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Abstract 
The IARPA (Intelligence Advanced Research Projects Activity) program ICArUS (Integrated 
Cognitive-neuroscience Architectures for Understanding Sensemaking) requires "sensemaking" 
challenge problems as described in the BAA (Broad Agency Announcement, 2010). These 
problems are needed for conducting experiments with human participants, and for assessing 
neural-computational models of human performance in Test and Evaluation (T&E). Previously, 
researchers have described the cognitive challenges of sensemaking only informally using 
conceptual notions like "framing" and "re-framing", which are not sufficient to support T&E in 
accordance with the BAA. To overcome this limitation, a Bayesian-computational model of 
sensemaking was developed by dissecting a prototypical example of intelligence analysis, and by 
defining eight discrete steps in a processing cycle dubbed the Octaloop. This document details 
the Octaloop model and describes how it was used as a computational basis for design of 
ICArUS Phase 1 and Phase 2 challenge problems. Other uses of the Octaloop beyond ICArUS 
experiments are also identified. These uses include structured analytic techniques, training of 
critical thinking skills, and automated tools for improving the effectiveness of intelligence 
analysis. 
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1 Introduction 
 
This document develops a computational model of sensemaking, dubbed the Octaloop, used to 
support the Intelligence Advanced Research Projects Activity (IARPA) program ICArUS: 
Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking. Further 
background on MITRE’s role in Test and Evaluation for ICArUS is provided in a summary 
document (Burns, Fine, Bonaceto, & Oertel, 2014) titled ICArUS: Overview of Test and 
Evaluation Materials, available at http://www.mitre.org/publications. 
 
The Octaloop model presented herein was developed as a formal basis for designing ICArUS 
challenge problems (Burns, Greenwald, & Fine, 2014; Burns, 2014), including methods for 
assessing the performance of human subjects and neural models on these challenge problems. 
Details of how the Octaloop was applied to the design of ICArUS challenge problems appear in 
Section 6. The Octaloop also offers opportunities for applications to real-world analytic 
techniques, training, and tools, as outlined in Section 7. 
 

1.1 A Conceptual Theory of Sensemaking 

 
ICArUS challenge problems are designed to pose cognitive challenges of spatial-temporal 
sensemaking, including six core processes described in the BAA (2010) as follows: 
 

Learn Frames: Construct mental models from the data; i.e., spatial context frames; event 
sequence frames (scripts); semantic relational frames. 
 
Recognize Patterns / Select a Frame: Based on current data, select the appropriate 
frame(s) from memory. 
 
Assess the Frame: Evaluate the quality of fit between data and frame. 
 
Generate Hypotheses: Use the current frame to generate hypotheses regarding missing 
data (either confirming or disconfirming) and to predict the future evolution of the data. 
 
Acquire Additional Data: Search for new data to test and complete the frame; assess 
value and uncertainty of data and data sources; decide whether to continue to exploit 
current data or to explore new sources. 
 
Reframe: Detect anomalies, coincidences, inconsistencies, and ambiguities in the data. 
Accept, modify, or reject frame as needed. 

 
These core processes are based on a conceptual framework by Klein, et al. (2007), known as the 
"data-frame theory" of sensemaking, which addresses the human "faculty to understand" ... 
"referred to as judgment, apprehension, apperception, and other processes".  

http://www.mitre.org/publications
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The data-frame theory defines sensemaking as "the deliberate attempt to understand events" (pg. 
114) and includes the following mental representations and processes (pg. 115): 
 

 "The initial account people generate to explain events. 
 
 The elaboration of that account. 
 
The questioning of that account in response to inconsistent data. 
 
Fixation on the initial account. 
 
Discovering inadequacies in the initial account. 
 
Comparison of alternative accounts. 
 
Reframing the initial account and replacing it with another. 
 
The deliberate construction of an account when none is automatically recognized." 

 
As such, the theory includes three classes of mental representation: data, frames, and the 
accounts that result from mental processes of generating, elaboration, questioning, fixation, 
discovering, comparison, reframing, and construction. Klein, et al. (2007) offer more details in 
a section titled "The Data-Frame Theory of Sensemaking" (pg. 118), which states: "The data-
frame theory postulates that elements are explained when they are fitted into a structure that 
links them to other elements. We use the term frame to denote an explanatory structure that 
defines entities by describing their relationship to other entities". The same section goes on to 
say that: "A frame can take the form of a story, ... map, ... script, ... plan, ... [or other] structure 
for accounting for the data and guiding the search for more data" (pg. 118). 
 
As described above and throughout the chapter by Klein, et al. (2007), the notions of data, 
frames, and accounts are not specified with the rigor needed to formally measure and model 
sensemaking. For example, it is not clear if entities and elements refer to data, and/or frames, 
and/or accounts – or how any of these things can be measured or modeled. Even the central 
notion of a frame itself is not precisely specified, as the theory says a frame might take the form 
of a story, map, script, plan, or any other explanatory knowledge structure.  
 
In short, the data-frame theory does not offer a computational specification of the mental 
representations and processes involved in sensemaking. This limitation is important because the 
objective of ICArUS is to develop neural-computational models of sensemaking – and because 
the assessment of such models in Test and Evaluation (T&E) requires a computational 
framework for quantification. More specifically, the BAA (2010) requires that T&E assess 
human performance and neuroscience models in Comparative Performance Assessment (CPA), 
using a numerical percentage to measure how well a neural model matches human judgment and 
decision-making. Additionally, the BAA (2010) requires that T&E compute normative 
(Bayesian) solutions, as benchmarks for measuring cognitive biases of human subjects and 
neural models in Cognitive Fidelity Assessment (CFA).  
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1.2 A Computational Approach to Sensemaking  

 
In light of the BAA requirements for CPA and CFA, MITRE developed a Bayesian model of 
sensemaking that entails eight steps called the Octaloop. To support CFA, the Octaloop specifies 
Bayesian-computational processes as a basis for assessing the biases that arise from heuristic 
reasoning under uncertainty. To support CPA, the Octaloop enables quantitative comparisons of 
sensemaking performance between human subjects and neural models. 
 
Here it is important to note that a Bayesian approach is not contrary to the data-frame theory 
cited in the BAA. Rather, the Bayesian Octaloop serves to formalize notions such as data, 
frames, and the accounts produced by generating, elaboration, questioning, fixation, 
discovering, comparison, reframing, and construction. Also, the Bayesian Octaloop serves to 
formalize core sensemaking processes described in the BAA and listed in Section 1.1, which are 
based on the data-frame theory. 
 
The remainder of this document is organized as follows: Section 2 describes a prototypical 
situation (taken from Klein, et al., 2007) in which an intelligence analyst was engaged in 
sensemaking. Section 3 defines key terms, such as sensemaking, frames, framing, and re-
framing, as formalized in a Bayesian framework of hypotheses, confidence, evidence, and 
likelihoods. Section 4 details the mathematical formulation by which sensemaking is modeled in 
a cycle of eight steps dubbed the Octaloop. Section 5 demonstrates how the Octaloop applies to 
the situation in Section 2, by dissecting five consecutive cycles of sensemaking in the story. 
Section 6 discusses how the Octaloop has been applied in design of challenge problems that 
satisfy all requirements of the ICArUS BAA. Finally, Section 7 explores how the Octaloop can 
be applied beyond ICArUS challenge problems, to advance the techniques, training, and tools of 
real-world intelligence analysis. 
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2 Motivation 
 

2.1 A Cycle Called the Octaloop  

 
Below is a story of sensemaking in the context of intelligence analysis, borrowed from Klein, et 
al. (2007). Numbers that appear in brackets [  ] refer to steps 1-8 of the Octaloop model detailed 
in Section 4. The names of these eight steps are listed below for reference purposes: 
 

[1] Isolating Evidence  
[2] Generating Hypotheses 
[3] Estimating Likelihoods 
[4] Aggregating Confidence 
[5] Prognosticating Consequence 
[6] Evaluating Consequence 
[7] Anticipating Evidence 
[8] Discriminating Evidence  

 
These eight steps constitute a cycle of sensemaking, which is typically repeated as additional 
evidence is accumulated, evaluated, and anticipated. In the narrative below, there are five cycles 
of sensemaking, each appearing in a separate paragraph. Typically one cycle ends and another 
cycle begins at steps [8] and [1] of the Octaloop. 
  

2.2 A Story of Sensemaking 

Major A. S. discussed an incident that occurred soon after 9/11 in which he was able to 
determine the nature of overflight activity around nuclear power plants and weapons 
facilities. This incident occurred while he was an analyst. He noticed [8] that there had 
been increased reports in counterintelligence outlets of overflight incidents around 
nuclear power plants and weapons facilities. At that time, all nuclear power plants and 
weapons facilities were “temporary restricted flight” zones. So this meant [1] there were 
suddenly a number of reports of small, low-flying planes around these facilities. At face 
value it appeared [2],[3],[4],[7] that this constituted a terrorist threat—that “bad guys” 
had suddenly increased their surveillance activities. There had not been any reports of 
this activity prior to 9/11 (but there had been no temporary flight restrictions before 9/11 
either).  

Major A. S. obtained [8] access to the Al Qaeda tactics manual, which instructed [1] Al 
Qaeda members not to bring attention to themselves. This piece of information helped 
him to begin to form [2] the hypothesis that these incidents were bogus—“It was a gut 
feeling, it just didn’t sit right. If I was a terrorist I wouldn’t be doing this.” He recalled 
thinking [3],[4] to himself, “If I was trying to do surveillance how would I do it?” From 
the Al Qaeda manual, he knew they wouldn’t break the rules, which to him meant that 
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they wouldn’t break any of the flight rules. He asked himself, “If I’m a terrorist doing 
surveillance on a potential target, how do I act?” He couldn’t put together a sensible 
story that had a terrorist doing anything as blatant as overflights in an air traffic 
restricted area.  

He thought [2],[3],[4] about who might do that, and kept coming back to the overflights 
as some sort of mistake or blunder. That suggested student pilots to him because 
“basically, they are idiots.” He was an experienced pilot. He knew that during training, 
it was absolutely standard for pilots to be instructed that if they got lost, the first thing 
they should look for were nuclear power plants. He told us that “an entire generation of 
pilots” had been given this specific instruction when learning to fly. Because they are so 
easily sighted, and are easily recognized landmarks, nuclear power plants are very useful 
for getting one’s bearings. He also knew that during pilot training the visual flight rules 
would instruct students to fly east to west and low—about 1,500 feet. Basically students 
would [7] fly low patterns, from east to west, from airport to airport. 
 
It took Major A. S. about 3 weeks to do his assessment. He found [8] all relevant message 
traffic by searching databases for about 3 days. He picked [1] the three geographic areas 
with the highest number of reports and focused on those. He developed overlays to show 
where airports were located and the different flight routes between them. In all three 
cases, the “temporary restricted flight” zones (and the nuclear power plants) happened 
to fall along a vector with an airport on either end. This added [2],[3],[4] support to his 
hypothesis that the overflights were student pilots, lost and using the nuclear power 
plants to reorient, just as they had been told to do. He also checked [7] to see if any of 
the pilots of the flights that had been cited over nuclear plants or weapons facilities were 
interviewed by the FBI.  
 
In the message traffic, he discovered [8],[1] that about 10% to 15% of these pilots had 
been detained, but none had panned out as being “nefarious pilots.” With this 
information, Major A. S. settled [2],[3],[4] on an answer to his question about who 
would break the rules: student pilots. The students were probably following visual flight 
rules, not any sort of flight plan. That is, they were flying by looking out the window and 
navigating.  
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3 Definitions 
 
Section 4 will detail steps of the Octaloop, and Section 5 will demonstrate how it applies to the 
story of Section 2. But first, Section 3 defines key terms used to characterize sensemaking from a 
computational perspective.  
 

3.1 Summary of Key Terms 

 
Sensemaking is defined as follows, where words in bold italics appear alphabetically in the 
glossary of Section 3.2: 
  

Sensemaking is a recurring cycle of obtaining evidence and updating confidence in 
competing hypotheses, to explain and predict an evolving situation. 
 

The above definition is consistent with literature cited in the BAA, including Klein, et al. (2007), 
who cite Weick (1995), who cites Louis (1980), who described the process as follows: 
 

"Sensemaking can be viewed as a recurring cycle... The cycle begins as individuals form 
unconscious and conscious anticipations and assumptions, which serve as predictions 
about future events. Subsequently, individuals experience events that may be discrepant 
from predictions. Discrepant events, or surprises, trigger a need for explanation, or post-
diction, and correspondingly, for a process through which interpretations of 
discrepancies are developed..." 
 

Moving beyond this definition, a comprehensive understanding of sensemaking ultimately 
requires computational modeling at functional, psychological, and biological levels. Although 
the latter levels are the main focus of ICArUS modeling, design of a challenge problem (to be 
solved by models at the biological and psychological levels) first requires a computational theory 
of sensemaking at the functional level, in the Marr (1982) sense of specifying "what is the goal 
of the computation..., and what is the logic of the strategy by which it can be carried out?" 
 
With that aim, the notion of a frame is formalized here as follows:   
 

Frames are knowledge structures comprising hypotheses, evidence, confidences in 
hypotheses, and likelihoods of evidence.  

 
Notice that this definition of a frame goes beyond that of the data-frame theory, because here a 
frame always represents data (i.e., evidence) as well as other knowledge and beliefs (i.e., 
hypotheses, likelihoods, and confidences) needed to make sense of data. The reason is that 
likelihoods are needed for computing confidences in hypotheses, and likelihoods always refer to 
data (evidence) – simply because a likelihood is the probability of evidence given a hypothesis.  
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The data-frame theory instead suggests a frame is everything except data that is needed to make 
sense of data. Besides excluding data from the frame, that definition says only what a frame is 
not and fails to specify what a frame is. The more formal definition above implies a frame cannot 
exclude data, if the frame is to be useful for making sense of data. The above definition also 
specifies exactly what else besides evidence (data) is needed in order to make sense of a 
situation, namely hypotheses, likelihoods, and confidences. Only when all these components of 
frames are made explicit, as in the formal definition above, is it possible to compute how frames 
might be "learned" and "assessed" and "re-framed" per the BAA's core sensemaking processes 
listed in Section 1.1. In particular, the notions of framing and re-framing are formalized here as 
follows: 
 

Framing is the formation of confidences across hypotheses, based on evidence and the 
likelihoods of that evidence being caused by various hypotheses. 
 
Re-framing is a revision of hypotheses and/or confidences across hypotheses, based on 
evidence and the likelihoods of that evidence being caused by various hypotheses. 
  

According to these definitions, there are two differences between framing and re-framing. First, 
framing is an initial formation of confidences across hypotheses, whereas re-framing is the 
subsequent revision of a frame formed earlier. Second, in re-framing some components of the 
frame may not be re-formed. In particular, re-framing may involve a revision of confidences 
across a set of hypotheses without changing the categorical set of hypotheses itself. Later Section 
5 will identify this type of re-framing across fixed hypotheses in the sensemaking story of 
Section 2, as well as a type of re-framing in which new hypotheses are generated. 
 
In all the above definitions, a distinction between hypotheses and evidence is especially 
important – because it reflects the causal structure (Pearl, 2000) that underlies sensemaking in 
both explanation and prediction. This causal structure is: hypotheses → evidence; where 
hypotheses are possible causes of evidential effects (i.e., causes → effects), and inferencing can 
proceed either forward (in the direction of the arrow) or backward. In backward inferencing, a 
sensemaker is explaining evidence. In forward inferencing, a sensemaker is predicting evidence. 
The distinction between confidence and likelihood then parallels the distinction between 
hypotheses and evidence. That is, confidence refers to the probability of a hypothesis given some 
evidence, whereas likelihood refers to the probability of some evidence given a hypothesis. 
 

3.2 Glossary of All Terms 

 
Below is a more comprehensive set of definitions, in alphabetical order, including all of the 
terms that appear in bold italics above: 
 

Bayesian refers to the use of Bayes Rule for updating beliefs in hypotheses given 
evidence. Bayes Rule is mathematical specification for how prior probabilities of 
hypotheses and conditional likelihoods of evidence are combined to compute posterior 
probabilities of hypotheses. Bayesian also refers to the optimal computation of expected 
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utility in decision-making situations, as the product of probability and utility summed 
across all possible outcomes of an action that may be chosen. 
 
Confidence is a measure of belief in the truth of a hypothesis, given some evidence (or 
prior to some evidence). Confidence is quantified by probability. 
 
Evidence is factual information (i.e., data) about an uncertain situation, obtained by direct 
observation or some communication (e.g., from a source of intelligence). 
 
Explanations are backward inferences to compute confidences in hypotheses, given 
evidence.  
  
Frames are knowledge structures comprising hypotheses, evidence, confidences in 
hypotheses, and likelihoods of evidence.  
 
Framing is the formation of confidences across hypotheses, based on evidence and the 
likelihoods of that evidence being caused by various hypotheses. 
 
Hypotheses are possible explanations of evidence, involving causal reasons for evidence 
as reflected by likelihoods. 
 
Inferencing is the assignment of confidences to hypotheses (backward inferencing) or 
the assessment of likelihoods for evidence (forward inferencing). 
 
Likelihood is a measure of belief in the occurrence of some evidence, given a hypothesis. 
Likelihood is quantified by probability. 
 
Posterior refers to the result of a Bayesian update, in which prior probabilities (of 
hypotheses) are combined with conditional likelihoods (of evidence given hypotheses) in 
order to compute posterior probabilities (of hypotheses given evidence). This is a 
backward inference, resulting in the explanation of a situation. 
 
Predictions are forward inferences to compute likelihoods of evidence, given hypotheses.  
 
Prior refers to the probability of a hypothesis before obtaining some evidence. 
 
Probability is a mathematical measure of belief in the truth of a hypothesis or occurrence 
of some evidence, quantified by a number in the range 0-1. 
  
Re-framing is a revision of hypotheses and/or confidences across hypotheses, based on 
evidence and the likelihoods of that evidence being caused by various hypotheses. 
  
Sensemaking is a recurring cycle of obtaining evidence and updating confidence in 
competing hypotheses, to explain and predict an evolving situation. 
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Utility is a mathematical measure of value or consequence for the outcome of an action 
that may or may not be chosen among a set of possible actions.  
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4 Formulation 
 

4.1 A Cycle of Sensemaking 

 
Based on the formal definitions of Section 3, and the anecdotal motivation in Section 2, a cycle 
of sensemaking can be characterized in terms of what is computed at each step of the cycle. 
Previous research (Burns, in press; 2012; 2011; 2010; 2007; 2006; 2005) has shown that a 
Bayesian approach (Edwards, 1961; 1954; Fischhoff & Beyth-Marom, 1983) provides a useful 
framework for analyzing the process of sensemaking (and its product called “situation 
awareness", see Klein, et al., 2007, pp. 119-120) from a computational perspective, including 
various heuristics and biased deviations relative to Bayesian norms. 
 
Using the Bayesian approach, a cycle of sensemaking is formally expressed in the following 
eight steps dubbed the Octaloop: 
 

4.2 Eight Steps of the Octaloop 

 
 

[1] Isolating Evidence: After [8] Discriminating Evidence from the previous cycle, a 
sensemaker M decides which evidence e among all perceived evidence {e} is to be used 
in the current cycle of sensemaking. Some evidence in {e} is necessarily ignored, at least 
temporarily. The selection of e is a matter of attention, and is affected by M's current 
understanding of the situation after the previous cycle of sensemaking. 
  
[2] Generating Hypotheses: After (or perhaps while) isolating evidence e, M creates or 
maintains a set of hypotheses {Hi} that serve as possible explanations of e. M also 
represents a prior confidence P(Hi) in each hypothesis, before assessing how the evidence 
e affects confidence across the set of hypotheses {Hi}. The values of {P(Hi)} satisfy Σi 
P(Hi) = 1, such that each P(Hi) represents a relative confidence in the truth of hypothesis 
Hi within the set of hypotheses {Hi}. 
 
[3] Estimating Likelihoods: Along with each hypothesis Hi and prior P(Hi), M also 
represents each likelihood P(e|Hi) that the evidence e would be observed if the hypothesis 
Hi was true. Initial estimates for these likelihoods would arise at step [2] Generating 
Hypotheses, because likelihoods of the form P(e|Hi) are what govern the generation of 
hypotheses Hi upon observing evidence e. However, further cogitations are often 
involved in refining the estimates of likelihoods, after a set {Hi} of hypotheses has been 
established.   
 
[4] Aggregating Confidence: Using the priors P(Hi) and likelihoods P(e|Hi), for all Hi in 
the set {Hi}, M updates his prior beliefs to obtain posterior beliefs P(Hi|e). These 
posteriors are computed as normalized products of priors and likelihoods, per Bayes Rule 
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as follows: P(Hi|e) = P(Hi) * P(e|Hi) / P(e), where the denominator is a normalizing factor 
computed as: P(e) = Σi P(Hi) * P(e|Hi), and the sum is taken over all hypotheses in the set 
{H i}. This normalizing factor ensures that the posterior probabilities (like the prior 
probabilities) sum to 1, i.e., Σi P(Hi|e) = 1. 
 
[5] Prognosticating Consequence: Sometimes the sensemaker M can recommend or 
implement actions that affect the operational situation (e.g., to defend against threats). 
Any outcome of an action will depend on the actual state of the situation, which is 
uncertain and modeled by M's posterior beliefs {P(Hi|e)}. Thus using these posteriors to 
model potential states of the actual world, and given a set of possible actions {aj} that 
might be taken, M predicts the chances P(ok|aj) of various outcomes (ok) for each possible 
action (aj). M also assigns a value or consequence to each outcome, modeled 
mathematically by utility U(ok|aj). Finally, the Bayesian decision is to choose the action aj 
that maximizes expected utility Xj, computed for each aj as follows: Xj = Σk P(ok|aj) * 
U(ok|aj).  
 
[6] Evaluating Consequence: After taking an action that affects the situation, M 
observes the consequence and has a reaction. For example, the reaction to an outcome ok 
that was expected at probability P(ok) would be quantified by Shannon's (1949) 
information-theoretic measure of surprisal, -log P(ok). In effect an outcome ok represents 
further information about the situation, and M's reaction to ok may affect subsequent 
steps and cycles of sensemaking. 
 
[7] Anticipating Evidence: Based on the current hypotheses {Hi} and posteriors 
{P(Hi|e)}, along with likelihoods of the form P(f|Hi,e) estimated for future evidence f that 
may be observed, M forms expectations (i.e., predictions) about each f in a set of possible 
evidence {f} as follows: P(f) = Σi P(Hi|e) * P(f|Hi,e), where the sum is taken over all 
hypotheses in the set {Hi}. Sometimes M has control over which evidence will be 
obtained next, and he makes a choice among options in a process known as "foraging" for 
information (Pirolli, 2007). The optimal choice would maximize expected utility much 
like step [5], which was a decision to take action that directly impacts the operational 
situation. But step [7] differs in that the actions aj are options for collecting information, 
and the outcomes ok are resulting gains in information. Thus probabilities P(ok|aj) 
represent the chances of various outcomes for each action (i.e., to get information), and 
utilities U(ok|aj) represent the associated values of those outcomes (i.e., gains in 
information). For example, the information gain U(ok|aj) can be computed (Burns, 2011) 
in terms of entropy divergence (Kullback & Leibler, 1951) across a set of hypotheses 
{H i}, measured from before an action (aj) to after an outcome (ok) of that action.  
 
[8] Discriminating Evidence: After anticipating evidence, M obtains actual evidence 
(via active collection or passive observation) and represents this new evidence {e'} for 
the next cycle of sensemaking. The set {e'} is an interpretation of raw data, and may be 
uncertain, so in fact it might be considered a set of hypotheses {E'}. If so, then a 
secondary cycle of sensemaking would be embedded within step [8], in order to establish 
the set of evidence {e'} that will be considered factual and carried forward to step [1]. 
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Clearly some steps of this cycle are extremely complex. For example, step [8] may involve a 
secondary cycle of sensemaking within the primary cycle, in order to obtain {e'} from {E'}. 
Similarly, steps [7] and [1] may involve meta-sensemaking, where M would model his own 
sensemaking processes in order to optimize the collection of evidence at step [7] and selection of 
evidence at step [1]. By necessity, these and other complexities of real-world sensemaking are 
greatly simplified in ICArUS challenge problems – as discussed further in Section 6. 
    
As outlined above, the Octaloop is a normative (Bayesian) model of the sensemaking cycle. 
However this same framework can be used as a descriptive model of cognitive (human) 
processing, simply by treating human heuristics as naturally bounded approximations to 
Bayesian computations. In fact the Bayesian framework is ideal for measuring and modeling 
psychological biases, precisely because it is a Bayesian framework and hence suitable for 
computing normative benchmarks as needed to measure subjective biases.  
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5 Demonstration 
 
Section 2 described an anecdotal story, Section 3 defined more formal concepts, and Section 4 
detailed a computational model. Section 5 now maps this model back to the story in order to 
demonstrate how sensemaking can be analyzed from a computational perspective. The story 
contains five cycles of sensemaking, each addressed in a separate subsection below. 
 

5.1 Suspecting "The Bad Guys" 

Major A. S. discussed an incident that occurred soon after 9/11 in which he was able to 
determine the nature of overflight activity around nuclear power plants and weapons 
facilities. This incident occurred while he was an analyst. He noticed [8] that there had 
been increased reports in counterintelligence outlets of overflight incidents around 
nuclear power plants and weapons facilities. At that time, all nuclear power plants and 
weapons facilities were “temporary restricted flight” zones. So this meant [1] there were 
suddenly a number of reports of small, low-flying planes around these facilities. At face 
value it appeared [2],[3],[4],[7] that this constituted a terrorist threat—that “bad guys” 
had suddenly increased their surveillance activities. There had not been any reports of 
this activity prior to 9/11 (but there had been no temporary flight restrictions before 9/11 
either).  

 
The first cycle begins as the sensemaker (hereafter denoted M) is [8] Discriminating Evidence 
and [1] Isolating Evidence, by identifying a body of evidence {e} from counterintelligence and 
attending to an item of evidence e, denoted here as s = sudden increase (after 9/11) in reported 
flight zone violations. M thought this evidence constituted a terrorist threat, so he was [2] 
Generating Hypotheses {Hi} about possible causes of the evidence s, and [3] Estimating 
Likelihoods of the form P(s|Hi) for various Hi.  
 
These likelihoods govern which hypotheses are recalled from long-term memory and represented 
in working memory as possible explanations of s. The story mentions a hypothesis A = Al 
Qaeda, which suggests that evidence s was strongly associated with A, i.e., A was a likely cause 
of s. Besides this likelihood P(s|A), M would also be representing a prior probability P(A) that 
reflects his preconceived confidence in A, i.e., in the absence of evidence s.  
 
Although the story does not mention it, the sensemaker M would have generated other 
hypotheses besides A. At the very least M must have generated the hypothesis ~A = Not Al 
Qaeda, because he was clearly not certain that the evidence s was caused by A. So in this first 
cycle of sensemaking, M would be representing at least two hypotheses {A, ~A} in his working 
memory. He would also be representing two priors P(A) and P(~A), and two likelihoods P(s|A) 
and P(s|~A).  
 
Unfortunately this story, like most stories, does not provide numerical values for any of these 
probabilities. And if asked, the sensemaker M might even deny that he represented such values 
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in his mind. But actually M must mentally represent the probabilities at least implicitly, simply 
because he is not equally confident in A and ~A. For example, P(s|A) would be represented as 
the associative strength between s and A, where A is a possible cause of s. This strength differs 
from the associative strength between s and ~A, which is smaller because M knows a reason why 
A would cause s but does not know a reason why ~A would cause s. The point here is that the 
magnitudes of these associative strengths must be represented at least implicitly in the mind of a 
sensemaker, even if they are not reported explicitly as probabilities.  
 
Here, for purposes of quantification, we can assign numbers that are consistent with the narrative 
of the story. For priors, we might assume P(A) = P(~A) = 0.50 if M had no prior beliefs about 
the probabilities of A or ~A. However, the events of the story took place soon after the 9/11 
attacks, and the narrative suggests that M may have thought P(A) > P(~A). Thus for purposes of 
quantification, the analysis here will assume P(A) = 0.80 and P(~A) = 0.20. Note that P(A) + 
P(~A) = 1, because A and ~A are mutually exclusive and exhaustive hypotheses. 
 
Also consistent with the story, we might assume P(s|A) = 0.90 and P(s|~A) = 0.50 for the 
likelihood of observing the evidence s if A or ~A were true, respectively. But notice that, unlike 
the priors, these likelihoods need not (and usually will not) sum to 1. Instead P(s|A) + P(~s|A) = 
1, because if A is true then either s or ~s would occur. Thus the assumed value P(s|A) = 0.90 and 
implied value P(~s|A) = 1 - 0.90 = 0.10 together mean that M thinks Al Qaeda is much more 
likely to cause s than ~s, because M can think of a "reason" why A would cause s rather than ~s. 
Similarly, P(s|~A) + P(~s|~A) = 1, because if ~A is true then either s or ~s would occur. Here the 
assumed value P(s|~A) = 0.5 means that s would be a non-causal or "random" (i.e., for no 
apparent reason) effect if ~A was true, such that P(s|~A) = P(~s|~A) = 0.50.      
 
After [3] Estimating Likelihoods as described above, the cycle continues as M engages in [4] 
Aggregating Confidence. According to the story M is led to believe that the evidence s was most 
likely caused by the "bad guys" (A). This belief can be quantified as a normalized product of 
priors and likelihoods, computed for each hypothesis (A and ~A) via Bayes Rule as follows: 
 

P(A|s) = P(A) * P(s|A) / P(s) 
  
P(~A|s) = P(~A) * P(s|~A) / P(s) 
 
 

where P(s) is a normalizing factor appearing in the denominators, computed from the sum of 
numerators as follows: 
 
 P(s) = P(A) * P(s|A) + P(~A) * P(s|~A). 

 
Using the numbers noted above, these equations produce posterior probabilities of P(A|s) = 0.88 
and P(~A|s) = 0.12. In words, M would be thinking the most probable explanation of s is Al 
Qaeda's surveillance activities. Then based on this belief, M would be [7] Anticipating Evidence 
as he prepares to enter the next cycle of sensemaking. This anticipation would affect whether and 
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where he would seek further evidence. It would also affect how he directs his attention in [8] 
Discriminating Evidence after evidence is received.  
 
This concludes the first cycle of sensemaking, which touched on all steps of the Octaloop except 
[5] Prognosticating Consequence and [6] Evaluating Consequence. These two steps refer to 
operational actions and outcomes, rather than analytical judgments and beliefs. The story is 
about the sensemaking of an intelligence analyst M, and does not involve any operational actions 
by M or others that he may advise to affect the operational situation. But more generally 
sensemaking may include both analytical and operational components, and that is why steps [5] 
and [6] are included in the Octaloop. 
 
Similar to the choices and outcomes of operational actions in steps [5] and [6], steps [7] and [8] 
address choices and outcomes of analytical actions to obtain and exploit further information. The 
main difference lies in the modeling of utility, which for [5] and [6] concerns the value to 
operations, but for [7] and [8] concerns the value of information. According to the story, M's 
belief that A was probably true led him to seek further information about A from the Al Qaeda 
manual. Per the story: 
 

5.2 Reviewing their Tactics 

Major A. S. obtained [8] access to the Al Qaeda tactics manual, which instructed [1] Al 
Qaeda members not to bring attention to themselves. This piece of information helped 
him to begin to form [2] the hypothesis that these incidents were bogus—”It was a gut 
feeling, it just didn’t sit right. If I was a terrorist I wouldn’t be doing this.” He recalled 
thinking [3],[4] to himself, “If I was trying to do surveillance how would I do it?” From 
the Al Qaeda manual, he knew they wouldn’t break the rules, which to him meant that 
they wouldn’t break any of the flight rules. He asked himself, “If I’m a terrorist doing 
surveillance on a potential target, how do I act?” He couldn’t put together a sensible 
story that had a terrorist doing anything as blatant as overflights in an air traffic 
restricted area.  
 

Here a second cycle of sensemaking begins as M is [8] Discriminating Evidence and [1] 
Isolating Evidence. Although the story does not say so explicitly, these steps occur after an 
implicit step [7] Anticipating Evidence in the previous cycle of sensemaking, because clearly M 
had some expectation about what he would find in the Al Qaeda manual. Apparently he expected 
the manual would say something that would shed light on the likelihood P(s|A). But we cannot 
tell from the story if he expected to learn something that would increase or decrease his estimate 
of P(s|A). 
 
Notice that the evidence (Al Qaeda manual) in this cycle is known to be caused by A rather than 
~A. Therefore this evidence actually represents new knowledge about a likelihood P(s|A) that 
was estimated in the previous cycle of sensemaking. Based on his review, M now thinks that 
P(s|A) is very small, because the manual instructs Al Qaeda members not to bring attention to 
themselves. For example, perhaps after reading the manual M thought P(s|A) = 0.01. In effect, M 
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realized that his previous estimate of P(s|A) = 0.90 was wrong, because he learned of a very 
good reason (from the Al Qaeda manual) for why A would not cause s (and instead would cause 
~s). So M repeats the previous cycle of sensemaking, but now using P(s|A) = 0.01 instead of 
P(s|A) = 0.90. The Al Qaeda manual says nothing about other groups (~A), so P(s|~A) remains = 
0.50. 
 
Using the revised likelihoods, along with the original priors P(A) = 0.80 and P(~A) = 0.20, the 
Bayesian equations produce posteriors as follows: P(A|s) = 0.07 and P(~A|s) = 0.93. In words, 
the sensemaker's beliefs have undergone a reversal, from A being very probable to ~A being 
very probable, based on a change in the likelihood P(s|A). This is an example of re-framing in 
which additional evidence (from the Al Qaeda manual) changes M's estimate of a likelihood, and 
this in turn changes M's beliefs about the most probable explanation of previous evidence s (from 
counterintelligence) across a set of hypotheses {A, ~A}. 
  
As a result, the story says that M "began to form the hypothesis that these incidents were bogus". 
But notice that this is not really a new hypothesis, because the hypothesis ~A had been generated 
earlier along with the hypothesis A. Instead at this point M merely began to think that ~A was 
more probable than A, according to the Bayesian calculations outlined above, which correspond 
to steps [3] Estimating Likelihoods and [4] Aggregating Confidence of the Octaloop. 
  
Also at this point the story says that M began to wonder who, besides a terrorist, would possibly 
break the rules and hence cause the observed evidence s. Eventually M generated a novel 
hypothesis in answer to this question, but it was not until the next cycle of sensemaking. What is 
interesting here, in the present cycle, is that M felt compelled to wonder about the hypothesis ~A 
and eventually generate a new hypothesis (regarding student pilots). It appears that M's 
motivation for doing so was twofold. First, he now thought ~A was the most probable 
hypothesis. Second, his likelihoods for this most probable hypothesis (~A) were P(s|~A) = 0.50 
and P(~s|~A) = 0.50, so he had no causal basis or reason by which he could explain the evidence 
s. In other words, M was pretty sure he knew who was not responsible for the overflight activity, 
but he still did not have a clue as to who was responsible. And apparently he felt a strong need to 
establish who was probably responsible, rather than who was not probably responsible. 
 

5.3 Abducting a Reason 

He thought [2],[3],[4] about who might do that, and kept coming back to the overflights 
as some sort of mistake or blunder. That suggested student pilots to him because 
“basically, they are idiots.” He was an experienced pilot. He knew that during training, 
it was absolutely standard for pilots to be instructed that if they got lost, the first thing 
they should look for were nuclear power plants. He told us that “an entire generation of 
pilots” had been given this specific instruction when learning to fly. Because they are so 
easily sighted, and are easily recognized landmarks, nuclear power plants are very useful 
for getting one’s bearings. He also knew that during pilot training the visual flight rules 
would instruct students to fly east to west and low—about 1,500 feet. Basically students 
would [7] fly low patterns, from east to west, from airport to airport. 
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Motivated by his desire to find a better (causal) explanation for the evidence s, M initiated this 
third cycle of sensemaking without the introduction of any new evidence from steps [8] and [1]. 
That is, M engaged in [2] Generating Hypotheses about who was responsible for s, after realizing 
that Al Qaeda (A) was probably not responsible.  
 
The result is a new hypothesis S = Student pilots (and not Al Qaeda), based on high associative 
memory strength between S and s. This strength, in turn, reflects a reason (i.e., knowledge) for 
why S would cause s. That is, given M's expert knowledge as a pilot, he thinks P(s|S) is high 
because he knows why students would frequently fly over nuclear power plants. Numerically, we 
might assume P(s|S) = 0.90 because students have a reason for causing s, whereas P(s|~S) = 0.50 
because non-students may or may not have a reason for causing s.  
 
At this point M's set of hypotheses can be characterized as {A, S, ~S), where ~S = Not student 
pilots (and not Al Qaeda). So here the re-framing is more comprehensive than we saw in the 
previous cycle, because here we have new hypotheses as well as new likelihoods associated with 
those hypotheses. For priors, we can assume P(A) = 0.80 as before, and then assume P(~A) = 
0.20 is split equally between the two hypotheses that were not previously distinguished within 
~A such that P(S) = P(~S) = 0.10. For likelihoods, we have P(s|A) = 0.01 from the previous 
cycle of sensemaking, and now from step [3] of the present cycle we have P(s|S) = 0.90 and 
P(s|~S) = 0.50. Finally after [3] Estimating Likelihoods in this fashion, Bayes Rule is once again 
used for [4] Aggregating Confidence. 
 
The resulting posteriors are: P(A|s) = 0.05, P(S|s) = 0.61, and P(~S|s) = 0.34. In words, M thinks 
S is about ten times more probable than A, and he also thinks S is about twice as probable as ~S. 
As in an earlier cycle of sensemaking, where M thought to consult the Al Qaeda manual, his 
beliefs here lead to [7] Anticipating Evidence that can better distinguish the cause (A, S, or ~S) 
of evidence s. Also as in earlier cycles, the story does not say why M chose to collect the 
evidence about flight paths (analyzed in the next cycle of sensemaking), but presumably he 
expected this evidence would help in establishing relative confidence in S versus ~S. 
 

5.4 Collecting More Data 

 
It took Major A. S. about 3 weeks to do his assessment. He found [8] all relevant message 
traffic by searching databases for about 3 days. He picked [1] the three geographic areas 
with the highest number of reports and focused on those. He developed overlays to show 
where airports were located and the different flight routes between them. In all three 
cases, the “temporary restricted flight” zones (and the nuclear power plants) happened 
to fall along a vector with an airport on either end. This added [2],[3],[4] support to his 
hypothesis that the overflights were student pilots, lost and using the nuclear power 
plants to reorient, just as they had been told to do. He also checked [7] to see if any of 
the pilots of the flights that had been cited over nuclear plants or weapons facilities were 
interviewed by the FBI.  
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In this fourth cycle of sensemaking, M begins by [8] Discriminating Evidence and [1] Isolating 
Evidence. He found that vectors through restricted zones had airports on either end, and the story 
says this evidence added support to his hypothesis (S). But actually the evidence first affected his 
estimates of likelihoods, which in turn affected his confidence in each hypothesis {A, S, ~S}. 
More specifically, M's finding that some vectors between airports passed directly over nuclear 
power plants led him to increase the likelihood P(s|S) and decrease the likelihood P(s|~S), 
relative to his earlier estimates for these same likelihoods. In that respect the re-framing here is 
much like that in the second cycle, where reading the Al Qaeda manual led M to decrease the 
likelihood of P(s|A).  
 
For example, based on his geospatial analysis, perhaps M increased the likelihood of P(s|S) from 
0.90 to 0.95, and decreased the likelihood of P(s|~S) from 0.50 to 0.10. The increase in P(s|S) 
reflects M's finding of airport vectors over nuclear plants, which increased his belief that S 
would cause s. The decrease came from his finding of other flight paths that would presumably 
be used by experienced pilots, which decreased his belief that ~S would cause s. Notice that the 
decrease in P(s|~S) is more drastic than the increase in P(s|S), because P(s|S) = 0.90 was already 
high, whereas previously P(s|~S) = 0.50.   
 
Assuming the revised likelihoods are P(s|A) = 0.01, P(s|S) = 0.95, P(s|~S) = 0.10, and using the 
previous cycle's priors P(A) = 0.80, P(S) = 0.10, and P(~S) = 0.10, the Bayesian posteriors are 
computed are follows: P(A|s) = 0.07, P(S|s) = 0.84, and P(~S|s) = 0.09. In words, M now thinks 
that S is about ten times more probable than either A or ~S. Thus after developing the flight path 
overlays (and reviewing the Al Qaeda manual), M is even more certain that the most probable 
explanation for the overlflight activity is student pilots (who are not members of Al Qaeda). 
 
As in previous cycles of sensemaking, these beliefs lead M to seek further information that will 
help establish relative confidence in competing hypotheses. Once again, the story does not say 
exactly why M decides to check the FBI records. Perhaps he thought the records might say 
whether violators were students or not (i.e., S versus ~S); or perhaps he thought the records 
would uncover any ties that pilots had to Al Qaeda (i.e., A versus ~A).  
 
One interesting aspect of this story is that M chose to spend days/weeks on the overlay analysis 
before checking the FBI records. Assuming that M's primary concern was the threat of Al Qaeda 
activity, and therefore the probability of A versus ~A, it is curious that he first chose to perform 
the overlay analysis, which presumably would help distinguish S from ~S but not help 
distinguish A from ~A. So although the story does not say, it appears that M felt the probability 
of A was low enough, and he was more concerned with finding evidence to support his belief 
that S was the most likely cause of s. In other words, M's priority for further analysis was to 
establish what did cause s (which he suspected was S), rather than what did not cause s.  
 
This behavior might be characterized as a Confirmation Bias (Nickerson, 1998), because M 
chooses to collect evidence that pertains to a more probable (and less consequential) hypothesis 
S, rather than collect evidence that pertains to a less probable (and more consequential) 
hypothesis A. But it is not clear whether the behavior was actually non-normative (sub-optimal) 
or not. And the answer to that question would require that many more parameters of the situation 
be identified and quantified – including each option available to the sensemaker for collecting 
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information, along with the expected costs and benefits (of what might be learned from further 
information) with respect to the analytical functions and operational missions that M's 
sensemaking might support. 
 

5.5 Concluding "It's Students" 

 
In the message traffic, he discovered [8],[1] that about 10% to 15% of these pilots had 
been detained, but none had panned out as being “nefarious pilots.” With this 
information, Major A. S. settled [2],[3],[4] on an answer to his question about who 
would break the rules: student pilots. The students were probably following visual flight 
rules, not any sort of flight plan. That is, they were flying by looking out the window and 
navigating.  
 

In this fifth and final cycle of sensemaking, the result of [8] and [1] was a finding of: n = no 
nefarious pilots identified in the FBI interviews. Here the evidence n is like s in that it could 
feasibly be caused by any of the candidate hypotheses: {A, S, ~S}. This differs from the 
evidence considered in the second cycle (Al Qaeda manual), which pertains only to A; and 
evidence considered in the fourth cycle (flight path analysis), which pertains only to ~A (i.e., S 
and ~S). Here in the fifth cycle M has new evidence that pertains to each hypothesis as he 
performs step [3] Estimating Likelihoods and step [4] Aggregating Confidence. 
  
The new likelihoods that must be estimated are probabilities of evidence n, conditional on each 
hypothesis {A, S, ~S} but also conditional on the previous evidence s. Because n presumably 
comes from a different and diverse source of intelligence than the counterintelligence reports s, 
we can assume that n and s are independent. Thus the likelihoods of n are conditioned only on 
hypotheses, as follows: P(n|A), P(n|S), and P(n|~S). For example, based on the sample of pilots 
that had been interviewed, a finding of no nefarious pilots might suggest P(n|A) = 0. But because 
the sample is limited to 10-15% of pilots, and because interviews of pilots would not be 100% 
reliable in establishing ties to Al Qaeda, M might assume P(n|A) = 0.01 and P(~n|A) = 0.99. On 
the other hand, it appears the FBI data were uninformative with respect to the student status of 
pilots. So for students we have P(n|S) = 0.50 and P(~n|S) = 0.50, and also for non-students we 
have P(n|~S) = 0.50 and P(~n|~S) = 0.50. 
 
Armed with these three likelihoods, P(n|A) = 0.01, P(n|S) = 0.50, and P(n|~S) = 0.5, Bayes Rule 
is used to update the posteriors computed in the previous cycle of sensemaking. Those posteriors 
become priors in the present cycle: P(A|s) = 0.07, P(S|s) = 0.84, and P(~S|s) = 0.09. Combining 
these priors with the likelihoods via Bayes Rule we obtain the following posteriors: P(A|n,s) = 
0.001, P(S|n,s) = 0.90, and P(~S|n,s) = 0.10. In words, after five cycles of sensemaking the 
sensemaker M is now very sure the evidence (s and n) is not explained by Al Qaeda activity, 
P(A|n,s) = 0.001. He is also pretty sure that the evidence is explained by activities of student 
pilots following visual flight rules, P(S|n,s) = 0.90. 
 
Notice that this fifth cycle of sensemaking involved a re-framing unlike the other two types we 
have seen. That is, there are no changes to any previously-estimated likelihoods, and there are no 
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newly-generated hypotheses. Instead there is new evidence (n) from an independent source and 
associated likelihoods P(n|A), P(n|S), and P(n|~S) across a fixed set of hypotheses {A, S, ~S). 
The result is a new set of posteriors that reflect the aggregation of original priors (from the first 
cycle of sensemaking) and likelihoods of all evidence (counterintelligence reports, Al Qaeda 
manual, flight path overlays, and FBI interviews). 
 

  



 

 

23 

 

6 Application 
 
Section 5 demonstrated how real-world sensemaking could be analyzed from a computational 
perspective, using the Octaloop. Section 6 now discusses how the Octaloop has been used as a 
basis for designing ICArUS "challenge problems", which pose prototypical challenges of 
sensemaking within constraints imposed by the BAA.  
 
The discussion here is intended to be general and hence does not address details of individual 
tasks or trials of the Phase 1 or Phase 2 challenge problems. For those details, readers are 
referred to the Phase 1 design document (Burns, Greenwald, & Fine, 2014) and the Phase 2 
design document (Burns, 2014). 
 

6.1 The Importance of Likelihoods 

 
One of the most important insights from Section 5 is that likelihoods are central to sensemaking. 
This is noteworthy because likelihoods are not mentioned or modeled in the "data-frame" theory, 
or the core sensemaking processes identified in the BAA, yet they are critical components (along 
with hypotheses, evidence, and confidences) of frames. Any sensemaker in the real-world or 
laboratory must mentally represent likelihoods, at least implicitly. Unfortunately, likelihoods are 
usually not expressed explicitly or measured numerically, as we saw in the prototypical story of 
Section 2. And in that case it is impossible to model and measure sensemaking relative to 
normative (Bayesian) standards – as needed to gain a computational understanding of 
sensemaking, and as needed to assess performance and biases per the ICArUS BAA. 
 
Basically ICArUS experiments must either provide likelihoods as inputs to human subjects (and 
neural models), or else measure the likelihoods that are being used by those human subjects (and 
neural models) as they make sense of evidence. As a practical matter, it is onerous for human 
subjects to report all likelihoods in each cycle of sensemaking. And even if human subjects 
would be willing to do so, it is not feasible for experimenters to measure "average" human 
performance (per the ICArUS BAA) when all subjects are using their own personal estimates of 
likelihoods.  
 
Finally, even if it were feasible, each subject's personal likelihoods would be affected by the real-
world knowledge that he or she brings to an experiment – much like the story in which a 
sensemaker estimated the likelihoods of flight zone violations based on his own experience as a 
pilot. The ICArUS BAA requires that challenge problems be designed to minimize the effects of 
rich and sophisticated knowledge representations (RASKRs) held by human subjects, because 
neural models being built and tested in the program will not possess the same expert knowledge. 
 
For these reasons, likelihoods are given to humans and models as input to sensemaking in tasks 
of the ICArUS Phase 1 and Phase 2 challenge problems. In effect, subjects are provided with the 
results of step [3] Estimating Likelihoods, as if this step were being performed by a teammate or 
system rather than as part of their own sensemaking cycle. 
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6.2 Hypotheses and Evidence 

 
By definition (per Section 3), likelihoods are probabilities of the form P(e|H). So if a subject is to 
be given all the likelihoods needed for sensemaking (per Section 6.1), then by necessity the 
subject must also be given the evidence (e) and hypotheses {Hi} in each cycle of sensemaking. 
Thus like step [3] Estimating Likelihoods, subjects must be provided with the results of steps [8] 
Discriminating Evidence, [1] Isolating Evidence, and [2] Generating Hypotheses, rather than 
performing these steps themselves. 
 
This may make ICArUS challenge problems feel somewhat unnatural to participants in 
experiments, as analysts are used to performing all steps themselves or in concert with human 
teammates rather than machine systems. Participants are also not used to reporting intermediate 
results, especially not in numerical fashion, which they must also do in ICArUS experiments. 
However these experimental controls are required to enable rigorous modeling and measuring of 
sensemaking per the ICArUS BAA. 
 
Regarding steps [8] and [1], there is another reason for providing subjects with features of 
evidence (i.e., data) rather than requiring that they extract those features from raw sensory 
representations. The reason is that low-level visual perception and natural language processing 
are excluded from the scope of the ICArUS program. Like RASKRs discussed above, ICArUS 
models are not being developed to solve problems of vision or language. And because neural 
models will not have those capabilities, human subjects should not exploit their own capabilities 
for vision and language if comparisons between humans and models are to be meaningful. 
 

6.3 The Nature of Re-Framing 

 
In analyzing the story of sensemaking, Section 5 identified three different types of re-framing. 
These three types can be characterized as Abducting, Revising, and Updating. Abducting 
occurred in the original framing that generated hypotheses in the set {A, ~A}, then again in later 
re-framing that generated new hypotheses in an expanded set {A, S, ~S}. Revising occurred 
when the sensemaker revised a likelihood based on his review of the Al Qaeda manual. Revising 
also occurred when the sensemaker revised likelihoods associated with students or non-students 
causing flight zone violations, based on his analysis of flight paths. Updating occurred only in 
the final cycle of sensemaking, when posteriors from the previous cycle became the priors that 
were then updated with likelihoods of evidence from FBI interviews. 
 
All three types of re-framing are clearly applicable and important in real-life sensemaking. 
However, ICArUS challenge problems are constrained to the last type of re-framing, i.e., 
Updating, for three reasons. First, as described in Section 6.1, likelihoods are given to subjects so 
they are not estimating and re-estimating (i.e., Revising) their own likelihoods. Second, as 
described in Section 6.2, hypotheses are given to subjects so they are not generating (i.e., 
Abducting) their own hypotheses. Finally, the need to avoid RASKRs requires that subjects be 
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prevented from using their expert knowledge to estimate (and re-estimate) likelihoods or 
generate hypotheses. These processes are governed by RASKRs in real-world sensemaking, so 
they simply cannot be tested in challenge problems that avoid RASKRs. 
 
Needless to say, any or all of these constraints (imposed on likelihoods, hypotheses, and 
evidence) might be relaxed in extending and applying the Octaloop beyond ICArUS challenge 
problems. Several ideas for such extensions are outlined in Section 7 of this document. 
 

6.4  Three Functions of Sensemaking 

 
In summary of how the Octaloop applies to ICArUS challenge problems, it is useful to highlight 
three sets of steps in the Bayesian framework. These three sets of steps model three functions of 
sensemaking, namely: Inferencing, Decision-Making, and Foraging. 
 
First and foremost, sensemaking is a process of forward and backward Inferencing. The forward 
inferences include estimating likelihoods of the form P(e|H) for evidence (e) given hypotheses 
(H). The backward inferences involve aggregating priors and likelihoods to obtain posteriors of 
the form P(H|e). Because likelihoods are given to subjects in human experiments, ICArUS 
challenge problems are focused on the backward inferences in a form of re-framing known as 
Bayesian Updating (see Section 6.3). The steps of the Octaloop that model this function are [1], 
[2], [3], and [4].  
 
The remaining steps of the Octaloop address choices (decisions) made by a sensemaker, based 
on judgments (inferences) made in earlier steps noted above. These choices greatly complicate 
the control of experiments performed with ICArUS challenge problems. The reason is that each 
choice changes the "game state" (context) for future judgments, so each subject will actually be 
receiving different stimuli depending on their sequence of choices throughout a "game task" 
(mission). This makes it difficult or impossible for experimenters to compute a meaningful 
"average" of human sensemaking performance across subjects, as required by the ICArUS BAA. 
 
For that reason, only selected missions of the ICArUS challenge problems involve choices by 
participants, and the options for choices are extremely constrained to maintain experimental 
control. These missions address choices of two types, namely: Decision-Making and Foraging. 
Decision-Making refers to operational choices of the sort that are not usually made by 
intelligence analysts. However analysts do analyze possible courses of action, and advise 
operational decision-makers, so this function of sensemaking is captured in several missions of 
the ICArUS challenge problems. The relevant steps of the Octaloop are [5] and [6]. 
 
Another type of choice more often made by intelligence analysts involves the active collection or 
passive attention to further information about a situation. In order to address this function, known 
as Foraging, several missions of ICArUS challenge problems relax the constraint of Section 6.2 
on giving evidence to participants. For these missions, subjects must choose among several 
intelligence sources or different areas where intelligence may be obtained, so not all subjects will 
process the same evidence in the same order. The relevant steps of the Octaloop are [7] and [8]. 
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As outlined above, ICArUS challenge problems address all eight steps of the Octaloop – albeit 
each to a greater or lesser extent in order to satisfy practical constraints on human experiments 
and meet BAA requirements. This is done by designing suites of "game tasks", where each task 
is a simulated mission that challenges one or more of the three sensemaking functions, namely: 
Inferencing [1]-[4], Decision-Making [5]-[6], and Foraging [7]-[8]. Details of all missions are 
documented elsewhere for the Phase 1 (Burns, Greenwald, & Fine, 2014) and Phase 2 (Burns, 
2014) challenge problems. 
 

6.5 Key Insights on Biases 

 
An important objective of the ICArUS program is to gain new insights into cognitive biases and 
how they might be overcome. Thus in accordance with the ICArUS BAA, challenge problems 
are designed to address eight specific heuristics and biases, namely: Anchoring and Adjustment, 
Availability, Change Blindness, Confirmation Bias, Persistence of Discredited Evidence, 
Probability Matching, Representativeness, and Satisfaction of Search. All eight are commonly 
considered to adversely affect intelligence analysts. Each is a heuristic strategy or the resulting 
effect (i.e., bias) thereof, relative to normative (Bayesian) standards. 
 
A difficult problem faced in experimental design is to formally define each bias in the context of 
intelligence sensemaking, and then actually compute normative-Bayesian solutions for the 
challenge problems – as needed for measuring the existence and magnitude of each individual 
bias. Some insights gained from this effort are offered below. 
 

6.5.1 An Insight in Hindsight 

 
One insight from the design effort was that some of the so-called biases may actually be 
normative behaviors, at least when scientists properly consider the context in which judgments 
and decisions are being made – including the existence of uncertainty and practical constraints 
on time and effort needed to make decisions and take actions. In short, human heuristics can 
often be seen as bounded-Bayesian strategies, where any so-called "bias" lies more in the minds 
of scientists who fail to consider the practical constraints and natural bounds of participants, 
rather than in the minds of participants who must deal with those bounds and constraints.  
 
For instance, Probability Matching has been shown to be an optimal strategy (Burns & Demaree, 
2009) when the decision maker is uncertain about the state of the world, i.e., when he or she 
must earn (exploit) utility from the environment and at the same time learn (explore) the 
parameters (i.e., probabilities and utilities) of the environment. Similarly, Change Blindness and 
Satisfaction of Search are obvious biases only when scientists do not consider the practical 
benefits of change detection or search completion, as well as the costs in terms of time and 
effort. For example, if a potential change is non-consequential, then a bounded-Bayesian would 
be optimal to ignore it. Similarly, if exhaustive search is not expected to be worth the costs, then 
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a bounded-Bayesian would be optimal to terminate the search when the costs outweigh expected 
benefits. 
 
Of course this is not to say that biases do not exist. But it does appear that some so-called biases 
may represent bias in the mind of an observer (of the actor's behavior) rather than bias in the 
actor's behavior itself. This is especially true for Confirmation Bias, which is perhaps the most 
celebrated bias in circles of intelligence analysis (Heuer, 1999)  
 
An example arises when an actor's "confirming" judgment or decision is observed by others to be 
"incorrect", from the deterministic perspective of what happened after the fact. Clearly the 
causes of bad outcomes are important to assess. But there is always uncertainty before a 
judgment or decision is made, so the only way to ascertain whether the actor was biased or not is 
to look at all the relevant probabilities and utilities – as they were known (or could possibly have 
been known) before the judgment or decision was made. Sometimes low probability events do 
occur, and sometimes high probability events do not occur. So it is the foresight probability P 
rather than hindsight probability 1 or 0 that must be considered in assessing the goodness or bias 
of any judgment or decision that preceded the observed outcome. 
 

6.5.2 The Benefits of Biases  

 
Early research on Confirmation Bias (Wason & Johnson-Laird, 1972), done with contrived 
problems in deterministic settings, found that humans tended to seek information that would 
confirm their favored hypothesis. In that context the behavior was biased because instead 
participants should have tried to refute their favored hypothesis. However, subsequent research 
(Klayman & Ha, 1987) in a probabilistic context more relevant to real-world situations has 
demonstrated that a "positive test strategy" (i.e., seeking information about the most probable 
hypothesis) is actually optimal – in the sense of maximizing the expected gain of information. 
 
This same result was obtained in design of ICArUS challenge problems. Detailed calculations 
were performed for prototypical problems of intelligence collection, using a range of realistic 
values for the sensor parameters known as "hit", "miss", "false alarm", and "correct rejection" 
rates per signal detection theory. These Bayesian analyses showed that a positive test strategy 
was always optimal (i.e., maximizing the information gain), such that the only so-called "bias" 
would be if a participant in experiments did not choose to obtain further information about the 
most probable hypothesis – and even that behavior (much like Probability Matching, discussed 
above) may be optimal given second-order uncertainty (i.e., the probabilities of probabilities). 
 

6.5.3 Confirming Conservatism 

 
Another flavor of Confirmation Bias (Nickerson, 1998) deals with weighing evidence rather than 
seeking evidence. For example, a study of Confirmation Bias in the context of intelligence 
analysis (Lehner, et al., 2008) presented 60 items of evidence to participants in four stages (i.e., 
15 items per stage). The study measured subjective confidence in each of three competing 



 

 

28 

 

hypotheses {H1, H2, H3}, after each set of 15 evidence items was received. The study also 
measured subjective "diagnosticity" with respect to each hypothesis, for each individual item of 
evidence, on a scale from -2 (strongly refutes) to +2 (strongly supports). The study found that 
judgments of diagnosticity were correlated with confidence in each hypothesis. For example, 
participants who favored H1 reported that a supporting item of evidence was more diagnostic in 
supporting H1, compared to participants who favored H2 or H3. Similarly, participants who 
favored H1 reported that a refuting item of evidence was less diagnostic in refuting H1, 
compared to participants who favored H2 or H3. 
 
Although interesting, it is not clear to what extent this behavior is actually a Confirmation Bias 
in the normative sense of deviating from Bayesian standards. One issue is that experimenters 
used judgments of diagnosticity to measure bias, yet functionally these judgments were only 
inputs to the participants' overall task of aggregating evidence (and associated judgments of 
diagnosticity) in order to assess confidence across the three hypotheses. The experimenters did 
not compute a normative solution for confidence across hypotheses after each item of evidence 
(or after each stage of 15 evidence items), so there was no basis for concluding that participants 
were biased in that regard. Also, with 60 items of evidence, many items might be rendered non-
diagnostic after receiving dependent items, even if each item was diagnostic when considered 
individually and independently. 
 
In short, the experimental conclusions were based on human judgments of diagnosticity for 
individual items of evidence, rather than human judgments of confidence in competing 
hypotheses. Also the measure of bias was computed between different sets of subjective 
judgments, rather than between subjective judgments and normative standards. To the extent that 
there was a measured Confirmation Bias, it was a bias in estimating individual likelihoods (i.e., 
diagnosticity of evidence) – and other biases in aggregating likelihoods to compute posteriors 
may compensate for or even reverse the overall direction of this bias. Numerous experiments on 
Bayesian inference have shown the overall bias is almost always the opposite of Confirmation 
Bias – as humans are Conservative (Edwards, 1982), i.e., Regressive toward uniform 
distributions across hypotheses. For example, if the Bayesian posteriors are {0.99, 0.01}, then 
humans typically report numbers closer to {0.50, 0.50} such as {0.90, 0.10}. The same result 
was found in ICArUS experiments – and in fact Conservatism was by far the most common bias 
measured across all tasks of Phase 1 and Phase 2 challenge problems.  
 
Of course in some cases the tendency to confirm what one thinks may appear to be a non-
normative behavior. One example surfaced in analyzing the story of Section 5, where the 
sensemaker's desire to confirm his hunch about students versus non-students delayed his search 
for evidence about a less probable but more consequential hypothesis regarding Al Qaeda. 
However, the only way to tell if and where a Confirmation Bias or any other bias actually exists 
is by measuring the underlying probabilities (in weighing evidence) and utilities (in seeking 
evidence). This is rarely done in the real-world of intelligence. But it could be done, by requiring 
analysts to report their beliefs in the form of numerical probabilities and utilities. That approach 
is common practice in risk analysis and management of hazardous industries, and it can also be 
applied to improve the rigor of intelligence analysis (Garrick, et al., 2004; Lehner, et al., 2012; 
Friedman & Zeckhauser, 2014). A practical idea along these lines is to develop a new structured 
analytic technique as outlined below. 
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6.5.4 Substitution of a Structured Technique 

 
A final insight obtained across all ICArUS experiments is that, when subjects are biased, it is 
usually because they simply do not know the proper way to solve the problem. In that case the 
bias can be characterized as Substitution (Kahneman, 2011) of a familiar but improper strategy 
for the proper Bayesian strategy. Of course subjects themselves do not know they are 
Substituting, because they have not been taught the Bayesian strategy! So the obvious idea for 
improving intelligence lies not in "de-biasing", but rather just teaching Bayesian reasoning in the 
first place. 
 
More specifically, the idea is to develop a "Structured Analytic Technique" to support Bayesian 
analysis in accordance with the Octaloop, as an alternative to the numerous ad hoc techniques 
that have been proposed to reduce biases. This would avoid the popular (but questionable) 
pursuit of cataloging biases, and advance the practice of intelligence by teaching the rigors of 
Bayesian reasoning needed to avoid biases in the first place (regardless of how any biases might 
be catalogued). More details are provided in Section 7.1 below. 
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7 Transition 
 
The Octaloop was developed to formalize the study of sensemaking in laboratory challenge 
problems. However, the same framework holds promise for transition of ICArUS to real-world 
intelligence in three areas of application, namely: analytic techniques (Section 7.1), analyst 
training (Section 7.2), and automated tools (Section 7.3).  
 
These applications would all require further effort, because they are beyond the scope of research 
funded under the ICArUS BAA. Therefore the suggestions below are only ideas about what 
might be done with further investment. Although cost estimates are not developed here, the three 
areas are listed roughly in order of increasing investment, from techniques, to training (of 
techniques), to tools. Likewise, the ideas range from specific to speculative in moving from 
techniques, to training, to tools.  
 
In that light, the HELP technique discussed in Section 7.1 may be the most promising 
opportunity for short-term, low-cost, and high-yield transition of ICArUS to the Intelligence 
Community.   
 

7.1 Technique to HELP Perform Bayesian Reasoning 

 
The Octaloop is a Bayesian-computational framework for rigorous analysis of sensemaking. But 
the same Bayesian framework can also be used for rigorous synthesis of intelligence. In other 
words, the Octaloop can be re-cast in the form of a so-called "Structured Analytic Technique” 
(SAT), similar to SATs (Beebe & Pherson, 2012) such as the Analysis of Competing Hypotheses 
(ACH) proposed by Heuer (1999). 
 
In fact ACH is basically a qualitative approach to performing the quantitative analysis modeled 
more formally by steps [1]-[4] of the Octaloop. As such, ACH simplifies some important aspects 
of the approach, and this has pros and cons. A pro is that the simplifications make ACH more 
approachable to analysts who do not have a background in quantitative sciences. A con is that 
the simplifications can mislead analysts, by not providing the requisite structure to support 
principled reasoning in accordance with Bayesian standards. Four specific examples of this con 
are identified in the subsections below. 
 

7.1.1 Hypotheses 

 
Step 1 of ACH says: "Identify the possible hypotheses to be considered", which is similar to step 
[2] of the Octaloop. But as step 1 of ACH, this tends to obscure the fact that hypotheses are 
always generated in the context of evidence, simply because hypotheses are being generated to 
explain evidence. In the Octaloop, step [2] Generating Hypotheses is preceded by step [1] 
Isolating Evidence. This is to highlight the causal connections between hypotheses and evidence 
in likelihoods of the form P(e|H). Likelihoods are naturally represented in human minds via the 
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strengths of associative memories (between e and H), and these associative strengths are 
ultimately how hypotheses are generated in the first place.  
 
For example, a SAT based on the Octaloop might advise analysts to imagine other (unobserved) 
evidence, in order to create a more comprehensive set of hypotheses than they would naturally 
generate on the basis of observed evidence. This "what if" technique goes beyond the guidance 
of existing SATs such as "Brainstorming" or "Starbursting" (i.e., simply asking "who, what, 
when, where, how, why?"), which are not guided by a science of how humans actually generate 
hypotheses – i.e., via likelihoods that represent the strengths of associative memories. 
 
A more important limitation of ACH, and of SATs for generating and evaluating hypotheses, is a 
lack of guidance on what constitutes a well-formed set of competing hypotheses. Specifically, 
Bayesian reasoning requires that the hypotheses be mutually exclusive, like A and ~A; and 
exhaustive, like P(A) + P(~A) = 1. Analysts might be more inclined to impose these proper 
constraints on competing hypotheses if they had a SAT based on the rigors of the Octaloop. 
 

7.1.2 Evidence 

 
Step 2 of ACH says: "Make a list of significant evidence and arguments for and against each 
hypothesis". Step 2 then goes on to highlight the importance of assumptions as well as evidence 
and arguments. However, these terms are not clearly distinguished by ACH. For example, items 
of evidence as well as assumptions are listed as rows of a matrix, in the next step of ACH (see 
Section 7.1.3). But only some assumptions are treated in this manner, akin to evidence, whereas 
other assumptions affect arguments for the values assigned to cells in the matrix. 
 
In the Octaloop, assumptions are not treated as evidence. Instead only factual information is 
treated as evidence, with the understanding that these facts may actually be uncertain (and in that 
respect each item of evidence is also an assumption). The point here is that assumptions based 
only on background knowledge, which ACH treats the same as evidence, are not categorically 
equivalent to evidence – so they should not be treated the same as evidence in rows of the 
matrix. Instead the Octaloop models this background knowledge with a prior probability for each 
hypothesis. 
 
With respect to arguments in ACH, it is not clear if the term refers to some evidence; or a 
hypothesis; or likelihood of some evidence (given a hypothesis); or confidence in a hypothesis 
(given some evidence); or some combination thereof (or something else). In the Octaloop, 
arguments are akin to the causal "reasons" (i.e., bases) for numerical likelihoods and priors. As 
an example, in the story of Section 5 the sensemaker could think of reasons why students would 
cause flight zone violations, and these reasons affected his likelihood estimate. Similarly, he 
could think of reasons why Al Qaeda might be active shortly after 9/11, and those reasons 
affected his prior.  
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7.1.3 Likelihoods 

 
Step 3 of ACH says: "Prepare a matrix with hypotheses across the top and evidence down the 
side. Analyze the 'diagnosticity' of evidence and arguments – that is, identify which items are 
most helpful in judging the relative likelihood of the hypotheses." 
 
This is a key step in which there are several problems. One problem mentioned above is that the 
matrix does not model priors of the form P(H), and instead treats assumptions as evidence. 
Another problem is that the method confuses likelihoods of the form P(e|H) with posteriors of 
the form P(H|e), by saying to analyze "diagnosticity" and judge the "relative likelihood of the 
hypotheses". This suggests that the analyst should estimate P(H|e) directly for each cell in a row, 
i.e., by estimating the probability of each hypothesis taking the evidence to be true. But actually 
the input estimates needed for Bayesian inference are likelihoods of the form P(e|H), which are 
later aggregated to estimate posteriors of the form P(H|e) as outputs (see Section 7.1.4). So 
instead step 3 should advise analysts to estimate likelihoods of the form P(e|H). 
 
Similarly, the method says to assess "diagnosticity" by taking an item of evidence and asking 
whether it is "consistent with, inconsistent with, or irrelevant to each hypothesis". But this notion 
of "consistency" is not the same as "causality", and likelihoods (needed as input to the matrix) 
are probabilities of evidential effects (e) assuming hypothetical causes (H), i.e., P(e|H). Also, 
besides P(e|H), a Bayesian would address P(~e|H) to ensure that P(e|H) + P(~e|H) = 1.  
 
Another limitation of the matrix is that the values for diagnosticity (or consistency) are indicated 
by symbols such as "+" and "-". The method says that these symbols can be replaced by numbers 
(e.g., probabilities), if they are known, but does not say how the symbols would be mapped to 
those numbers (i.e., what does "+" or "-" mean, numerically?), or how numbers might be 
developed (if they are not known) in order to improve the rigor of analysis. 
 

7.1.4 Posteriors 

 
Step 4 of ACH is to review and refine the matrix. Then step 5 says: "Draw tentative conclusions 
about the relative likelihood of each hypothesis. Proceed by trying to disprove hypotheses rather 
than prove them."  In this step the term "likelihood" is being used to mean "probability", and 
refers to posteriors of the form P(H|e) rather than Bayesian likelihoods of the form P(e|H). 
Nevertheless, the purpose of the step is to perform a qualitative aggregation of likelihoods down 
columns of the matrix in order to estimate posteriors not represented in the matrix. 
 
The main problem is that ACH is not clear about the logic for aggregating values, working down 
each column of the matrix. For example, it says: "The pluses... are far less significant [than the 
minuses]." This can be confusing because the symbols "+" and "-" are usually considered 
additive opposites and do not imply any magnitude or significance. Also, as we know from 
analyzing the story in Section 5, a sensemaker often wants to know what most probably did (+) 
cause the evidence, not what most probably did not (-) cause the evidence. So in that sense the 
pluses may be quite significant. Simply telling analysts to focus on the "-" cells of the matrix, 
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without a more formal and transparent method for aggregating symbols like pluses and minuses 
down the columns, seems to fall short of the structure that is needed for an effective Structured 
Analytic Technique. 
 
Another problem with the matrix of ACH is that it fails to account for dependencies between 
different items of evidence (and between different assumptions that are treated as evidence in 
rows of the matrix). For example, in the story of Section 5, FBI interviews were presumably 
different and diverse from the counterintelligence reports considered earlier. So the two sources 
could reasonably be assumed independent. But often there will be dependencies between sources 
of evidence, and sometimes there will be complete dependency such that one item of evidence 
(or prior assumption) renders a second item of evidence (or prior assumption) completely non-
diagnostic with respect to the competing hypotheses. These effects are not addressed by the 
matrix and method of ACH, where values (akin to likelihoods or priors) are entered across a row 
without regard to other rows (above or below) on which that row may be dependent. 
 
This problem is of particular concern when assumptions are treated as evidence in the rows of the 
matrix. As noted above, assumptions actually reflect priors (i.e., in the absence of evidence) for 
hypotheses, not likelihoods of evidence given hypotheses. These priors are always estimated in 
the context of a world view held by the analyst, and that world view affects all assumptions – so 
it represents a major dependency between rows of assumptions.  
 
For example, using ACH it is tempting for an analyst to list as many assumptions (in rows of the 
matrix) as possible, especially when there is little evidence (in rows of the matrix) to use in the 
analysis of competing hypotheses. Using the Octaloop, there is only one prior probability for 
each hypothesis, and it reflects all the assumptions of an analyst's world view. This helps avoid 
the pitfalls of treating assumptions as evidence. 
 

7.1.5 HELP 

 
Despite the limitations noted above, ACH was a significant step in advancing the rigor of 
intelligence analysis. Intelligence analysts often refuse or resist quantitative approaches, and the 
principles of Bayesian reasoning as applied to intelligence analysis are not trivial to teach 
(Grabo, 2004; Schweitzer, 1976; Fisk, 1972; Zlotnick, 1970; Edwards, et al., 1968; Edwards & 
Phillips, 1964). But these difficulties are precisely why the Intelligence Community should 
invest in formal techniques with more rigor than current SATs – of which ACH is actually one of 
the most rigorous, relative to other SATs that have no apparent science as a basis for their 
structure.  
 
Previous research on Bayesian reasoning by unaided humans has uncovered four classes of 
errors (Burns, 2006) that appear to be ubiquitous, namely: (1) failure to generate a mutually 
exclusive and exhaustive set of hypotheses, (2) failure to distinguish assumptions from evidence, 
(3) failure to distinguish likelihoods from posteriors, and the consequent failure to correctly 
estimate causal likelihoods, (4) failure to properly aggregate likelihoods and priors in computing 
posteriors, including failure to consider conditional dependencies between items of evidence.  
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Notice that ACH itself exhibits all four of these limitations, as identified in Sections 7.1.1, 7.1.2, 
7.1.3, and 7.1.4 above. This suggests that ACH does not provide the structure needed to help 
humans reason rigorously as Bayesians. 
 
An alternative would be to develop a new SAT with the proper structure. This SAT might be 
dubbed HELP, to highlight key concepts of Bayesian inference and address associated errors 
outlined above, as follows: 
 
 Hypotheses 
 Evidence 
 Likelihoods 
 Priors and Posteriors. 
 
Bayesian HELP would be based on the Octaloop, especially steps [1]-[4] of Inferencing and 
steps [7]-[8] of Foraging. The treatment of Inferencing would be more formal than ACH, 
addressing the issues noted in Sections 7.1.1, 7.1.2, 7.1.3, and 7.1.4. The treatment of Foraging 
would go beyond ACH and other SATs in addressing what evidence an analyst should attempt to 
acquire, based on previous inferencing, for input to further inferencing. 
 
After the investment needed to develop and document HELP in the form of a Structured Analytic 
Technique, further investment would be needed for training analysts in use of the technique. 
Here, like the Octaloop itself, the present document offers a practical approach – namely stories, 
discussed below. 
  

7.2 Training of Critical Thinking with Bayesian HELP 

 
Storytelling is a powerful device, widely used for organizational learning and personnel training. 
But a problem with stories (which contributes to their popularity) is that narratives leave much to 
the imagination. Often this is not acknowledged by writers and readers, as in the story that Klein, 
et al. (2007) told to support their data-frame theory of sensemaking. A more formal analysis of 
this same story, using the Octaloop, uncovered numerous omissions for which we as readers 
needed to make assumptions in order to compute solutions.  
 
In effect, Section 5 was an exercise in "critical thinking", where each cycle in the story was 
analyzed to identify all categorical concepts (hypotheses, evidence, likelihoods, priors, and 
posteriors) and numerical values (probabilities) needed to formalize sensemaking. As such, 
materials similar to Section 5 might be used in classroom exercises to teach Critical Thinking 
Skills and Bayesian reasoning. Additionally, more analytical stories could be dissected and 
documented in the same manner, for use in case-based teaching/learning. 
 
This approach to training would require that the Octaloop first be used to develop HELP as a 
Structured Analytic Technique (Section 7.1). As-is, materials in the present document were 
developed for ICArUS purposes and not intended for classroom training or any other application 
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beyond the scope of ICArUS itself. A suitable document for training purposes would first 
introduce HELP in the form of a step-by-step procedure for analysis, and then demonstrate 
HELP using analytical stories like the example in Section 5. 
 
Notice that this approach would not employ ICArUS challenge problems themselves, and would 
not require any software like that used for performing ICArUS experiments. Instead the approach 
would rely on the Bayesian-computational basis used to design ICArUS challenge problems, re-
cast in the form of a Structured Analytic Technique (HELP) – along with stories as case studies 
for engaging analysts in applying the technique to examples of real-world intelligence. Training 
exercises of this sort would stimulate discussions of important issues in real-world analysis that 
go far beyond the laboratory constraints of ICArUS challenge problems, and these issues would 
not be addressed if training were to focus on those challenge problems.  
 
Notice also that this approach to training would not focus on cognitive biases. That is, the 
training would not be to tell whether an inference or decision should be classified as 
Conservative versus Confirmation bias, or whether it was caused by a heuristic of Anchoring 
versus Availability, etc. Instead the training would focus on how to perform Bayesian reasoning, 
with HELP, including all information and assumptions that a Bayesian would need to compute a 
solution.  
 
Elsewhere the exercise of identifying biases in stories has been adopted, in recent efforts to teach 
critical thinking using game-based methods at the Mercyhurst University Institute of Intelligence 
Studies (Richey, 2014). But identifying biases in others is not the same as identifying biases in 
oneself, and identifying biases is not the same as avoiding or overcoming biases. Plus it is not 
clear how analysts can identify biases in stories without first being trained in the Bayesian 
methods by which many of those biases are defined. Instead it seems more useful to use stories 
for teaching analysts the principles of Bayesian reasoning in the first place, e.g., as structured by 
the HELP technique.  
 

7.3 Tools for Cognitive Support to Analysts 

 
Sections 7.1 and 7.2 focused on a technique and training (of the technique) to support human 
analysts in sensemaking. A third area where the Octaloop might be useful is in the design of 
automated tools for intelligence. The idea here is to offload some step or steps of the Octaloop 
onto a system that can offer cognitive support to humans engaged in the cycle of sensemaking. 
 
As described in Section 6, ICArUS challenge problems actually do this to some extent in order to 
facilitate human experiments. Likewise, real-world systems and sensors are often designed to 
perform functions such as [8] Discriminating Evidence, e.g., in a system that alerts a user to 
some observed activity (i.e., evidence); or [3] Estimating Likelihoods, e.g., in a sensor that 
returns data with some reliability (i.e., likelihood). But the uses of such systems/sensors by 
human beings pose engineering problems far beyond the "point solutions" computed by the 
systems/sensors, because these tools are only useful if they are understood and accepted by 
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human users who are engaged in the complete cycle of sensemaking. That is, useful tools must 
provide cognitive support to analysts.  
 
Software developed for ICArUS experiments simulates such sensors/systems and provides input 
to human subjects at steps [8], [1], [2], and [3] of the Octaloop. Steps [4], [5], [6], and [7] are 
then performed by human subjects. ICArUS experiments have measured and modeled various 
cognitive biases at steps [4], [5], [6], and [7], and those biases represent opportunities for 
designing analytical support systems. One example is the colored calculator dubbed "Bayesian 
Boxes" (Burns, 2006), which offers an intuitive visualization of Bayes Rule, and has been proven 
(Burns, 2007) to reduce biases such as Anchoring and Averaging at step [4] of the Octaloop. This 
system has also been used for real-world training of Bayesian inference, and could be used for 
"drawing pictures" while "telling stories" in training Bayesian HELP (see Section 7.2).  
 
Other systems might be designed to help humans at steps [5], [6], [7]. As discovered in ICArUS 
challenge problem design, Bayesian solutions are especially difficult to compute at step [7]. The 
calculations require predictions (based on likelihoods) about what evidence will be received, and 
projections of the updated (posterior) probabilities across hypotheses – for all possible outcomes 
(of collecting information) from all feasible actions (for collecting information). These 
computational challenges at step [7] represent practical opportunities for providing automated 
support to analysts. 
 
Additional applications to system design might address steps [8], [1], [2], and [3]. At these steps 
of the Octaloop, ICArUS software implements prototype systems that provide point solutions to 
human users. The practical value of these prototypes is that they demonstrate what functions 
might usefully be performed by systems to support humans in the complete cycle of 
sensemaking. In particular, because sensemaking hinges on likelihoods, the challenge problem 
software simulates various intelligence systems/sensors and associated likelihoods – e.g., for 
HUMINT, IMINT, SIGINT, OSINT, etc. – as needed for human subjects (and neural models) to 
analyze competing hypotheses given multiple INTS as evidence.  
 
As a concrete example, Estimating Likelihoods at step [3] in the real world of intelligence is 
often referred to as "suitability analysis". Geospatial analysts are routinely engaged in analyzing 
the suitability of terrain or some other feature f (e.g., from IMINT) that constrains the probability 
of a hypothesized activity. We saw this in the story of Section 5, where f = airport vectors found 
in geospatial overlays, and this feature suggested that flight paths over nuclear power plants 
would be more "suitable" for students than for experienced pilots.  
 
The corresponding likelihoods were estimated as P(s|S,f) = 0.95 and P(s|~S,f) = 0.10, where the 
geospatial feature f served as context to constrain the likelihood that overflight activity would be 
observed (s) if the culprits were students (S) or non-students (~S). These likelihoods from step 
[3] were then used in step [4], where the overflight activity was explained by computing 
confidences across hypotheses – e.g., in a form of "activity-based intelligence" analysis.  
 
Then, in a subsequent cycle of sensemaking, additional likelihoods were estimated using the FBI 
interviews (e.g., from HUMINT) and aggregated with earlier likelihoods to further explain the 
situation. The point here is that data (e.g., evidence from INT sources) is useful for sensemaking 
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only if likelihoods (of evidence, given hypotheses) are either assumed by the human (as in the 
story of Section 5) or given to the human by another human or "system" (as in ICArUS 
experiments). Therefore an application for cognitive support to analysts lies in designing systems 
to estimate likelihoods that are difficult for humans to estimate themselves. 
 
For instance, task [3] Estimating Likelihoods might be performed by a system that searches large 
databases and computes historical frequencies of past events (e) in the context of their known 
causes (H), which can then be taken as measures of likelihoods, P(e|H). Besides such forensic 
analyses, other systems designed for modeling and simulation of real-world situations might be 
used to estimate likelihoods in prognostic analyses. This would involve running the simulations 
in a parametric sampling mode, i.e., obtaining results for different sets of assumed parameters 
representing different contexts c (like f in the suitability analysis above), in order to compute 
statistical likelihoods of the form P(e|H,c). The key here lies in identifying the categories of 
hypotheses H, evidence e, and context c that are relevant to a sensemaker, so that probabilities of 
the form P(e|H,c) can be computed to provide cognitive support to analysts.   
 
Opportunities for analytical support systems may also exist at steps [8], [1], and [2] of the 
Octaloop. But Generating Hypotheses at step [2] hinges on the rich knowledge (RASKR) of 
human experts. And Isolating Evidence at step [1] appears difficult to automate in a fashion that 
would support a human expert engaged in adaptive analysis of competing hypotheses. However, 
step [8] Discriminating Evidence may be amenable to automation by a system that screens large 
volumes of information beyond what a human could possibly consider. Here again, the key is to 
provide cognitive support – so the system would need to anticipate and adapt to features of 
evidence and classes of hypotheses that are relevant to the sensemaker. 
 
Although speculative, the above ideas illustrate how the Octaloop might guide the design of 
advanced tools to support sensemaking. The same logic also extends beyond individual humans 
and systems to organizational structures for team sensemaking, where different humans perform 
different steps of the sensemaking cycle and share results with each other. In that case the 
Octaloop might shed light on what the different teammates need from one another, and how they 
can best function together across steps and cycles of the Octaloop, including interfaces between 
intelligence analysts and operations personnel. 
 

7.4 Leveraging the Bayesian Research Community 

 
As a final idea for ICArUS transition, the Octaloop might serve as a framework for eliciting and 
applying contributions from the Bayesian research community. In particular, it has been 
suggested (NRC, 2010) that decades of Bayesian research are untapped and might be leveraged 
to improve intelligence analysis, and actually this was the topic of several workshops sponsored 
in Phase 2 of ICArUS. 
  
But it is not clear how much of this Bayesian research is useful for intelligence analysis, and 
there remains a large gap between analysts and researchers at gatherings of the two groups. 
Typically analysts set the stage by presenting examples of their real-world challenges, often in 
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the form of anecdotal stories like that of Klein, et al. (2007). Then researchers follow by 
presenting their findings from the laboratory, in the form of theoretical models and experimental 
results – but on problems that bear little or no resemblance to real-world intelligence. So 
researchers have not shown how their methods and models can be applied to aspects of the 
stories told by analysts. And analysts have not shown how aspects of their stories might be 
addressed by Bayesian tools, training, or techniques.  
 
One reason for this gap is that the two sides are lacking a common framework for understanding 
the cognitive-computational challenges of intelligence analysis. The Octaloop can help close that 
gap because it is expressed in formal language (Section 3) consistent with Bayesian methods 
(Section 4), and because it applies to analytical problems (Section 5) cast in the form of 
anecdotal stories (Section 2). To illustrate these advantages, the Octaloop has been used to 
generate specific ideas about how a Bayesian approach can advance intelligence techniques, 
training, and tools – in Sections 7.1, 7.2, and 7.3, respectively. Those ideas might serve to 
stimulate further discussions between researchers and analysts.  
 
For instance, the present document or portions thereof could be provided to Bayesian researchers 
with the challenge of answering the following question: 
  

Using the Bayesian framework (Section 4), can you show exactly where and how your 
Bayesian model or method would enable machine automation (i.e., a tool) or improve 
human cognition (i.e., a technique or training) in some aspect(s) of the story (Section 5)? 
 
Be specific, and provide one or more examples where you actually compute something 
that applies directly to the story. If necessary, assume any details that are not contained 
in the narrative but are necessary for you to show how your model or method would 
apply. 
 

Analysts could then be asked if they think a researcher's example is relevant, and whether they 
can envision it being applied beyond the story world to real-world intelligence. Analysts could 
also be asked to provide additional stories that might be analyzed in the same Bayesian 
framework and utilized for the same purpose of closing the gap between research and practice. 
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