the Octaloop

[1] Isolating Evidence: After [8] Discriminating Evidence from the previous cycle, a
sensemaker M decides which evidence e among all perceived evidence {e} isstxlbe
in the current cycle of sensemaking. Some evidence in {e} is necessarily igndeast a
temporarily. The selection of e is a matter of attention, and is affectelslourrent
understanding of the situation after the previous cycle of sensemaking.

[2] Generating Hypotheses: After (or perhaps while) isolating evidence e, M creates or
maintains a set of hypotheses;fithat serve as possible explanations of e. M also
represents a prior confidence B(lA each hypothesis, before assessing how the evidence
e affects confidence across the set of hypothesgsThe values of {P(K} satisfy %

P(H) = 1, such that each PjHepresents a relative confidence in the truth of hypothesis
H; within the set of hypotheses {

[3] Estimating Likelihoods: Along with each hypothesis;ldnd prior P(k), M also
represents each likelihood P(g|that the evidence e would be observed if the hypothesis
H; was true. Initial estimates for these likelihoods would arise at step [2]&beage
Hypotheses, because likelihoods of the form RYeli¢ what govern the generation of
hypotheses Hipon observing evidence e. However, further cogitations are often
involved in refining the estimates of likelihoods, after a sg} §flhypotheses has been
established.

[4] Agar egating Confidence: Using the priors P(hland likelihoods P(efiq for all H in
the set {H}, M updates his prior beliefs to obtain posterior beliefs;f)HThese
posteriors are computed as normalized products of priors and likelihoods, per Bayes Rul

12



as follows: P(kle) = P(H) * P(e|H) / P(e), where the denominator is a normalizing factor
computed as: P(e) 5 P(H) * P(e|H), and the sum is taken over all hypotheses in the set
{Hi}. This normalizing factor ensures that the posterior probabilities (like the prior
probabilities) sum to 1, i.ex; P(H|e) = 1.

[5] Prognosticating Conseguence: Sometimes the sensemaker M can recommend or
implement actions that affect the operational situation (e.g., to defendtabesass).

Any outcome of an action will depend on the actual state of the situation, which is
uncertain and modeled by M's posterior beliefs {1 Thus using these posteriors to
model potential states of the actual world, and given a set of possible acfjdhat{a

might be taken, M predicts the chances@{oof various outcomes (pfor each possible
action (g). M also assigns a value or consequence to each outcome, modeled
mathematically by utility U(dg). Finally, the Bayesian decision is to choose the acfion a
that maximizes expected utility;,)computed for each as follows: X =2, P(alg) *

U(oxla).

[6] Evaluating Conseguence: After taking an action that affects the situation, M

observes the consequence and has a reaction. For example, the reaction to an putcome o
that was expected at probability P(would be quantified by Shannon's (1949)
information-theoretic measure of surprisal, -logP(Im effect an outcomec@epresents

further information about the situation, and M's reaction tmay affect subsequent

steps and cycles of sensemaking.

[7] Anticipating Evidence: Based on the current hypothesesg}{#hd posteriors

{P(Hile)}, along with likelihoods of the form P(f|ld) estimated for future evidence f that
may be observed, M forms expectations (i.e., predictions) about each f in a setldé&possi
evidence {f} as follows: P(f) =; P(H|e) * P(f|H,e), where the sum is taken over all
hypotheses in the set {HSometimes M has control over which evidence will be
obtained next, and he makes a choice among options in a process known as "foraging" for
information (Pirolli, 2007). The optimal choice would maximize expected utilitghm

like step [5], which was a decision to take action that directly impacts theioparat
situation. But step [7] differs in that the actionst@ options for collecting information,

and the outcomes@re resulting gains in information. Thus probabilitiesjo

represent the chances of various outcomes for each action (i.e., to get imioynaeud
utilities U(acg) represent the associated values of those outcomes (i.e., gains in
information). For example, the information gain k&) can be computed (Burns, 2011)

in terms of entropy divergence (Kullback & Leibler, 1951) across a set of hgesthe

{Hi}, measured from before an actior) (@ after an outcome (pof that action.

[8] Discriminating Evidence: After anticipating evidence, M obtains actual evidence
(via active collection or passive observation) and represents this new eidéroe

the next cycle of sensemaking. The set {€'} is an interpretation of rawaedatanay be
uncertain, so in fact it might be considered a set of hypotheses {E'}. If so, then a
secondary cycle of sensemaking would be embedded within step [8], in order tskestabl
the set of evidence {e'} that will be considered factual and carried forwarelpt¢1g.

13



Clearly some steps of this cycle are extremely complex. For exanggd8fmay involve a
secondary cycle of sensemaking within the primary cycle, in order to obtaiindie’{E'}.
Similarly, steps [7] and [1] may involve meta-sensemaking, where M would modei/his
sensemaking processes in order to optimize the collection of evidence at step El¢einuhsof
evidence at step [1]. By necessity, these and other complexities ofaddlsensemaking are
greatly simplified in ICArUS challenge problems — as discussed furtt&egtion 6.

As outlined above, the Octaloop is a normative (Bayesian) model of the sensengaléng c
However this same framework can be used as a descriptive model of cognitiva)huma
processing, simply by treating human heuristics as naturally bounded apgtiorsro
Bayesian computations. In fact the Bayesian framework is ideal for megsmd modeling
psychological biases, precisely because it is a Bayesian frameworkreredsiugable for
computing normative benchmarks as needed to measure subjective biases.
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5 Demonstration

Section 2 described an anecdotal story, Section 3 defined more formal concepéetiamdS
detailed a computational model. Section 5 now maps this model back to the story in order to
demonstrate how sensemaking can be analyzed from a computational perspectitagyThe s
contains five cycles of sensemaking, each addressed in a separate subseetion bel

5.1 Suspecting "The Bad Guys"

Major A. S. discussed an incident that occurred soon after 9/11 in which he \ea® abl
determine the nature of overflight activity around nuclear power plantsvaapons
facilities. This incident occurred while he was an analyst. He nofiethat there had
been increased reports in counterintelligence outlets of overflightlents around
nuclear power plants and weapons facilities. At that time, all nuclear rpplaets and
weapons facilities were “temporary restricted flight” zones. So itieaint [1] there were
suddenly a number of reports of small, low-flying planes around thesdiéaciht face
value it appeared [2],[3],[4],[7] that this constituted a terrorighreat—that “bad guys”
had suddenly increased their surveillance activities. There had not bear@orys of
this activity prior to 9/11 (but there had been no temporary flight itgins before 9/11
either).

The first cycle begins as the sensemaker (hereafter denoted M) is [Bijrinating Evidence
and [1] Isolating Evidence, by identifying a body of evidence {e} from coungdliggnce and
attending to an item of evidence e, denoted hese=asidden increase (after 9/11) in reported
flight zone violations. M thought this evidence constituted a terrorist threat, so he was [2]
Generating Hypotheses {Habout possible causes of the evidence s, and [3] Estimating
Likelihoods of the form P(s}Hfor various H

These likelihoods govern which hypotheses are recalled from long-term ynentbrepresented
in working memory as possible explanations of s. The story mentions a hypétheals

Qaeda, which suggests that evidence s was strongly associated with A, i.e., A wdyg edise
of s. Besides this likelihood P(s|A), M would also be representing a prior propBipAif that
reflects his preconceived confidence in A, i.e., in the absence of evidence s.

Although the story does not mention it, the sensemaker M would have generated other
hypotheses besides A. At the very least M must have generated the hypoihesist Al

Qaeda, because he was clearly not certain that the evidence s was caused by A. Sosh this
cycle of sensemaking, M would be representing at least two hypotheses {A, ~Ahioitking
memory. He would also be representing two priors P(A) and P(~A), and two likeliR¢=ld3d
and P(s|~A).

Unfortunately this story, like most stories, does not provide numeradaks for any of these
probabilities. And if asked, the sensemaker M might even denyhéhegpresented such values
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in his mind. But actually M must mentally represent the probadsliit least implicitly, simply
because he is not equally confident in A and ~A. For example, R{sjdlYl be represented as
the associative strength between s and A, where A is ajwsause of s. This strength differs
from the associative strength between s and ~A, which is smaller béddusows a reason why
A would cause s but does not know a reason why ~A would cause s. Thégrein$ that the
magnitudes of these associative strengths must be repreaetdadt implicitly in the mind of a
sensemaker, even if they are not reported explicitly as probabilities.

Here, for purposes of quantification, we can assign numbersréhabasistent with the narrative
of the story. For priors, we might assume P(A) = P(~A) = 0.90 ifad no prior beliefs about
the probabilities of A or ~A. However, the events of the story toakepkoon after the 9/11
attacks, and the narrative suggests that M may have thought P®@&)AY. Thus for purposes of
guantification, the analysis here will assume P(A) = 0.80 and P£~@p0. Note that P(A) +
P(~A) = 1, because A and ~A are mutually exclusive and exhaustive hypotheses.

Also consistent with the story, we might assume P(s|A) = 0.90P&sidA) = 0.50 for the
likelihood of observing the evidence s if A or ~A were true, respagti But notice that, unlike
the priors, these likelihoods need not (and usually will not) sum totéabth®(s|A) + P(~s|A) =
1, because if A is true then either s or ~s would occur. Thussthened value P(s|A) = 0.90 and
implied value P(~s|A) = 1 - 0.90 = 0.10 together mean that M thinksa&d® is much more
likely to cause s than ~s, because M can think of a "reasonAwinyuld cause s rather than ~s.
Similarly, P(s|~A) + P(~s|~A) = 1, because if ~A is tiluen either s or ~s would occur. Here the
assumed value P(s|~A) = 0.5 means that s would be a non-causahdwnita(i.e., for no
apparent reason) effect if ~A was true, such that P(s|~A) = P(~s|e-AP=

After [3] Estimating Likelihoods as described above, the cyolgitues as M engages in [4]
Aggregating Confidence. According to the story M is led to belibaethe evidence s was most
likely caused by the "bad guys" (A). This belief can be quaxtiis a normalized product of
priors and likelihoods, computed for each hypothesis (A and ~A) via Bayes Rule asfollow

P(A|s) = P(A) * P(s|A) / P(s)

P(~A|s) = P(~A) * P(s|~A) / P(s)
where P(s) is a normalizing factor appearing in the denomgjatomputed from the sum of
numerators as follows:

P(s) = P(A) * P(s|A) + P(~A) * P(s|~A).
Using the numbers noted above, these equations produce posterior prebalfiR(A|s) = 0.88
and P(~A|s) = 0.12. In words, M would be thinking the most probable explargtis is Al

Qaeda's surveillance activities. Then based on this belief, M vbeuld] Anticipating Evidence
as he prepares to enter the next cycle of sensemaking. This anticipation fiemtld/faether and
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where he would seek further evidence. It would also affect how hetgdines attention in [8]
Discriminating Evidence after evidence is received.

This concludes the first cycle of sensemaking, which touched stepl of the Octaloop except
[5] Prognosticating Consequence and [6] Evaluating Consequence. Westeps refer to
operational actions and outcomes, rather than analytical judgraedtdeliefs. The story is
about the sensemaking of an intelligence analyst M, and does noteirarol operational actions
by M or others that he may advise to affect the operationaltisitueBut more generally
sensemaking may include both analytical and operational componentbaamslwhy steps [5]
and [6] are included in the Octaloop.

Similar to the choices and outcomes of operational actions in &leasd [6], steps [7] and [8]
address choices and outcomes of analytical actions to obtain aod a&xgpher information. The
main difference lies in the modeling of utility, which for [S5hda[6] concerns the value to
operations, but for [7] and [8] concerns the value of information. Accordirtbet story, M's
belief that A was probably true led him to seek further inforomatibout A from the Al Qaeda
manual. Per the story:

5.2 Reviewing their Tactics

Major A. S. obtained [8] access to the Al Qaeda tactics manual, whiclgted [1] Al

Qaeda members not to bring attention to themselves. This piece of indorrhalped
him to begin to form [2] the hypothesis that these incidents were bdjuswas a gut
feeling, it just didn’t sit right. If | was a terrorist | wouldri¥e doing this.” He recalled
thinking [3],[4] to himself, “If | was trying to do surveillance howould | do it?” From

the Al Qaeda manual, he knew they wouldn’t break the rules, which to kant that
they wouldn’t break any of the flight rules. He asked himself,’tifd terrorist doing
surveillance on a potential target, how do | act?” He couldn’t put togethemailsie

story that had a terrorist doing anything as blatant as overflights in an aifidr
restricted area.

Here a second cycle of sensemaking begins as M is [8] Disating Evidence and [1]
Isolating Evidence. Although the story does not say so expliciiBset steps occur after an
implicit step [7] Anticipating Evidence in the previous cycfesensemaking, because clearly M
had some expectation about what he would find in the Al Qaeda manualeAibpae expected
the manual would say something that would shed light on the likelih(sjd)PBut we cannot
tell from the story if he expected to learn something that wawgickase or decrease his estimate
of P(s|A).

Notice that the evidence (Al Qaeda manual) in this cycle is kriiovae caused by A rather than
~A. Therefore this evidence actually represents new knowleoigeat @ likelihood P(s|A) that
was estimated in the previous cycle of sensemaking. Based oevias/,r M now thinks that
P(s|A) is very small, because the manual instructs Al Qaedabers not to bring attention to
themselves. For example, perhaps after reading the manual M tir{apht = 0.01. In effect, M
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realized that his previous estimate of P(s|A) = 0.90 was wioecpuse he learned of a very
good reason (from the Al Qaeda manual) for why A would not ca(eedsinstead would cause
~s). So M repeats the previous cycle of sensemaking, but now usjAg £(8.01 instead of
P(s|A) = 0.90. The Al Qaeda manual says nothing about other groups¢-A(s|~A) remains =
0.50.

Using the revised likelihoods, along with the original priors P(A).80 and P(~A) = 0.20, the
Bayesian equations produce posteriors as follows: P(A|s) = 0.07 aA{P£ 0.93. In words,
the sensemaker's beliefs have undergone a reversal, from Avsgingrobable to ~A being
very probable, based on a change in the likelihood P(s|A). This éxample ofe-framing in
which additional evidence (from the Al Qaeda manual) changes M'satstoha likelihood, and
this in turn changes M's beliefs about the most probable explanation of previous esi(femte
counterintelligence) across a set of hypotheses {A, ~A}.

As a result, the story says that"bkegan to form the hypothesis that these incidents were bogus".
But notice that this is not really a new hypothesis, becaudeyfitehesis ~A had been generated
earlier along with the hypothesis A. Instead at this point &éehy began to think that ~A was
more probable than A, according to the Bayesian calculations oudlbeat, which correspond
to steps [3] Estimating Likelihoods and [4] Aggregating Confidence of thadop.

Also at this point the story says that M began to wonder who, besigesorist, would possibly
break the rules and hence cause the observed evidence s. Eventuadiyeidted a novel
hypothesis in answer to this question, but it was not until the nebd affsensemaking. What is
interesting here, in the present cycle, is that M felt compétievonder about the hypothesis ~A
and eventually generate a new hypothesis (regarding student).pilotsppears that M's
motivation for doing so was twofold. First, he now thought ~A was thet rposbable
hypothesis. Second, his likelihoods for this most probable hypothesisMer®)P(s|~A) = 0.50
and P(~s|~A) = 0.50, so he had no causal basis or reason by which hexgbaild the evidence
s. In other words, M was pretty sure he knew who was not resporaibtesfoverflight activity,
but he still did not have a clue as to who was responsible. And appdrerfidlt a strong need to
establish who was probably responsible, rather than who was not probably responsible.

5.3 Abducting a Reason

He thought [2],[3],[4] about who might do that, and kept coming back to theligyes

as some sort of mistake or blunder. That suggested student pilots to hamsdec
“basically, they are idiots.” He was an experienced pilot. He knew dbaing training,

it was absolutely standard for pilots to be instructed that if they gét tlos first thing
they should look for were nuclear power plants. He told us that “an entirerggon of
pilots” had been given this specific instruction when learning to flyaBse they are so
easily sighted, and are easily recognized landmarks, nuclear power plantsareegéul
for getting one’s bearings. He also knew that during pilot training the vitigat rules
would instruct students to fly east to west and low—about 1,500 feetalBastadents
would [7] fly low patterns, from east to west, from airport to airport.
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Motivated by his desire to find a better (causal) explanatioth®evidence s, M initiated this
third cycle of sensemaking without the introduction of any new egal&om steps [8] and [1].
That is, M engaged in [2] Generating Hypotheses about who was responsibletirreadizing
that Al Qaeda (A) was probably not responsible.

The result is a new hypothesSs= Student pilots (and not Al Qaeda), based on high associative
memory strength between S and s. This strength, in turn, refleetsson (i.e., knowledge) for
why S would cause s. That is, given M's expert knowledge as ahglahinks P(s|S) is high
because he knows why students would frequently fly over nuclear power plants. ddligexie
might assume P(s|S) = 0.90 because students have a reasonifiy sawbereas P(s|~S) = 0.50
because non-students may or may not have a reason for causing s.

At this point M's set of hypotheses can be characterized aS,{AS), where-S = Not student
pilots (and not Al Qaeda). So here thee-framing is more comprehensive than we saw in the
previous cycle, because here we have new hypotheses as n@l dkelihoods associated with
those hypotheses. For priors, we can assume P(A) = 0.80 as batbteea assume P(~A) =
0.20 is split equally between the two hypotheses that were not prgviaisshguished within
~A such that P(S) = P(~S) = 0.10. For likelihoods, we have P(SADE from the previous
cycle of sensemaking, and now from step [3] of the present eylbave P(s|S) = 0.90 and
P(s|~S) = 0.50. Finally after [3] Estimating Likelihoods in fashion, Bayes Rule is once again
used for [4] Aggregating Confidence.

The resulting posteriors are: P(A|s) = 0.05, P(S|s) = 0.61, ansP£&B4. In words, M thinks
S is about ten times more probable than A, and he also thinks S iswaiceuts probable as ~S.
As in an earlier cycle of sensemaking, where M thought to cotieilAl Qaeda manual, his
beliefs here lead to [7] Anticipating Evidence that can bettéindigsh the cause (A, S, or ~S)
of evidence s. Also as in earlier cycles, the story does noiwvkgyM chose to collect the
evidence about flight paths (analyzed in the next cycle of sekseg), but presumably he
expected this evidence would help in establishing relative confidence in S v8rsus ~

5.4 Collecting More Data

It took Major A. S. about 3 weeks to do his assessment. He found [8] all relevant message
traffic by searching databases for about 3 days. He picked [1] the three geographic areas
with the highest number of reports and focused on those. He developedot@ghgpw

where airports were located and the different flight routes between. threall three

cases, the “temporary restricted flight” zones (and the nuclear pgilaarts) happened

to fall along a vector with an airport on either end. This added [2],[3]ddpport to his
hypothesis that the overflights were student pilots, lost and using theanpdeer

plants to reorient, just as they had been told to do. He also checké¢a $ee if any of

the pilots of the flights that had been cited over nuclear plants apaves facilities were
interviewed by the FBI.
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In this fourth cycle of sensemaking, M begins by [8] DiscrimintaEvidence and [1] Isolating
Evidence. He found that vectors through restricted zones had airpoitsesread, and the story
says this evidence added support to his hypothesis (S). But actually the eViide¢atiected his
estimates of likelihoods, which in turn affected his confidence ih égpothesis {A, S, ~S}.
More specifically, M's finding that some vectors between airguatsed directly over nuclear
power plants led him to increase the likelihood P(s|S) and dectleasiéelihood P(s|~S),
relative to his earlier estimates for these same likelihdodhat respect thee-framing here is
much like that in the second cycle, where reading the Al Qaedaahked M to decrease the
likelihood of P(s|A).

For example, based on his geospatial analysis, perhaps M inctieadigelihood of P(s|S) from
0.90 to 0.95, and decreased the likelihood of P(s|~S) from 0.50 to 0.10. The incrEésiS)
reflects M's finding of airport vectors over nuclear plants, whiatrtelased his belief that S
would cause s. The decrease came from his finding of other jfleghs that would presumably
be used by experienced pilots, which decreased his belief thadu8 gause s. Notice that the
decrease in P(s|~S) is more drastic than the incred¥s|®), because P(s|S) = 0.90 was already
high, whereas previously P(s|~S) = 0.50.

Assuming the revised likelihoods are P(s|A) = 0.01, P(s|S) = 095 0.10, and using the
previous cycle's priors P(A) = 0.80, P(S) = 0.10, and P(~S) = 0.10, #esiBa posteriors are
computed are follows: P(A|s) = 0.07, P(S|s) = 0.84, and P(~S|s) =®Werds, M now thinks
that S is about ten times more probable than either A or ~S. Tieusla¥eloping the flight path
overlays (and reviewing the Al Qaeda manual), M is even mantaic that the most probable
explanation for the overlflight activity is student pilots (who are not members Qaétia).

As in previous cycles of sensemaking, these beliefs lead Metofsgher information that will
help establish relative confidence in competing hypotheses. Onitg egastory does not say
exactly why M decides to check the FBI records. Perhaps hehhdtlug records might say
whether violators were students or not (i.e., S versus ~S); or penkagppwught the records
would uncover any ties that pilots had to Al Qaeda (i.e., A versus ~A).

One interesting aspect of this story is that M chose to spgrsdwaeeks on the overlay analysis
before checking the FBI records. Assuming that M's primarge@nwas the threat of Al Qaeda
activity, and therefore the probability of A versus ~A, it is cusi that he first chose to perform
the overlay analysis, which presumably would help distinguish S #&mbut not help
distinguish A from ~A. So although the story does not say, it appears/ felt the probability
of A was low enough, and he was more concerned with finding evidersigpport his belief
that S was the most likely cause of s. In other words, M's tyritmi further analysis was to
establish what did cause s (which he suspected was S), rather than what did not cause s

This behavior might be characterized a€@anfirmation Bias(Nickerson, 1998), because M
chooses to collect evidence that pertains to a more probable (armbiegquential) hypothesis
S, rather than collect evidence that pertains to a less probaide nfare consequential)
hypothesis A. But it is not clear whether the behavior was lactuan-normative (sub-optimal)
or not. And the answer to that question would require that manypaoaeneters of the situation
be identified and quantified — including each option available to the sekeeifior collecting
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information, along with the expected costs and benefits (of wigtitrbe learned from further
information) with respect to the analytical functions and operationigisions that M's
sensemaking might support.

5.5 Concluding "It's Students”

In the message traffic, he discovered [8],[1] that about 10% to 15%esfet pilots had
been detained, but none had panned out as being “nefarious pilots.” With this
information, Major A. S. settled [2],[3],[4] on an answer to his dums about who
would break the rules: student pilots. The students were probably fajlatgnal flight
rules, not any sort of flight plan. That is, they were flying by lookingheutvindow and
navigating.

In this fifth and final cycle of sensemaking, the result ofdB¢l [1] was a finding of = no
nefarious pilots identified in the FBI interviews. Here the evidence n is like s in that it could
feasibly be caused by any of the candidate hypotheses: {ASE, This differs from the
evidence considered in the second cycle (Al Qaeda manual), whitginpeonly to A; and
evidence considered in the fourth cycle (flight path analysis), wiectains only to ~A (i.e., S
and ~S). Here in the fifth cycle M has new evidence that perta each hypothesis as he
performs step [3] Estimating Likelihoods and step [4] Aggregating Confidence

The new likelihoods that must be estimated are probabilities ofreed® conditional on each
hypothesis {A, S, ~S} but also conditional on the previous evidence su&ecapresumably
comes from a different and diverse source of intelligence thacotingerintelligence reports s,
we can assume that n and s are independent. Thus the likelihoodseofanditioned only on
hypotheses, as follows: P(n]A), P(n|S), and P(n|~S). For exabasked on the sample of pilots
that had been interviewed, a finding of no nefarious pilots might sugga®\) = 0. But because
the sample is limited to 10-15% of pilots, and because interviewdadé would not be 100%
reliable in establishing ties to Al Qaeda, M might assumgAP&0.01 and P(~n|A) = 0.99. On
the other hand, it appears the FBI data were uninformative vageceto the student status of
pilots. So for students we have P(n|S) = 0.50 and P(~n|S) = 0.50, arfdraten-students we
have P(n|~S) = 0.50 and P(~n|~S) = 0.50.

Armed with these three likelihoods, P(n|A) = 0.01, P(n|S) = 0.50, andSp@@|[0.5, Bayes Rule
is used to update the posteriors computed in the previous cycle of akirggeriihose posteriors
become priors in the present cycle: P(A|s) = 0.07, P(S|s) = @84 (aS|s) = 0.09. Combining
these priors with the likelihoods via Bayes Rule we obtain thewolly posteriors: P(A|n,s) =
0.001, P(S|n,s) = 0.90, and P(~S|n,s) = 0.10. In words, after five cycksns#making the
sensemaker M is now very sure the evidence (s and_n) is notnexplay Al Qaeda activity,
P(A|n,s) = 0.001. He is also pretty sure that the evidence is maglay activities of student
pilots following visual flight rules, P(S|n,s) = 0.90.

Notice that this fifth cycle of sensemaking involvededraming unlike the other two types we
have seen. That is, there are no changes to any previously-edtitkalihoods, and there are no
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newly-generated hypotheses. Instead there is new evidencertnaifr independent source and
associated likelihoods P(n|A), P(n|S), and P(n|~S) acrosed $bt of hypotheses {A, S, ~S).
The result is a new set of posteriors that reflect the agtyoegof original priors (from the first
cycle of sensemaking) and likelihoods of all evidence (counterintetiégyesports, Al Qaeda
manual, flight path overlays, and FBI interviews).
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6 Application

Section 5 demonstrated how real-world sensemaking could be analyzed from a donglutat
perspective, using the Octaloop. Section 6 now discusses how the Octaloop has been used as a
basis for designing ICArUS "challenge problems”, which pose prototypicaéngel of

sensemaking within constraints imposed by the BAA.

The discussion here is intended to be general and hence does not address aetivildual i

tasks or trials of the Phase 1 or Phase 2 challenge problems. For those datkits, are

referred to the Phase 1 design document (Burns, Greenwald, & Fine, 2014) and the Phase 2
design document (Burns, 2014).

6.1 The Importance of Likelihoods

One of the most important insights from Section 5 islikaihoods are central to sensemaking.
This is noteworthy because likelihoods are not mentioned or modeled in the "dagatfraory,
or the core sensemaking processes identified in the BAA, yet they &al coimponents (along
with hypotheses, evidence, andconfidences) of frames. Any sensemaker in the real-world or
laboratory must mentally represent likelihoods, at least implicitly. Umfiately, likelihoods are
usually not expressed explicitly or measured numerically, as we saw in togypics| story of
Section 2. And in that case it is impossible to model and measure sensemakivetcelat
normative (Bayesian) standards — as needed to gain a computational understanding of
sensemaking, and as needed to assess performance and biases per thBKRAruS

Basically ICArUS experiments must either provide likelihoods as inputs torhsuaigects (and
neural models), or else measure the likelihoods that are being used by thoseuhjetds @nd
neural models) as they make sense of evidence. As a practical mattemgitags for human
subjects to report all likelihoods in each cycle of sensemaking. And even if humanssubjec
would be willing to do so, it is not feasible for experimenters to measure aVdraman
performance (per the ICArUS BAA) when all subjects are using theirpessonal estimates of
likelihoods.

Finally, even if it were feasible, each subject's personal likelihoods woulddoteafby the real-
world knowledge that he or she brings to an experiment — much like the story in which a
sensemaker estimated the likelihoods of flight zone violations based on his ownregasa
pilot. The ICArUS BAA requires that challenge problems be designed tonmathe effects of
rich and sophisticated knowledge representations (RASKRS) held by human sbkjeaise
neural models being built and tested in the program will not possess the samé&rexpkatge.

For these reasons, likelihoods are given to humans and models as input to sensertesiag in
of the ICArUS Phase 1 and Phase 2 challenge problems. In effect, salgegutevided with the
results of step [3] Estimating Likelihoods, as if this step were beingrpeetl by a teammate or
system rather than as part of their own sensemaking cycle.
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6.2 Hypotheses and Evidence

By definition (per Section 3), likelihoods are probabilities of the form P(e|H). &subject is to
be given all the likelihoods needed for sensemaking (per Section 6.1), then bytnéeessi
subject must also be given the evidence (e) and hypotheges fach cycle of sensemaking.
Thus like step [3] Estimating Likelihoods, subjects must be provided with the ressiteps [8]
Discriminating Evidence, [1] Isolating Evidence, and [2] Generating Hypathest@er than
performing these steps themselves.

This may make ICArUS challenge problems feel somewhat unnatural tcigearts in
experiments, as analysts are used to performing all steps themselvesrmeirt with human
teammates rather than machine systems. Participants are also not useding iapgrmediate
results, especially not in numerical fashion, which they must also do in IC&pSiments.
However these experimental controls are required to enable rigorous modelingasuting of
sensemaking per the ICArUS BAA.

Regarding steps [8] and [1], there is another reason for providing subjectsatuite$eof

evidence (i.e., data) rather than requiring that they extract those $efatumeraw sensory
representations. The reason is that low-level visual perception and naturagEpgueessing

are excluded from the scope of the ICArUS program. Like RASKRs discussed ERDAMES
models are not being developed to solve problems of vision or language. And because neural
models will not have those capabilities, human subjects should not exploit their owilitapa

for vision and language if comparisons between humans and models are to be meaningful.

6.3 The Nature of Re-Framing

In analyzing the story of sensemaking, Section 5 identified three diffgpesdg ofre-framing.
These three types can be characterize&basicting Revising andUpdating Abducting
occurred in the original framing that generated hypotheses in the set {A, ~A}, thenralgaer
re-framing that generated new hypotheses in an expanded set {A, Rev&ingoccurred
when the sensemaker revised a likelihood based on his review of the Al Qaeda Rewigadg
also occurred when the sensemaker revised likelihoods associated with studentdwiteria-s
causing flight zone violations, based on his analysis of flight paitgatingoccurred only in
the final cycle of sensemaking, when posteriors from the previous cycle d#uawpriors that
were then updated with likelihoods of evidence from FBI interviews.

All three types of re-framing are clearly applicable and important idifeaensemaking.
However, ICArUS challenge problems are constrained to the last typdrafmiayg, i.e.,

Updating for three reasons. First, as described in Section 6.1, likelihoods are given ttsshjec
they are not estimating and re-estimating (Revising their own likelihoods. Second, as
described in Section 6.2, hypotheses are given to subjects so they are not geferatin
Abducting their own hypotheses. Finally, the need to avoid RASKRs requires that subjects be
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prevented from using their expert knowledge to estimate (and re-estirkelidplbds or
generate hypotheses. These processes are governed by RASKRs worickaknsemaking, so
they simply cannot be tested in challenge problems that avoid RASKRSs.

Needless to say, any or all of these constraints (imposk&eatihoods, hypotheses, and
evidence) might be relaxed in extending and applying the Octaloop beyond ICArUS challenge
problems. Several ideas for such extensions are outlined in Section 7 of this document.

6.4 Three Functions of Sensemaking

In summary of how the Octaloop applies to ICArUS challenge problems, it is tséighlight
three sets of steps in the Bayesian framework. These three sets of slepthmee functions of
sensemaking, namelinferencing Decision-Making andForaging

First and foremost, sensemaking is a process of forward and badkfeaehcing The forward
inferences include estimating likelihoods of the form P(e|H) for evidehcgvén hypotheses

(H). The backward inferences involve aggregating priors and likelihoods to obtainqrestéri

the form P(H|e). Because likelihoods are given to subjects in human experiGantsS

challenge problems are focused on the backward inferences in a form of iregfkamown as
BayesiarUpdating(see Section 6.3). The steps of the Octaloop that model this function are [1],
[2], [3], and [4].

The remaining steps of the Octaloop address choices (decisions) madcenbgraaker, based
on judgments (inferences) made in earlier steps noted above. These choibgs@rgaicate
the control of experiments performed with ICArUS challenge problems. Thanrsathat each
choice changes the "game state" (context) for future judgments, scubgatt will actually be
receiving different stimuli depending on their sequence of choices throughgarha task”
(mission). This makes it difficult or impossible for experimenters to compuonesaingful
"average" of human sensemaking performance across subjects, as requieetCaytyS BAA.

For that reason, only selected missions of the ICArUS challenge problems iokiolees by
participants, and the options for choices are extremely constrained to mexgermental
control. These missions address choices of two types, nabedision-MakingandForaging
Decision-Makingefers to operational choices of the sort that are not usually made by
intelligence analysts. However analysts do analyze possible coursg®of and advise
operational decision-makers, so this function of sensemaking is captured in sessi@hs of
the ICArUS challenge problems. The relevant steps of the Octaloop are [5] and [6]

Another type of choice more often made by intelligence analysts involvestive @ollection or
passive attention to further information about a situation. In order to addresmthiseri, known
asForaging several missions of ICArUS challenge problems relax the constraiettd® 6.2
on giving evidence to participants. For these missions, subjects must choose araaalg se
intelligence sources or different areas where intelligence may heehtao not all subjects will
process the same evidence in the same order. The relevant steps of the Oetdljand [8].
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As outlined above, ICArUS challenge problems address all eight steps of #heopct albeit
each to a greater or lesser extent in order to satisfy practical aotsstrahuman experiments
and meet BAA requirements. This is done by designing suites of "game task®' eabk task

is a simulated mission that challenges one or more of the three sensemattiog$unamely:
Inferencing[1]-[4], Decision-Making5]-[6], andForaging[7]-[8]. Details of all missions are
documented elsewhere for the Phase 1 (Burns, Greenwald, & Fine, 2014) and Phass, 2 (Bur
2014) challenge problems.

6.5 Key Insights on Biases

An important objective of the ICArUS program is to gain new insights into cegriitases and
how they might be overcome. Thus in accordance with the ICArUS BAA, challeoigiems
are designed to address eight specific heuristics and biases, nanoilgring and Adjustment
Availability, Change Blindnes€onfirmation BiagPersistence of Discredited Evidence
Probability Matching RepresentativenesandSatisfaction of SearclAll eight are commonly
considered to adversely affect intelligence analysts. Each is a ltesiiategy or the resulting
effect (i.e., bias) thereof, relative to normative (Bayesian) standards

A difficult problem faced in experimental design is to formally define eaa$ibithe context of
intelligence sensemaking, and then actually compute normative-Bayesiaonsolot the
challenge problems — as needed for measuring the existence and magnitetidrafie@ual
bias. Some insights gained from this effort are offered below.

6.5.1 An Insight in Hindsight

One insight from the design effort was that some of the so-called biasestnalyde

normative behaviors, at least when scientists properly consider the contéw¢inuwdgments

and decisions are being made — including the existence of uncertainty anchpcactstraints

on time and effort needed to make decisions and take actions. In short, human heuristics ca
often be seen as bounded-Bayesian strategies, where any so-calledébiairé in the minds

of scientists who fail to consider the practical constraints and natural boundsabaais,

rather than in the minds of participants who must deal with those bounds and constraints.

For instanceProbability Matchinghas been shown to be an optimal strategy (Burns & Demaree,
2009) when the decision maker is uncertain about the state of the world, i.e., when he or she
must earn (exploit) utility from the environment and at the same time lequior@) the

parameters (i.e., probabilities and utilities) of the environment. Simifangnge Blindnesand
Satisfaction of Searchre obvious biases only when scientists do not consider the practical
benefits of change detection or search completion, as well as the costssioftéme and

effort. For example, if a potential change is non-consequential, then a bounde@Bayadd

be optimal to ignore it. Similarly, if exhaustive search is not expected to bie tlvertosts, then
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a bounded-Bayesian would be optimal to terminate the search when the costs outpestgdex
benefits.

Of course this is not to say that biases do not exist. But it does appear that S@atexddnases
may represent bias in the mind of an observer (of the actor's behavior) rather shartt®a
actor's behavior itself. This is especially true@anfirmation Biaswhich is perhaps the most
celebrated bias in circles of intelligence analysis (Heuer, 1999)

An example arises when an actor's "confirming" judgment or decision is othégreghers to be
"incorrect”, from thedeterministicperspective of what happenafter the factClearly the

causes of bad outcomes are important to assess. But there is always untefiaiats

judgment or decision is made, so the only way to ascertain whether the actoaseaisdsinot is

to look at all the relevant probabilities and utilities — as they were known (at possibly have
been known) before the judgment or decision was made. Sometimes low probabilitydevents
occur, and sometimes high probability events do not occur. So it is the foresight probability P
rather than hindsight probability 1 or O that must be considered in assessing the goobres

of any judgment or decision that preceded the observed outcome.

6.5.2 The Benefits of Biases

Early research o@onfirmation BiagWason & Johnson-Laird, 1972), done with contrived
problems in deterministic settings, found that humans tended to seek information ttdat woul
confirm their favored hypothesis. In that context the behavior was biased bectes ins
participants should have tried to refute their favored hypothesis. However, sutisegaarch
(Klayman & Ha, 1987) in a probabilistic context more relevant to real-wotdtgins has
demonstrated that a "positive test strategy" (i.e., seeking informationtabaubst probable
hypothesis) is actually optimal — in the sense of maximizing the expecteof gafiormation.

This same result was obtained in design of ICArUS challenge problems. Detddalations

were performed for prototypical problems of intelligence collection, usiragge of realistic
values for the sensor parameters known as "hit", "miss", "false alarm"c@melct rejection”

rates per signal detection theory. These Bayesian analyses showaegdkdive test strategy

was always optimal (i.e., maximizing the information gain), such that thesontglled "bias"
would be if a participant in experiments did not choose to obtain further information about the
most probable hypothesis — and even that behavior (mucRnddt&bility Matching discussed

above) may be optimal given second-order uncertainty (i.e., the probabilities dbiptielsa

6.5.3 Confirming Conservatism

Another flavor ofConfirmation BiagNickerson, 1998) deals witheighingevidence rather than
seekingevidence. For example, a studyGdnfirmation Biagn the context of intelligence
analysis (Lehner, et al., 2008) presented 60 items of evidence to participants ingiesi(ista
15 items per stage). The study measured subjective confidence in each cbtmpeting
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hypotheses {H1, H2, H3}, after each set of 15 evidence items was received. Thalstudy
measured subjective "diagnosticity” with respect to each hypothesiscfomelividual item of
evidence, on a scale from -2 (strongly refutes) to +2 (strongly supports).utlydaind that
judgments of diagnosticity were correlated with confidence in each hypotResiexample,
participants who favored H1 reported that a supporting item of evidence was ngoest@in
supporting H1, compared to participants who favored H2 or H3. Similarly, participhats
favored H1 reported that a refuting item of evidence was less diagmosgiaiing H1,
compared to participants who favored H2 or H3.

Although interesting, it is not clear to what extent this behavior is actu@lbnirmation Bias
in the normative sense of deviating from Bayesian standards. One issue is thateaxpes
used judgments of diagnosticity to measure bias, yet functionally thesegotgywere only
inputs to the participants' overall task of aggregating evidence (and associabedrjtsdgf
diagnosticity) in order to assess confidence across the three hypothesegpérimenters did
not compute a normative solution for confidence across hypotheses after eacheherute
(or after each stage of 15 evidence items), so there was no basis for contladpagticipants
were biased in that regard. Also, with 60 items of evidence, many items might bedemoler
diagnostic after receiving dependent items, even if each item was diagnosticanselered
individually and independently.

In short, the experimental conclusions were based on human judgments of diagrosticit
individual items of evidence, rather than human judgments of confidence in competing
hypotheses. Also the measure of bias was computed between different sets a¥subject
judgments, rather than between subjective judgments and normative standards. Tenthbatx
there was a measur@bnfirmation Biasit was a bias in estimating individual likelihoods (i.e.,
diagnosticity of evidence) — and other biases in aggregating likelihoods to competepost
may compensate for or even reverse the overall direction of this bias. Numgretiments on
Bayesian inference have shown the overall bias is almost always the oppGsitdiohation
Bias— as humans af@onservativdEdwards, 1982), i.eRegressivéoward uniform

distributions across hypotheses. For example, if the Bayesian postezi¢0sS&; 0.01}, then
humans typically report numbers closer to {0.50, 0.50} such as {0.90, 0.10}. The same result
was found in ICArUS experiments — and in f@chservatism was by far the most common bias
measured across all tasks of Phase 1 and Phase 2 challenge problems.

Of course in some cases the tendency to confirm what one thinks may appear to be a non-
normative behavior. One example surfaced in analyzing the story of Seatiberg,the
sensemaker's desire to confirm his hunch about students versus non-students delegezhhis s
for evidence about a less probable but more consequential hypothesis regardasgldl Q
However, the only way to tell if and wher&€anfirmation Biasor any other bias actually exists
is by measuring the underlying probabilities (in weighing evidence) alitceat{in seeking
evidence). This is rarely done in the real-world of intelligence. But it couttbbe, by requiring
analysts to report their beliefs in the form of numerical probabilities andestilithat approach
is common practice in risk analysis and management of hazardous industries, antsd ban a
applied to improve the rigor of intelligence analysis (Garrick, et al., 20&l2hdr, et al., 2012;
Friedman & Zeckhauser, 2014). A practical idea along these lines is to developaustwed
analytic technique as outlined below.
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6.5.4 Substitution of a Structured Technique

A final insight obtained across all ICArUS experiments is that, when sslgexbiased, it is

usually because they simply do not know the proper way to solve the problem. In ththecase
bias can be characterized@gstitution (Kahneman, 2011) of a familiar but improper strategy

for the proper Bayesian strategy. Of course subjects themselves do not knowe they a
Substituting because they have not been taught the Bayesian strategy! So the obvious idea for
improving intelligence lies not in "de-biasing”, but rather just teaching®ag reasoning in the
first place.

More specifically, the idea is to develop a "Structured Analytic Technigugigport Bayesian
analysis in accordance with the Octaloop, as an alternative to the numerous ad hquadschni
that have been proposed to reduce biases. This would avoid the popular (but questionable)
pursuit of cataloging biases, and advance the practice of intelligencechintgthe rigors of
Bayesian reasoning needed to avoid biases in the first place (regardlessanfyHmases might
be catalogued). More details are provided in Section 7.1 below.
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7 Transition

The Octaloop was developed to formalize the study of sensemaking in laboraitepgd
problems. However, the same framework holds promise for transition of ICArU8twodd
intelligence in three areas of application, namely: analytic techni§eesign 7.1), analyst
training (Section 7.2), and automated tools (Section 7.3).

These applications would all require further effort, because they are béyoscbpe of research
funded under the ICArUS BAA. Therefore the suggestions below are only ideaswviadut
might be done with further investment. Although cost estimates are not developatidnéneee
areas are listed roughly in order of increasing investment, from techniqtresnitog (of
techniques), to tools. Likewise, the ideas range from specific to speeutamoving from
techniques, to training, to tools.

In that light, the HELP technique discussed in Section 7.1 may be the most promising
opportunity for short-term, low-cost, and high-yield transition of ICArUS tdritedligence
Community.

7.1 Technique to HELP Perform Bayesian Reasoning

The Octaloop is a Bayesian-computational framework for rigoaaatysisof sensemaking. But
the same Bayesian framework can also be used for rigeyotisesi®f intelligence. In other
words, the Octaloop can be re-cast in the form of a so-called "Structuredidmaichnique”
(SAT), similar to SATs (Beebe & Pherson, 2012) such as the Analysis of Comdgpotheses
(ACH) proposed by Heuer (1999).

In fact ACH is basically a qualitative approach to performing the quawitanalysis modeled

more formally by steps [1]-[4] of the Octaloop. As such, ACH simplifies sorperitant aspects

of the approach, and this has pros and cons. A pro is that the simplifications make A&H mo
approachable to analysts who do not have a background in quantitative sciences. A con is that
the simplifications can mislead analysts, by not providing the requisitéustuo support

principled reasoning in accordance with Bayesian standards. Four speaifiples of this con

are identified in the subsections below.

7.1.1 Hypotheses

Step 1 of ACH saysildentify the possible hypotheses to be considevdaich is similar to step
[2] of the Octaloop. But as step 1 of ACH, this tends to obscure the fact that hypotkeses ar
always generated in the context of evidence, simply because hypothdsemamgenerated to
explain evidence. In the Octaloop, step [2] Generating Hypotheses is precedsul [4y st
Isolating Evidence. This is to highlight the causal connections between hggotal evidence
in likelihoods of the form P(e|H). Likelihoods are naturally represented in huinals ma the
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strengths of associative memories (between e and H), and these asssttEtgths are
ultimately how hypotheses are generated in the first place.

For example, a SAT based on the Octaloop might advise analysts to imagine othesrg@a)bs
evidence, in order to create a more comprehensive set of hypotheses than tdeyatuvally
generate on the basis of observed evidence. This "what if* technique goes beyguidance

of existing SATs such as "Brainstorming" or "Starbursting” (i.e., sirmpkng "who, what,

when, where, how, why?"), which are not guided by a science of how humans actuatiyegene
hypotheses — i.e., via likelihoods that represent the strengths of associativgeaem

A more important limitation of ACH, and of SATs for generating and evaluatipgthgses, is a
lack of guidance on what constitutes a well-formed set of competing hypothesaic&pe
Bayesian reasoning requires that the hypotheses be mutually exclusiveahke~A; and
exhaustive, like P(A) + P(~A) = 1. Analysts might be more inclined to impose phaser
constraints on competing hypotheses if they had a SAT based on the rigors of the Octaloop.

7.1.2 Evidence

Step 2 of ACH says'Make a list of significant evidence and arguments for and against each
hypothesis"Step 2 then goes on to highlight the importancasetimptiongs well aevidence
andargumentsHowever, these terms are not clearly distinguished by ACH. For exampils, ite
of evidenceas well asassumptionsre listed as rows of a matrix, in the next step of ACH (see
Section 7.1.3). But only some assumptions are treated in this manner, ekiohetacewhereas
other assumptions affeatgumentdor the values assigned to cells in the matrix.

In the Octaloop, assumptions are not treated as evidence. Instead only factonaltiafors
treated as evidence, with the understanding that these facts maydmuaticertain (and in that
respect each item of evidence is also an assumption). The point here isuhgitems based
only on background knowledge, which ACH treats the same as evidence, are notaakggori
equivalent to evidence — so they should not be treated the same as evidence in rows of the
matrix. Instead the Octaloop models this background knowledge with a prior probabigcfor
hypothesis.

With respect t@argumentsn ACH, it is not clear if the term refers to some evidence; or a
hypothesis; or likelihood of some evidence (given a hypothesis); or confidence in ladsygot
(given some evidence); or some combination thereof (or something else)Qatéhe&op,
arguments are akin to the causal "reasons” (i.e., bases) for numeridabbkisliand priors. As
an example, in the story of Section 5 the sensemaker could think of reasons why stadlehts
cause flight zone violations, and these reasons affected his likelihood estimally5ihe
could think of reasons why Al Qaeda might be active shortly after 9/11, and those reasons
affected his prior.
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7.1.3 Likelihoods

Step 3 of ACH says{Prepare a matrix with hypotheses across the top and evidence down the
side. Analyze the 'diagnosticity’ of evidence and arguments — that is, identify whicargems
most helpful in judging the relative likelihood of the hypotheses."

This is a key step in which there are several problems. One problem mentioned abdvhes tha
matrix does not model priors of the form P(H), and instead treats assumptiorgeasevi
Another problem is that the method confuses likelihoods of the form P(e|H) with postériors
the form P(H|e), by saying to analyzBagnosticity"and judge thérelative likelihood of the
hypotheses'This suggests that the analyst should estimate P(H|e) directly foredaohacrow,

i.e., by estimating the probability of each hypothesis taking the evidencertebBut actually

the input estimates needed for Bayesian inference are likelihoods of the(&H), ®hich are
later aggregated to estimate posteriors of the form P(H|e) as outpuse(sea 7.1.4). So

instead step 3 should advise analysts to estimate likelihoods of the form P(e|H).

Similarly, the method says to assess "diagnosticity” by taking an itewid#nce and asking
whether it is'consistent with, inconsistent with, or irrelevant to each hypotheBig'this notion
of "consistency" is not the same as "causality”, and likelihoods (needed a®ittpitiatrix)
are probabilities of evidentiafffects(e) assuming hypotheticehuseqH), i.e., P(e|H). Also,
besides P(e|H), a Bayesian would address P(~e|H) to ensure that P(efelH £ 1.

Another limitation of the matrix is that the values for diagnosticity (or ctarsiy) are indicated

by symbols such as "+" and "-". The method says that these symbols can balreplagmbers
(e.g., probabilities), if they are known, but does not say how the symbols would be mapped to
those numbers (i.e., what does "+" or "-" mean, numerically?), or how numbers might be
developed (if they are not known) in order to improve the rigor of analysis.

7.1.4 Posteriors

Step 4 of ACH is to review and refine the matrix. Then step 5 $ayaw tentative conclusions
about the relative likelihood of each hypothesis. Proceed by trying to disprove hypothieses rat
than prove them.'In this step the term "likelihood" is being used to mean "probability”, and
refers to posteriors of the form P(H|e) rather than Bayesian likelihookls fifrtn P(e|H).
Nevertheless, the purpose of the step is to perform a qualitative aggregationrafdikeldown
columns of the matrix in order to estimate posteriors not represented in the mat

The main problem is that ACH is not clear about the logic for aggregating waludésg down
each column of the matrix. For example, it sdyste pluses... are far less significant [than the
minuses]: This can be confusing because the symbols "+" and "-" are usually considered
additive opposites and do not imply any magnitude or significance. Also, as we know from
analyzing the story in Section 5, a sensemaker often wants to know what most pdab&bly
cause the evidence, not what most probably did not (-) cause the evidence. So in tllaé sense
pluses may be quite significant. Simply telling analysts to focus on thells"af the matrix,
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without a more formal and transparent method for aggregating symbols like ghasesnuses
down the columns, seems to fall short of the structure that is needed for an eS&cityered
Analytic Technique.

Another problem with the matrix of ACH is that it fails to account for dependebetesen
different items of evidence (and between different assumptions thataezltes evidence in
rows of the matrix). For example, in the story of Section 5, FBI interviews preseimably
different and diverse from the counterintelligence reports considered.€adithe two sources
could reasonably be assumed independent. But often there will be dependencias dmiveess
of evidence, and sometimes there will be complete dependency such that one itermoéevide
(or prior assumption) renders a second item of evidence (or prior assumption) ebnmalet
diagnostic with respect to the competing hypotheses. These effects are nedextiisethe

matrix and method of ACH, where values (akin to likelihoods or priors) are enteres acos
without regard to other rows (above or below) on which that row may be dependent.

This problem is of particular concern whassumptionsre treated asvidencan the rows of the
matrix. As noted above, assumptions actually reflect priors (i.e., in the abs&vigenice) for
hypotheses, not likelihoods of evidence given hypotheses. These priors areestivagted in
the context of a world view held by the analyst, and that world view affectsathaions — so
it represents a major dependency between rows of assumptions.

For example, using ACH it is tempting for an analyst to list as raasymptiongin rows of the
matrix) as possible, especially when there is léttelencgin rows of the matrix) to use in the
analysis of competing hypotheses. Using the Octaloop, there is only one prior Igyotmabi
each hypothesis, and it reflects all the assumptions of an analyst's world vieWwelfisi avoid
the pitfalls of treating assumptions as evidence.

7.1.5 HELP

Despite the limitations noted above, ACH was a significant step in advancingahefr
intelligence analysis. Intelligence analysts often refuse ot Bpsiititative approaches, and the
principles of Bayesian reasoning as applied to intelligence analysis driviabto teach

(Grabo, 2004; Schweitzer, 1976; Fisk, 1972; Zlotnick, 1970; Edwards, et al., 1968; Edwards &
Phillips, 1964). But these difficulties are precisely why the Intellig€@m@&munity should

invest in formal techniques with more rigor than current SATs — of which ACHualbcone of

the most rigorous, relative to other SATs that have no apparent science as a basis for
structure.

Previous research on Bayesian reasoning by unaided humans has uncovered fowf classes
errors (Burns, 2006) that appear to be ubiquitous, namely: (1) failure to geaenatually
exclusive and exhaustive set of hypotheses, (2) failure to distinguish assurfiptivesidence,
(3) failure to distinguish likelihoods from posteriors, and the consequent failure ¢otborr
estimate causal likelihoods, (4) failure to properly aggregate likelihoods iansl iprcomputing
posteriors, including failure to consider conditional dependencies between itemdenfce.
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Notice that ACH itself exhibits all four of these limitations, as idemtifireSections 7.1.1, 7.1.2,
7.1.3, and 7.1.4 above. This suggests that ACH does not provide the structure needed to help
humans reason rigorously as Bayesians.

An alternative would be to develop a new SAT with the proper structure. This SATheight
dubbedHEL P, to highlight key concepts of Bayesian inference and address associated error
outlined above, as follows:

Hypotheses
Evidence
Likelihoods

Priors andPosteriors.

Bayesian HELP would be based on the Octaloop, especially steps [1]xdé¢r@ncingand

steps [7]-[8] ofForaging The treatment dihferencingwould be more formal than ACH,

addressing the issues noted in Sections 7.1.1, 7.1.2, 7.1.3, and 7.1.4. The tredtoragiraj

would go beyond ACH and other SATs in addressing what evidence an analyst should attempt t
acquire, based on previous inferencing, for input to further inferencing.

After the investment needed to develop and document HELP in the form of a Structulgdt Ana
Technique, further investment would be needed for training analysts in use ahthigue.

Here, like the Octaloop itself, the present document offers a practicabappramamely stories,
discussed below.

7.2 Training of Critical Thinking with Bayesian HELP

Storytelling is a powerful device, widely used for organizational learmdgoarsonnel training.
But a problem with stories (which contributes to their popularity) is that nasdiave much to
the imagination. Often this is not acknowledged by writers and readers, as woryitaat Klein,
et al. (2007) told to support their data-frame theory of sensemaking. A more foathalis of

this same story, using the Octaloop, uncovered numerous omissions for which weras reade
needed to make assumptions in order to compute solutions.

In effect, Section 5 was an exercise in "critical thinking", where eack aythe story was
analyzed to identify all categorical concepts (hypotheses, evidencidoad, priors, and
posteriors) and numerical values (probabilities) needed to formalize sensemaksugh,
materials similar to Section 5 might be used in classroom exerciseshdCug@cal Thinking
Skills and Bayesian reasoning. Additionally, more analytical stories coulddeztid and
documented in the same manner, for use in case-based teaching/learning.

This approach to training would require that the Octaloop first be used to develop HELP as a

Structured Analytic Technique (Section 7.1). As-is, materials in the present elatcwere
developed for ICArUS purposes and not intended for classroom training or angtheation
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beyond the scope of ICArUS itself. A suitable document for training purposes fivetld
introduce HELP in the form of a step-by-step procedure for analysis, and then dateonst
HELP using analytical stories like the example in Section 5.

Notice that this approach would not employ ICArUS challenge problems thes)satekwould
not require any software like that used for performing ICArUS experimiaistead the approach
would rely on the Bayesian-computational basis used to design ICArUS challebtas, re-
cast in the form of a Structured Analytic Technique (HELP) — along with stasiease studies
for engaging analysts in applying the technique to examples of real-wtalligence. Training
exercises of this sort would stimulate discussions of important issue$-workhanalysis that
go far beyond the laboratory constraints of ICArUS challenge problems, andsthesewould
not be addressed if training were to focus on those challenge problems.

Notice also that this approach to training would not focus on cognitive biases. That is,

training would not be to tell whether an inference or decision should be classified as
ConservativeversusConfirmationbias, or whether it was caused by a heuristisrathoring
versusAvailability, etc. Instead the training would focus on how to perform Bayesian reasoning,
with HELP, including all information and assumptions that a Bayesian would need to eamput
solution.

Elsewhere the exercise of identifying biases in stories has been gdopeagnt efforts to teach
critical thinking using game-based methods at the Mercyhurst Univérsttiute of Intelligence
Studies (Richey, 2014). But identifying biases in others is not the same afyiigiiases in
oneself, and identifying biases is not the same as avoiding or overcoming biasésisRiot
clear how analysts can identify biases in stories without first beimgetran the Bayesian
methods by which many of those biases are defined. Instead it seems mortoussfidtories
for teaching analysts the principles of Bayesian reasoning in the ficst, gla., as structured by
the HELP technique.

7.3 Tools for Cognitive Support to Analysts

Sections 7.1 and 7.2 focused on a technique and training (of the technique) to support human
analysts in sensemaking. A third area where the Octaloop might be useful is@sitjre of
automated tools for intelligence. The idea here is to offload some step or stepOoctaloop

onto a system that can offewgnitive support to humans engaged in the cycle of sensemaking.

As described in Section 6, ICArUS challenge problems actually do this to saenéiexdrder to
facilitate human experiments. Likewise, real-world systems and seargooften designed to
perform functions such as [8] Discriminating Evidence, e.g., in a systemdéhatalser to

some observed activity (i.evidence); or [3] Estimating Likelihoods, e.g., in a sensor that
returns data with some reliability (i.&kelihood). But the uses of such systems/sensors by
human beings pose engineering problems far beyond the "point solutions" computed by the
systems/sensors, because these tools are only useful if they are understoodpad by
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human users who are engaged in the complete cycle of sensemaking. That is, usefulgbol
providecognitive support to analysts.

Software developed for ICArUS experiments simulates such sensasisyahd provides input
to human subjects at steps [8], [1], [2], and [3] of the Octaloop. Steps [4], [5], [6], aaek[7]
then performed by human subjects. ICArUS experiments have measured and modalisd vari
cognitive biases at steps [4], [5], [6], and [7], and those biases represent oppsrianit
designing analytical support systems. One example is the colorechtai@ubbed "Bayesian
Boxes" (Burns, 2006), which offers an intuitive visualization of Bayes Rule, and haprbgen
(Burns, 2007) to reduce biases suclhashoringandAveragingat step [4] of the Octaloop. This
system has also been used for real-world training of Bayesian inferenamudahdbe used for
"drawing pictures" while "telling stories” in training Bayesian HE({see Section 7.2).

Other systems might be designed to help humans at steps [5], [6], [7]. As dasCovEEArUS
challenge problem design, Bayesian solutions are especially difficult to coatpatep [7]. The
calculations require predictions (based on likelihoods) about what evidence wilebeede@nd
projections of the updated (posterior) probabilities across hypotheses — fosddlgpostcomes
(of collecting information) from all feasible actions (for collectingonmhation). These
computational challenges at step [7] represent practical opportunities for pgoaidomated
support to analysts.

Additional applications to system design might address steps [8], [1], [2], and [Bp® steps
of the Octaloop, ICArUS software implements prototype systems that providesphitibns to
human users. The practical value of these prototypes is that they demonsttdtmetttas
might usefully be performed by systems to support humans in the complete cycle of
sensemaking. In particular, because sensemaking hinga®iadmoods, the challenge problem
software simulates various intelligence systems/sensors and sesbkeihoods — e.g., for
HUMINT, IMINT, SIGINT, OSINT, etc. — as needed for human subjects (and neural shoolel
analyze competing hypotheses given multiple INTS as evidence.

As a concrete example, Estimating Likelihoods at step [3] in the real whiritelligence is
often referred to as "suitability analysis". Geospatial analystoatmely engaged in analyzing
the suitability of terrain or some other feature f (e.g., from IMINT) toatstrains the probability
of a hypothesized activity. We saw this in the story of Section 5, vikeagrport vectors found
in geospatial overlaysand this feature suggested that flight paths over nuclear power plants
would be more "suitable” for students than for experienced pilots.

The correspondiniikelihoods were estimated as P(s|S,f) = 0.95 and P(s|~S,f) = 0.10, where the
geospatial feature f served as context to constrain the likelihood that ovextiightty would be
observed (s) if the culprits were students (S) or non-students (~S). Thebeditlslirom step

[3] were then used in step [4], where the overflight activity was explained by cogputi
confidences across hypotheses — e.g., in a form of "activity-based intafigaralysis.

Then, in a subsequent cycle of sensemaking, additidketihoods were estimated using the FBI

interviews (e.g., from HUMINT) and aggregated with eatiieglihoods to further explain the
situation. The point here is that data (e.g., evidence from INT sources)uksfaseEnsemaking
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only if likelihoods (of evidence, given hypotheses) are either assumed by the human (as in the
story of Section 5) or given to the human by another human or "system" (as inSCArU
experiments). Therefore an application ¢ognitive support to analysts lies in designing systems
to estimate likelihoods that are difficult for humans to estimate thensselve

For instance, task [3] Estimating Likelihoods might be performed by a systeseé#rahes large
databases and computes historical frequencies of past events (e) in theafdhtsr known
causes (H), which can then be taken as measures of likelihoods, P(e|H). Besidesensic
analyses, other systems designed for modeling and simulation of realsiaakibns might be
used to estimate likelihoods in prognostic analyses. This would involve running the isinsulat
in a parametric sampling mode, i.e., obtaining results for different setuofedparameters
representing different contexts c (like f in the suitability analysis gboverder to compute
statistical likelihoods of the form P(e|H,c). The key here lies in idemgjifhe categories of
hypotheses H, evidence e, and context c that are relevant to a sensemakepygbabidities of
the form P(e|H,c) can be computed to prowognitive support to analysts.

Opportunities for analytical support systems may also exist at steps|[8jhd [2] of the

Octaloop. But Generating Hypotheses at step [2] hinges on the rich knowledge (RASKR) of
human experts. And Isolating Evidence at step [1] appears difficult to autonaatashion that
would support a human expert engaged in adaptive analysis of competing hypothesgsrHowe
step [8] Discriminating Evidence may be amenable to automation by a sysiesereens large
volumes of information beyond what a human could possibly consider. Here again, thiokey is
providecognitive support — so the system would need to anticipate and adapt to features of
evidence and classes of hypotheses that are relevant to the sensemaker.

Although speculative, the above ideas illustrate how the Octaloop might guide the diesign o
advanced tools to support sensemaking. The same logic also extends beyond individual humans
and systems to organizational structures for team sensemaking, wheentltifenans perform
different steps of the sensemaking cycle and share results with eachrothat case the

Octaloop might shed light on what the different teammates need from one anothemvaheyho

can best function together across steps and cycles of the Octaloop, incluslfagast between
intelligence analysts and operations personnel.

7.4 Leveraging the Bayesian Research Community

As a final idea for ICArUS transition, the Octaloop might serve as a Warkdor eliciting and
applying contributions from the Bayesian research community. In particlias kieen
suggested (NRC, 2010) that decades of Bayesian research are untapped andlevigradesl
to improve intelligence analysis, and actually this was the topic of severehops sponsored
in Phase 2 of ICArUS.

But it is not clear how much of this Bayesian research is useful for intelligeadgsis, and

there remains a large gap between analysts and researchers aiggmtighe two groups.
Typically analysts set the stage by presenting examples of thiewwadd challenges, often in
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the form of anecdotal stories like that of Klein, et al. (2007). Then reseafoliew by

presenting their findings from the laboratory, in the form of theoreticable@hd experimental
results — but on problems that bear little or no resemblance to real-world imiedlig&o
researchers have not shown how their methods and models can be applied to aspects of the
stories told by analysts. And analysts have not shown how aspects of their siginiesem
addressed by Bayesian tools, training, or techniques.

One reason for this gap is that the two sides are lacking a common framework fetantieg
the cognitive-computational challenges of intelligence analysis. TtedOp can help close that
gap because it is expressed in formal language (Section 3) consistent veisieBayethods
(Section 4), and because it applies to analytical problems (Section 5) castoimtlod f
anecdotal stories (Section 2). To illustrate these advantages, the Octad@ehaised to
generate specific ideas about how a Bayesian approach can advance iogtéghaniques,
training, and tools — in Sections 7.1, 7.2, and 7.3, respectively. Those ideas might serve to
stimulate further discussions between researchers and analysts.

For instance, the present document or portions thereof could be provided to Bayesiahaesea
with the challenge of answering the following question:

Using the Bayesian framework (Section 4), can you show exactly where and how your
Bayesian model or method would enable machine automation (i.e., a tool) or improve
human cognition (i.e., a technique or training) in some aspect(s) of the story (Section 5)?

Be specific, and provide one or more examples where you actually compute something
that applies directly to the story. If necessary, assume any details that are not contained
in the narrative but are necessary for you to show how your model or method would

apply.

Analysts could then be asked if they think a researcher's example is retexhnthether they
can envision it being applied beyond the story world to real-world intelligence. sAsaiyuld
also be asked to provide additional stories that might be analyzed in the samarBayes
framework and utilized for the same purpose of closing the gap between messdpractice.
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