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Abstract

Phase 2 of the IARPA program ICArUS (Integrated Cognitive-neuroschamcbétectures for
Understanding Sensemaking) requires a research problem that posesecpaitenges of
spatial-temporal sensemaking (BAA, 2010). The problem serves as a chéabiepgdormers

who are building integrated cognitive-neuroscience models, and as a tool fomgjotkta from
human experiments. This document describes the challenge problem, and outlir&s (lesk

& Evaluation) approach for evaluating models in Comparative Performanceshssdgsand
Cognitive Fidelity Assessment (BAA, 2010). Normative (Bayesian) solutiofretohallenge
problem are derived, as needed to support the assessment of human and model performance.
Opportunities are also identified for transition of the challenge problem desigasaits to the
geospatial Intelligence Community.

Note: This document was originally prepared and delivered to IARPA in March, 2014em ord
to support ICArUS Phase 2 T&E efforts that concluded in June, 2014.



Table of Contents

R [ o1 oo 18 ox 1o o HNU TSSO PPPPPPP 5
0 A |V [0 1 1)Y= 11 o o OO URPPPPPPPTPURPPRN 5
2 o U1 o =10 o TP 6
OGO O -1 {07 11 [0 o PP PP P PP PTPPPP 8
O |V 51 o] 1 RS SRPP 9

P 1T Tox o] (o o PR SRRRPPPP 15

I - 1 = 11 [0 I U P TR 21

o 1 (U110 I O OUUUPPPPPPPTRPRRPRP 25
o R [0V (=T (=T g Yol [ o To I e oo | a1 1S A ) PP 25

4.1.1 Inferencing at One BlUE POINL.........ciiiiiiiiicc e 25
4.1.2 Inferencing at TWO BlUE POINLS ......uuuuiiiiiiiiiiiee e 26
N B 1= Tod <70 o B Y F= 1] o RSP PPPTUUPPPPUPR 27
4.2.1 Non-equilibrium SOIULION .......cooei i e e e e e 27
4.2.2 Nash-EquiliDrium SOIULION ........uuuiiii e 29
4.2.3 Decision-Making at TWO BlU@ POINTS........ccoooiiiiiiiiiiiiiiiiiiiee e 31
G T o = o [ Vo SRS 31
4.3.1 Maximizing the Information Gain at Independent POINtS..............coeeeeeviiiviiiiiiiinnnnns 32
4.3.2 Maximizing the Information Gain at Dependent POINtS ............coooviiiiiiiiiiiiiiiiiiinnn. 34
4.4  INfErenCiNg (FOIENSIC) ... cciiiie e e e eeee et e e e e e e e e e e e e ettt e e e e e e e e e e eeeeeeeeeeeesnnnnns 37

5 EVAIUALION ...t e et e bt e e e e e e e e aaeeeeeeeerrraann 38

5.1 Comparative Performance ASSesSSmMent (CPA) .....oooiiiiiiiiiiiiiiiee et 38
5.1.1 ADbsolute SUCCESS RAtE (ASR).....cccoiiiiiiieeerr e e e e e 38
5.1.2 Average PerfOrMAaNCE..........oooiiiiiiiiiiiiiiia ettt e e e e e e e e e e e e reaaen s 40
5.1.3 Relative Match Rate (RMR) ......cooiiiiiiiiiiiiiiiie e e e eeeeeeees 41
5.1.4 Relative WeIgNtiNgG ......covvuiiiiiiiiiii et e e e e e e e e e e e e e e e e 41

5.2  Cognitive Fidelity ASSESSMENt (CFA) ..o 41
5.2.1 HEUISHCS QN0 BIASES ...uuvuuiiiiiii ittt sttt e e e e e e e e e e eees 42
A 1 01 (=1 =Y [ T 44
5.2.3 DECISION-IMEKING. ..ttttttniiiaeee e ettt e e e e e e e e e e e e e e e eetbbas s e e e e e e eeeeeeeeeeeeesnnnees 45
A S o -V [ T TSRS 46
5.2.5 Simple MatCh Rate (SMR).......uiiiiiii i e e e e e e 48
5.2.6 Marginal SUCCESS RALE (IMSR)......uuuiiiiiiiiiiiii e e ettt e s e e e e e e e e e e e e e eeeaeeeennnnes 48



6

7
8

5.3  Neural Fidelity ASSESSMENT (NFA) ... ..o 48

L= 1457110 o [P PTPPRPPTR 49
6.1  Relational MapPiNg ... .. ceeeie e e e eeee et e e e e e e e e e e e e e e e e e a e e e e e e e e aeeeeaerararana—_ 49
6.2 ANAIYHCAl SYSIEIMS.. .t aa e 51
6.3 AdVErsarial AQENTS" ....cooeeeeieeie it a e —————————————— 53
6.4  Organizational TraiNiNgG .......cccoiiiiiiieeeiiiii e e e e e e e e e e e e e e e ee e s e eaeaeeaaeeeeeeeesessnnnnes 54

6.4.1 What is Sensemaking, ANYWAY?.........uuuiiiiiieiaaeeeeeeeeeeeeeiiiiiiiaa e e e e e e e e e e eeeeeeeeennannns 54

6.4.2 HEUNSHCS QN BIASES .....uvviiiiiiiiiiiiiiieee ettt e e e e e e s 55

6.4.3 Structured AnalytiC TECNNIQUES..........vuuiiiiiiiiie et e e e e e e e e e e eeeeneenes 57
G T ©o ] o Tox 11 11 (o o RS SRRPPPTP 58

D= 11 0110 KPP PPPPPPPPPPTPPPT 59

RETEIEINCES ...ttt ettt e e e e e e e e e e e e e e e 61



List of Figures

Figure 1: Geographic Information System (GIS) display and Graphieallberface (GUI)... 11
Figure 2: "Batch plot" of significant activities (SIGACTS) foraxiss (batch) of trials. ............ 12
Figure 3: Probability that Blue will defeat Red if Red attacks a Blue ,pmsrd function of

distance (r) from the Blue point to the Blue border, P =Y -assumingv=2........ccc.cccue...... 16
Figure 4: Probability that Red has the capability to attack, as a functimneoftt= number of

trialS) SINCE the 1aST AHIACK. ......uveeiiiiie ettt e e e e e e e e e e e eeeeeennees 17
Figure 5: Payoff matrix for Blue (top matrix) and Red (bottom matrix)............cccceeevvvvvvvrriinnnnnns 20
Figure 6: Non-equilibrium solutions for Blue (left) and Red (right). ........coooviiiiiiiiiiiiiie, 28
Figure 7: Nash-equilibrium solutions for Blue (left) and Red (right)...........cooeeeiiiiiiiiiiiiiicceen, 30
Figure 8: Nash-equilibrium value of the game to Blue (left) and Red (right)...................... 30
Figure 9: Expected gain in information (E) from SIGINT, as a function of pradrgtnility, with

SIGINT hit rate (h) = 0.6 and false alarm rate (f) = 0.2. ..o 34
Figure 10: Difference in expected information gains-(Ey) for SIGINT at two points (1 and 2).

Each point has a different "prior" (before SIGINT) probability of attagkatfoint 1 and gat

point 2. SIGINT reliabilities are h = 0.6 and f = 0.2. Refer to text for furtheisleta............. 36



List of Tables

Table 1: Listing of variables in design of TACTICS. ...
Table 2: Temporal-spatial features of intelligence data in TACTI@8gawith the associated

meanings, Measures, and SYMDOIS. ... ... e a e e e e e e e e eeees 14
Table 3: Methods and missions for Comparative Performance Assessment.(CRA)......... 38

Table 4: Metrics and missions for Cognitive Fidelity Assessment (CEA)..........coeeeeeiineeee. 43

Table 5: Mapping variables of TACTICS to case studies of intelligence. ..........cccccceeeieiiiineenenn. 50



1 Introduction

This document was originally prepared and delivered to IARPA in March, 2014, to support
ICArUS Phase 2 Test & Evaluation (T&E) efforts that concluded in June, 2014. Further
background is provided in a summary document (Burns, Fine, Bonaceto, & Oertel, 2014) titled
ICArUS: Overview of Test and Evaluation Materjasailable at
http://www.mitre.org/publications

The ICArUS Phase 2 challenge problem f&actable Analytic Challenge To Investigate

Cognitive Sensemakinglubbed TACTICS. The design is a balance of experimental rigor, for
assessment of models in the laboratory, and practical relevance, fordraofsresults to real-

world applications in the Intelligence Community. This balance is achieveg asi

computational approach to human experiments and model evaluations, covering a spectrum of
"missions” that are aWariations(Section 3) on the same basic t&sscription(Section 2).
NormativeSolutions(Section 4), which are needed for rigor&&luation(Section 5), are
developed as part of the design. Imporfaefinitions(Section 7) and a brief discussion of

potential directions for long-terfransition(Section 6) are also provided.

Referring to the title of this document, Sections 1-7 all address the chabeidem "design”.
The "test specification” is captured in SectioreSdluatior), which describes the methods and
metrics for various assessments required by the BAA (2010).

1.1 Motivation

Although practical applications to real-world intelligence are not the foictiss document,
TACTICS is intended to aidiransition And Communication To Intelligence Community
StakeholdersThis objective is accomplished using a computational approach to human-
experimental design and@ational mapping to real-world intelligence analysis.

The relational mapping to suppdmansition(Section 6) is based on computational variables
made explicit in the design of TACTICS. More specifically, six types ofligéice analyses

(and corresponding variables of TACTICS) are characterizediberabilityanalysis (P),
opportunityanalysis (U)capabilityanalysis (B), activity analysis (B, frequencyanalysis (B,
andintentionalityanalysis (B). TACTICS addresses all six, but focuses on how these various
analyses are integratedsansemakingThe six types of analyses and corresponding variables of
TACTICS are explicitly mapped to 26 real-world case studies of geosipaiiigence. These

case studies were developed in Descriptive (Cognitive) Task AnalyBiR@) 2013), via

interviews with analysts and reviews of published articlesT saesition(Section 6). As noted

in Transition(Section 6), TACTICS is:

A game of repeated risk assessment and action (Kaplan & Garrick, 1980; Garrick, et al.,
2004), posing cognitive challenges that are prototypical of intelligence and operations in
threat situations (Burns, 2010; McDonald, 1950) — including counterinsurgency (COIN)
and other security domains (airport/border, cyber/network, crime/fraud, drugs/gangs,
etc.).


http://www.mitre.org/publications

Here the term "game" (von Neumann & Morgenstern, 1944) is used in the gaméidssmse
of an adversarial (Red-Blue) interaction requiring inferencing and deaisaking — including
inferences abowhat when andwherethe opponent will act (aaction), how he will act (a
tactic), andwhy he will act that way (amtent).

1.2 Foundation

With respect to rigor, a computational approach to challenge problem design begins by
formalizing Definitions(Section 7) of conceptual notions described in the BAA (2010),
especially the notion of a "frame" and associated "core sensemaking psidisssd in Table 1
of the BAA. Here at the outset it is useful to highlight a few of these definitiosisahd
foremost that oensemakin@where italicized words are all defined in Section 7):

Sensemakings a recurring cycle of obtainirgyidenceand updatingonfidencen
competinghypothesego explainandpredictan evolving situation.

This definition is consistent with literature cited in the BAA, including Kleinal. (2007), who
cite Weick (1995), who cites Louis (1980), who named and described the process as follow

"Sensemaking can be viewed as a recurring cycle... The cycle begins as individuals form
unconscious and conscious anticipations and assumptions, which serve as predictions
about future events. Subsequently, individuals experience events that may be discrepant
from predictions. Discrepant events, or surprises, trigger a need for explanation, or post-
diction, and correspondingly, for a process through which interpretations of
discrepancies are developed..."

According to this description, sensemaking can be boiled down to three basic prbyeskeh
humans "make sense" of any real-world situation (Burns, 2014; 2005) or media comionunicat
(Burns, in press; 2012), as follows: First a person uses current beliefs (confitkences
hypotheses) to forraxpectationf data (evidence). These expectations may or may not be met
by subsequent observations. Anglation of expectation, from surprising evidence, then fuels
the formation of amxplanation— which is an updating of beliefs (confidences in hypotheses) in
light of the data (evidence).

Moving beyond this conceptual description, a comprehensive understanding of sensemaking
requires computational modeling at functional, psychological, and biological.|@V#lsugh

the latter levels are the main aim of ICArUS, design of a challenge proiodtmefuires a
computational theory at the functional level, in the Marr (1982) sense of specifghag)is the

goal of the computation..., and what is the logic of the strategy by which it can be carried out?"

One such theory (dubbed Octaloop; see Burns, 2014) was developed to guide design oéthe Phas
1 challenge problem (Burns, Greenwald, & Fine, 2014), and the same theory isrested he

guide design of the Phase 2 challenge problem. By necessity, this computationyad)ties

further than conceptual notions like those of the "data-frame" theory (Klein, 20@v7)

described in the BAA. In particular, the term "frame" is used loosely by @uahors (cited in

Klein, et al., 2007) to mean many different things. The data-frame theory itgetfdefines



"frame" precisely, but rather uses this term in referring to a "stamdp", "script”, "plan”, or
any other explanatory knowledge structure that is not data and yet is needed sensakef
data. Here the term is given a more formal definition as follows:

Framesare knowledge structures, comprismgothesesvidenceandconfidences
including conditionalikelihoodsof evidencdi.e., conditional omypotheségsas well as
conditionallikelihoodsof hypotheseé.e., conditional orevidencg In spatial context
frames likelihoodsdepend on spatial factors. ément sequence framgbkkelihoods
depend on temporal (and spatial) factors.

When the components of frames are made explicit, as in this definition, resgarehie a
better position to model and measure how frames might be "learned" arsbéalSssnd "re-
framed" — as all of these terms are used to describe "core sensemakegsps” in BAA Table
1. In particular, the notion a@é-framingis defined more formally here as follows:

Re-framing (aka Set-shifting is a revision ohypothesesor revision ofconfidences
acrosshypothesesn which the most likelywypothesishanges due to the observation of
surprisingevidencgi.e.,evidencehat is not likely to be caused by the currently-most-
likely hypothesi©r hypothesés

Besides distinguishing betwebagpotheseandconfidencethe computational definitions above
also distinguish betwedrypotheseandevidenceThis difference is important because it reflects
causal structure(Pearl, 2000), which plays a key role in all sensemaking — incldioimgrd
(prognostic) inferencewhereby a sensemaker is formixpectations- as well adackward
(forensic) inferencewhereby a sensemaker is formexplanationsThus the causal structure is
hypotheses— evidencewhere hypotheses are hypothetical causes of evidential effects (i.e.,
causes— effects) and the direction of inferencing can be in either or both directions +dorwa
along the arrow direction or backward in reverse of that directi@ausal hierarchyis merely

the nesting of this basic structure into more complex structures where hypahese level

serve as evidence at the higher levels (see Figure 3 of Burns, 2005).

TACTICS is based on a causal hierarchy with four arrows as follows:
intent — tactic — action — feature — datum.

The task itself requires re-framing at each level of the causaldhgras discussed further in
Section 1.3 Clarification). Mathematically, causality at each level is measured and modeled by
conditional probabilities — and these conditional probabilities are computationaeeateons
of event sequence (and spatial context) fram€snceptually, the five levels in this causal
hierarchy are similar to the Joint Directors of Laboratories (JDt Basion Group model. The
JDL model (Steinberg & Bowman, 2004) is a functional-hierarchical spatdrcof input data,
model outputs, and associataterencingapplicable to a broad class of geospatial fusion
problems aimed at understanding and affecting situations (similar to sémnsgnbat with a
focus on system performance rather than human performance). The fiveolayerdDL model,
labeled 0 (Raw Signals), 1 (Entities), 2 (Situations), 3 (Impact), and 4 (Parfoein can be
mapped roughly to the TACTICS levelsddtum, feature, action, tactiandintent, respectively.



1.3 Clarification

Per BAA Table 3, Phase 2 of ICArUS is focused on a notion of event "sequences”, and
associated cognitive biases that may arise from heuristic processgaan sensemaking. The
purpose of the present section is to clarify how TACTICS captures sequertésyathis
treatment relates to previous literature on "frames" (noted above) —adlypsaripts”.

Temporal events in the form of "sequences" are often referred to as "s¢Bamett, 1932) or
"scripts” (Schank & Abelson, 1977). For example, one sequence may be A, B, and C, wghere B
likely to occur after A, and C is likely to occur after A and B. Such scripts (or ptamgent
sequence frames) are formally defined by conditional probabilities, eBjA)R¢ high and

P(C|A,B) is high. Importantly, it is only through knowledge of these conditiondihidas that

a sensemaker can makeadictionslike "probably C next" after observing A and B; also form
explanationdike "probably script 1" after observing all or part of the sequence A, B, and C.

In TACTICS these sorts of scripts occur at three different time scafessted levels of the
causal hierarchy. At the lowest level (and shortest timescale), a pt&géves a sequence of
intelligence reports (aka INTS), each reporting sdiatem From these data the player infers
temporal-spatidieaturesthat relate to different stages ofaction script — e.g., the enemy
vulnerability (a spatial featuregapability (a temporal feature), arattivity (a temporal-spatial
feature). This sequence is akin to a sequence A, B, and C described above, wnalegoe af
"script 1" is "attack" and "script 2" is "no attack".

Then, at a higher level of the causal hierarchy (and longer timescale)qtiemse is a series of
actions such as "attack", "no attack"”, "no attack"”, etc. Once againgihense is governed by
conditional probabilities that depend on spatial and temporal context. In this caseptisdie at
the level oftactics e.g., "tactic 1" and "tactic 2", where an enemy who plays with tactigl (e.
aggressive) is likely to exhibit a different pattern of actions (attacks)aha@&nemy who plays
with tactic 2 (e.g., passive). Knowledge of these tactics, including theirlyindeconditional
probabilities, is what enables a player to predict actions (attack or no attankgssumed
tactics, and also to infer tactics (tactic 1 or tactic 2) from attackrpatt

Finally, at an even higher level of the causal hierarchy (and even longscél®), a script is a
sequence of tactics such as "tactic 1", "tactic 2", etc., where gBlyer must explain and
predict changes in Red tactics that are governed by eimeemy.

Notice that the notion of set-shifting applies at each of the three levels astaies described
above. For example, at the highest level a player may know or learn that his opponent i
consistently playing according to tactic 1 (e.g., aggressive). Scc"fddbecomes a strong
assumption and the player is led down a so-called "garden path" of expectatiores-Stitt s
then comes after a surprise (Burns, in press; 2012), when the player is faced witiebaeng
evidence to the contrary. This ivialation of expectationswhich requires re-framing in order
to form anexplanationlike "Aha — tactic 2!".

Likewise, set-shifting happens at a lower level when a player strongdcesxan attack and is
surprised to observe no attack (or vice versa). This forces re-framingeftladdout how actions



are constrained by tactics (and intents). Finally, set-shifting also o¢@mssaen lower level
when the player strongly expects one feature from INT data and yet abaatifierent feature.
This forces re-framing of beliefs about how spatial-temporal featul®sI&f are constrained by
intentional actions.

As described above, set-shifting in TACTICS differs in three important waws dther
laboratory tasks more typically used for measuring the phenomenon, such as theiWw(saahs
Sorting Task (Berg, 1948; Monchi, et al., 2001). One difference is that in TACTICS th#exb-c
"rule” (or "script") is not deterministic but rather it is probabilistieyegrned by conditional
probabilities. The reason for this is that a probabilistic task is required to cpustevant
conditions of real-world situations in which set-shifting (and sensemakinggeoszally)
actually occurs, i.e., under uncertainty. A second difference is that in TAGMECRt-shifting
occurs at three different (nested) time scales, namely: within aféa@alifeset-shifting);

between trialsgctionset-shifting); and between batches of trigdetfc set-shifting).

A final difference is that in TACTICS the set-shifting occurs aaasalhierarchy, at each level
of the hierarchy as well as across levels of the hierarchy. Moreover, drappenost
importantly,intentis itself constrained at the highest level of the hierarchy via a rewaotuse
given by the payoff matrix of the game (€2escription Section 2). The reward structure
provides players with a natural basis for causal reasoning, as it encaaumdgasgbles them to
explainwhythere was a change — not jastwthings may have changedwhat (or whenor
wherg things may have changed. This feature of a game allows the laboratory tasiet
realistically capture the causal structure of naturalistic stlgtihat are relevant to real-world
intelligence analysis and security operations (Burns, 2010).

1.4 Missions

Besides thénferencingprocesses that are central to re-framing (set-shifting) aarcsssal
hierarchy, as discussed above, TACTICS poses additional cognitive challennges tha
associated with many real-world sensemaking situations. These proedssbsare addressed

in Variations(Section 3) of the basic task, includiecision-makindpased on inferences and
foragingfor new evidence. TACTICS addresses all three cognitive processesfarencing,
decision-making andforaging, in order to cover the scope of sensemaking set forth in the BAA
as follows:

"Sensemaking is a volitional process that involves multiple shifts in attentiomcmni
exploration foraging], and evaluation inferencing] of multiple pieces of evidence, and
repeateddecision making.."

The design of TACTICS includes various "missions" that address each of tlessprtbresses,
individually (to the extent they can be separated) and in combination. But beforeidgscuss
Variations(Section 3), the basic task is presented firfescription(Section 2).

As an overview, Figures 1 and 2 are screen shots of the graphical user interfadbeise i
missions. Many more screen shots and non-technical instructions to users are prothéed b
tutorial (see Burns & Bonaceto, 2014) embedded in the TACTICS softwafe itsel



Table 1 provides a listing of variables referred to inRikscription(Section 2) ani/ariations
(Section 3). Table 2 summarizes the temporal-spaigdliresof intelligencedata (sources)
modeled in TACTICS, along with threeaning measureandsymbolassigned to each feature.

As seen in Table 2, the measure of meaning for each feature is a prolgaeditgncy), which
is a measure of likelihood; or a utility, which is a measure of consequenseas beicause
TACTICS involvesinferencing which is computationally modeled pyobabilities as well as
decision-makin@ndforaging, which are computationally modeled by expeatslities. As
discussed in Section G r@nsitior), raw data are of no use in accomplishing these cognitive
competencies unless some person or system infers or assigns assocléteddse
(probabilities) and consequences (utilities).

In TACTICS, most of the probabilities and utilities are assigned to rawbgldidT sources
themselves — much like real-world intelligence would provide soe@sureof meaningbeyond

just rawdata This is to focus ICArUS experiments on the cognitive processes of sensemaking
per se, rather than on estimating various quantities needed as input to sensérhaking.
approach also enables experimental measures of "average" sensemd&mgapee (as

required by BAA), where the average is an average over human subjects whosirgdhe

same inputs to sensemaking.

The main exception to this approach involves a Blue intelligence handbook called the
BLUEBOOK, which represents Red tactics as needed for Blue to infprdapensity
(likelihood) of Red attack. In some cases, Red tactics are not known for sure amdnlushbe
inferred forensically from past attacks (SIGACTS). For those caseasypilieto prognostic
sensemaking involves a good deal of forensic sensemaking, i.e., in a missioBlubaraist
infer Red tactics and detect changes in Red tactics/g@#ations Section 3).

10
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Exam: Sample Exam 1 Parficipant. 1 Phase: Mission 2 (2/3)  Trial: 210, Part: 410

|®Back' |Nexl(;>!

[ Hission Instructions] | &) Exam Tutorial

Please report P{Aftack | IMINT, OSINT). This is the probability of Red afiack given IMINT (U) and OSINT (P). Click Next to continue.
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Score on the Trial: Elue =-3 Red=3 Score on the Mission: Blue =-3 Red=3

Figure 1: Geographic Information System (GIS) display and Graphical Uselnterface (GUI).
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File Exam Options Feature Vector Options Help
Exam: Sample Exam 3 Participant: 1 Phase: Mission 4 (4/5)  Trial- 10/40, Part 1/4

Back [@ Mission Insirucl.ions] [Q Exam Tul.oriall

A new trial has begun. Before continuing, please report the probability of each Red style. Click the Backward and Forward bultons, as often as you wish, to create and inspect a
batch plot of the attack history. You may also click on any or all dots, one at a time, to view the P and U values associated with the attack locations. After creating and inspecting
a batch plot, please report the probability of each Red style and click Next to continue
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12} 3 :
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Score on the Trial: Blue =-2 Red=3 Score on the Mission: Blue =-22 Red =22

Figure 2: "Batch plot" of significant activities (SIGACTS) for a series (batch) of trials.
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Table 1: Listing of variables in design of TACTICS.

Symbol | Meaning

a attack, an action by Red

~a not-attack, an action by Red

Bs Blue's model of his own (Blue) tactics

Br Blue model of his opponent's (Red's) tactics

B¢ Blue's choice of action (d or ~d) on trial t

d divert, an action by Blue

~d not-divert, an action by Blue

F frequency of past activity by Red over some number of trials (t)

P probability that Blue will defeat Red in a showdown (i.e., if a and ~d) atead@iint, P(X,y)
P. probability that Red will attack on trial t4® = R, (1)

P. probability that Red has the capability to attack on trial(t) P

P-q probability that Blue will not divert on trial t,-kt)

P probability that Red has the propensity to attack on trial t, given the agptbittack, Rt)
Po.c probability that Red has the propensity and capability to attack on tria(t), P

P, probability of Red attack as signaled by Red activity on tria(t), P

Pip.c probability of Red attack on trial t, per activity, propensity, and capalii(t) = P, (t)

r shortest straight-line distance from Blue point to Blue border

Rs Red's model of his opponent's (Blue's) tactics

Rr Red's model of his own (Red) tactics

R Red's choice of action (a or ~a) on trial t

t trial number; also number of trials indf number of trials since last attack in function fgt)P
U utility at stake in a showdown at a Blue point, U(x,y)

Y constant parameter in vulnerability function for P(x,y)

X,y space coordinates
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Table 2: Temporal-spatial features of intelligence data in TACTIG, along with the associated
meanings, measures, and symbols.

Datum Feature Meaning Measure Symbol
OSINT Proximity Vulnerability Probability P
IMINT Density Opportunity Utility U
HUMINT Recency Capability Probability Pe
SIGINT Reliability Activity (prognostic) | Probability P
BLUEBOOK | Probability and Utility Propensity Probability Py
Batch Plots | History Activity (forensic) Frequency F
(SIGACTS)
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2 Description

Phase 2:The text of thidDescriptionwill focus on the basic task, to be implemented in five
"missions" of the Phase 2 experiment (gaeationsin Section 3). Footnotes are used
throughout in referring to "more complex tasks”, which are further extensidhe basic task
not currently implemented in the TACTICS design or software.

The task: In TACTICS, a cognitive human (Blue defense) vs. computer agent (Red offense)
game is played over a series of trials, in an area of interest, using datedlepiet Geographic
Information System (GIS) display (see Figure 1). Each trial involvepoin¢ in a Blue region

within the area of interest. [Note: In soMariations(Section 3), a trial may involve more than

one point in the Blue region]. Red and Blue each have two options for action on a trial. Red may
attack the Blue point, or else not attack. Blue may divert from the Blue point to gvossiale

Red attack, or else not divert and risk the consequence of a possible Red attackilfTbieares
showdown (Red attack and Blue not divert) is U units of utility won by Blue (lost bydRed
probability P, or U units of utility won by Red (lost by Blue) at a probabiliB/. Blue loses 1

unit of utility when he diverts and Red does not attack, i.e., when Blue spends resources to dive
and Red does not spend resources to attack. The outcome is 0 units of utility for Red and Blue
when neither spends resources (i.e., Red does not attack and Blue does not diven) pothwhe
spend resources but there is no showdown (i.e., Red attacks and Blue diverts). To minimize
losses (i.e., optimize defense), Blue must acquire and apply knowledge of relelsidilities

and utilities. The Blue (human) player must also adapt to the outcomes of trialsexstd det
changes in Red (agent) tactics. The task manipulates Blue (human) response desmands
discussed iVariations(Section 3) to measure cognitive performandafierencing over
hypothesegjecision-makingbased on inferences, afudtaging for new evidence.

The map: A GIS display (see Figure 1) outlines the region of Blue defense in an arearestint
In someVariations a Blue player can "mouse click" to séatch plots" of attacks over
previous trials. A batch plot (Figure 2) is the cumulative display of signifiaetivities
(SIGACTYS), i.e., attacks and outcomes that occurred over a series of triadanamel "played-
back" in time to show the trial-by-trial accumulation of SIGACTS.

A trial: On each trial (which represents a day in the area of interest), Blueeseaesequence of
intelligence reports about spatial-temporal features of events in ak sdtgat — see Table 2.

The spatial features affect Redignerabilityto Blue defense armpportunityto inflict damage.

The temporal events include Red's lataypabilityto attack Blue and Red's latestivity near

Blue points. Blue must first use these spatial and temporal cliugeiancing, to estimate and
update the probability that Red will attack on the current trial. Blue must theheusestilts of
inferencing fordecision-making to choose a Blue action (i.e., divert or ~divert) at the Blue point
on the current trial. IVariations(Section 3) of the basic task, Blue also must niafaging
decisions about where to obtain further information (at one of several Blue points), amohperf
forensic inferencing to diagnose Red tactics and detect changes in fiesd tac
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OSINT: To start a trial, the location of planned Blue activisyassumed to be reported in open-
source media (OSINT), hence known by Red as well as Blue (see Figure 13.theisocation

at which Red may potentially attack Blue on the current trial. The GISlaptays the shortest
straight-line distance (r) measuring proximity of the Blue point to the bofdbe Blue region.

A large distance implies a relatively larg@nerability for Red (and relatively small

vulnerability) for Blue, if an attack is attempted by Red. Thus r affectpithieability P that

Blue will defeat Red if Red chooses to attack. This probability increases@sases, per the
function P = 1 - € (see Figure 3). As such, P is the cumulative distribution function for a
constant failure rate model corresponding to the exponential (Poisson) distrigagte Roberts,

et al., 1981), which assumes that the probability of “failure” (i.e., Blue fabdulefeat Red if

Red attacks) is constarmor each delta-r in the integration performed to compute P. The value of
P at the location is displayed by the GIS, and assumed known by both Blue and Red. Note that i
TACTICS the value of P is always0.5, see Section8olutions As such Blue is playing

"defense" against Red, and the Blue objective is to minimize expected losses i \algam

Blue's expected utility is O.

0.5

04+ 1

03- 1

0.2- 1

0 1 1 1 1 1 1 1 L 1
0 01 02 03 04 05 06 07 08 09 1

r

Figure 3: Probability that Blue will defeat Red if Red attacks a Bue point, as a function of distance
(r) from the Blue point to the Blue border, P =1 - &, assuming v = 2.

! The location(s) of Blue activity on each trial Mik selected at random by the computer, muchaik@ndom "deal" of card(s)
in poker. However, the random selection may be tcaimed by experimenters to ensure that stimulinaost suitable for
assessment of human and model performancéssdaation(Section 5). A more complex task might allow tHaeéBplayer to
choose Blue point(s) on each trial, subject to sappropriate constraints — such that both BlueRed might anticipate the
Blue points that are likely or not likely to bestake on future trials.

2 The failure rate v is assumed to be constantie,talthough more complex tasks might vary v ircepEnd time. A more
complex task might also make P a function of furtregiables, besides just proximity (r), and/or htigequire that the Blue
human (or a human teammate) estimate P as eiff@ngestimate or a probability distribution. Thi® points and
corresponding values of P are known by both BlukRed, although more complex tasks could vary tadability and
reliability of this knowledge between Red and Bldete that in the real world, estimating P from gpgattial features of terrain
might be considered a form sditability analysis.
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IMINT: Besides OSINT, both Red and Blue have access to open-source imagery intelligence
(IMINT) showing buildings and other terrain features (see Figure 1). Otplarticoncern is the
density of buildings in the vicinity of the Blue point, which is assumed to measue Red'
opportunityto inflict damage on Blue. This opportunity is quantified as a utility (U), which is
directly proportional to building densityThe value of U is computed and displayed by the GIS,
and assumed known by both Blue and Red. Note that in TACTICS the values of U are limited to
integers U = 2, 3, 4, or 5. This is to simplify the space of solutions for human expeyiseents
Section 4Solutions

1 T T T
0.9r

Figure 4: Probability that Red has the capability to attack, as a functn of time (t = number of
trials) since the last attack.

HUMINT: After OSINT (P) and IMINT (U), Blue receives an additional report flarman
intelligence (HUMINT), which is displayed by the GIS and seen only g Brhis HUMINT
report reflects Red's overaihpabilityto recruit members, acquire weapons, transport forces,
arrange escape, and satisfy other requirements for launching an atiask Blye. The
capability to attack is modeled as a probability of attagkassuming Red wishes to attack
(which depends on Red tactics, see BLUEBOOK below). More specifidallyRed capability
(probability) R is 1.0 at the start of a mission and increases with time (t) after thetdakt at
during the mission, per a discrete function that models temporal recency efigch like the
continuous function P models spatial proximity effects. That.igyd®lels temporal "failures”
(i.e., Blue failure to prevent the Red attaapability) whereas P models spatial "failures” (i.e.,
Blue failure to defend, which is a Blwelnerability)*.

% A more complex task might make U a function offier spatial (and/or temporal) variables, besidesjuilding density,
and/or might require that the Blue human (or a huteammate) estimate U. Like P (from OSINT), thingaf U on each trial
(from IMINT) is known by both Red and Blue, althdumore complex tasks could vary the availabilitg asliability of this
knowledge between Red and Blue. More complex tasght also vary the subjective utility of objectiuélity U between Red
and Blue, to simulate different value structureagfmmetric adversaries. Note that in the realdyas$timating U from
geospatial features of terrain might be consideréam ofsuitability analysis.

% The step function is assumed constant, althougle mmmplex tasks might vary the function with spawd time. For example,
in a more complex task Red's capability may demancecent outcomes and their effects on the sudiogr("Green")
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BLUEBOOK: Besides HUMINT, Blue is asked to consider the Blue "team" knowledge about
Red's tactics, as expressed in a Blue handbook called the BLUEBOOK. In partiogil
BLUEBOOK specifies how Redfgopensityto attack, given theapabilityto attack, depends on
vulnerability (i.e., probability P discussed under OSINT above)aombrtunity(i.e., utility U
discussed under IMINT above). Wfariations(Section 3) of the basic task, the BLUEBOOK
may represent Red's tactics for one or more Red "styles" and the syt kiaown or
unknown. After referring to the BLUEBOOKBIue is asked to report his belief about Red's
propensity to attack, i.e., the likelihood (measured by a conditional probabilifythBt Red will
attack on the current trial, assuming that Red has the capability to attackoomnrém trial.

Then, after reporting°Blue is asked to adjust his estimate of the probability that Red will
attack on the current trial, considering the HUMINT value of;Rs well as Blue's own report
of P,. The answer, £, represents Blue's best estimate of Red's attack probability based on
intelligence about Redfmopensityto attack and Redtapabilityto attack.

SIGINT: Finally, after reporting B, Blue receives a report from signals intelligence (SIGINT)
about Redactivity on the current trial. This report is based on communications (e.g., cell phone
usage) that would signal Red coordination around the Blue point to support a Red attack. The
SIGINT report is always of limited reliability, because SIGINill ometimes "miss" Red

attack signals and sometimes (but less likely) "hear" Red attackssigman none exist. Also, it

is assumed that SIGINT detects only the occurrences of communications amel caitents of
those communications. More specifically, if ground truth is "yes" (i.e., Reduallyc

coordinating an attack) then "YES" will be reported by SIGINT at 60% probadildy'NO"

will be reported by SIGINT at 40% probability. On the other hand, if ground truth isi"ag" (
Red is not actually coordinating an attack) then "NO" will be reported®WNJF at 80%

probability and "YES" will be reported by SIGINT at 20% probability. In expental
manipulations (se¥ariations Section 3), SIGINT resources may be limited such that Blue must
choose a location at which to collect SIGINT. The SIGINT return and assbtieihoods can

be used to infer the probability & Red'sactivity on the current trial, independent of Red's
propensityto attack (seeabove) and independent of Reckpabilityto attack (seefabove).

population — e.g., Anay increase when Red is winning and decrease Rbdris losing. Also in more complex tasks, the
estimating of Red's capability. Reither point estimate or a probability distrilmurt) might be performed by a Blue human (or a
human teammate). Finally, in more complex taskes pfanning, transport, and other precursors (ccessors) to Red attack
(and Blue defense) may be treated explicitly asusgp events, and modeled with conditional profiggsilthat relate these
events to each other (and spatial context) in Betics. Note that in the real world, thesgpability analyses might be performed
in conjunction withsuitability analyses, like those corresponding to P (vulnérgband U (opportunity) mentioned above.

5 For example, the BLUEBOOK might specify the pragignfunction B = fn(P, U) by which Red makes his choice to ati@ck
~attack), given Red capability to attack, for ashee" style and for an "Aggressive" style. In tbase Blue would need to infer
the likelihood of each Red style in order to estan® = fn(P, U) from the BLUEBOOK values.

5 More complex tasks might vary the nature of SIGIgforts, i.e., to include the contents of messagesell as their
probabilities, and/or to reflect a variable arezuad the Blue point, and/or to vary the reliabitifySIGINT with spatial-
temporal context.
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After receiving SIGINT Blue is askedto report the probability of attack based only on
SIGINT (P:). Blue is then asked to update his estimate of the probability that Redilv
attack on the current trial (Pp,c), i.€., considering the likelihood of Red's activity (pgre3
well as the prior combination of Red's propensity and capability.(Phis yields a final
estimate of the Red attack probabii® = P

Red's move:Red's action, chosen without Blue knowing, is either to "attack” or "~attack" (
attack). Assuming Red chooses to attack, the attack will actually occuf &hlgidoes not foil
the attack by a move to "divert" Blue forces away from the Blue pointka. $t&d's choice on
the trial (R) depends on Redtspability P (given by HUMINT) andoropensityP, (given by
BLUEBOOK), where B depends omulnerability (P given by OSINT) andpportunity(U given
by IMINT). The propensity P(per BLUEBOOK, see above) is reflected in Red's tactigy (R
which in turn reflect the reward structure (discussed below) by which outcoengsoaed. In
general, Red's propensity to attack would also depend on Red's beliefs abauiaBtios' (),
because the expected utility of Red's action depends on the probak{iRy)Fhat Blue will not
divert forces and hence will face a potential attack. However the currentlC&GEsumes that
Red's tactics are not dependent on Blue's tactics, i.e., Red's tactics aréumalyon of P, U,
and time since the last attack.

Blue's move:Blue's action, chosen without Red knowing, is either to "divert” or "~divert" (not
divert). Blue's choice on the trial {Bs governed by higmtentionality (rationality)and reflects
Blue tactics (B), which depend owrulnerability (P) andopportunity(U) as well as Blue's beliefs
about the probability Br) of Red attack. Note that this probability in turn depends on Blue's
model of Red tactics, 8 The Red tactics are known for some missions, but for other missions
the Red tactics are unknown (hengerBust be inferred by Blue). After reporting his estimate of
Red's attack probability,Br) = B pc(see SIGINT aboveBlue is asked to choose an action,
either "divert" or "~divert" . This Blue choice is based on knowledge of the "payoff matrix"
(see Figure 5), which is also known by Red, and which specifies the expedtedoutie gained

or lost by each player (Blue and Red) for each possible combination of Blue-Red: gctioag,
(~d, ~a), (d, a), and (d, ~a).

" Note that this and other questions may not bedaskeevery trial of every mission. For example,ahewer to the question
here (P would be the same or similar across trials faheaalue of SIGINT ("YES" or "NO"), as long as t8&GINT
reliabilities are held constant.

8 In the real world, estimating the probabilityd? Red attack (along with estimating the probapiit of Blue success and utility
U of the target) is analogousTd P (Tactics, Techniques, and Procedu®lysis. This type of analysis integrates various
suitability and activity analyses, along with hiétal and inferential knowledge about enemy tacticgproduceactionablel&W
(Indications and Warnings, see Grabo, 2004) iggetice estimates such EMPCOA (Enemy's Most Proltzilese of Action)
and EMDCOA (Enemy's Most Dangerous Course of Agtiomthe real world, these intelligence estimatesrelayed to and
employed by operational forces. In TACTICS, Bluglaying the role of both intelligence and openasioas he uses his own
inferenceqe.g., B) to make his owidecisiongsee "Blue's move"). More complex experiments danvolve a team of two (or
more) Blue players, i.e., separating the intellgeeand operations functions in order to investigat@munication and
coordination in team sensemaking. Likewise morepermexperiments could involve a team of Blue astalyeach performing
one or more of the various suitability (P, U), daipty (P.,), propensity (), activity (R), or intentionality () analyses.
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a (Red attack) ~a (Red ~attack)
~d (Blue ~divert) U*[2*P-1] 0
d (Blue divert) 0 -1
a (Red attack) ~a (Red ~attack)
~d (Blue ~divert) -U*[2*P-1] 0
d (Blue divert) 0 +1

Figure 5: Payoff matrix for Blue (top matrix) and Red (bottom matrix).

The score:After Blue's move, Red's move is revealed and the values of P and U are used to
generate a significant activity (SIGACT) report of the outcome. Refeto Figure 5, in the case

of a showdown (i.e., Red attack and Blue ~divert) one of two outcomes [+U Blue (-URed),

Blue (+U Red)] is randomly chosen by the computer at probabilities [P, 1-pgcteely. This
produces expected utilities as indicted in the upper-left cell (~d, a) of eaafh payrix (Blue

and Red) above. For all other combinations of actions, i.e., (~d, ~a), (d, a), and (d, ~a), the payof
is a fixed value. Note that the payoffs for Blue and Red are always equagmtade but

opposite in sign, so TACTICS is a zero-sum game

A batch: A "batch" is a series of trials, with each trial involving a new Blue point imgjien

of Blue defense —i.e., on the same GIS map (Figure 1). The parameters ch®tied'site held
constant over trials of Missions 1-3 (éariations Section 3). In Missions 4-5, Red tactics will
change at some point in the mission, and the Graphical User Interfacea|(®wh Blue to

make "batch plots" (see Figure 2) in order to diagnose the Red tactics antdioetdhanges in
Red tactics.

® This scoring system rewards a player (Blue or Reét utility +U for winning a showdown, which ocaiwhen Red attacks
and Blue ~divert. The utility is 0 for Blue (0 f&ed) if Red attacks and Blue diverts; also 0 fareB(0 for Red) if Red ~attack
and Blue ~divert. The utility is -1 Blue (+1 Redh@n Red ~attack and Blue diverts, because Blusiagigesources in the
divert and Red did not invest resources in an latfslore complex tasks might use other scoring systéncluding non-zero-
sum utilities for Red and Blue to reflect the risf@atimportance of various outcomes to asymmetrieeghries. More complex
tasks might also make other aspects of the garteedgpendent on outcomes, e.g., changing the Bitgebin response to Blue
wins (growing the Blue region) or Red wins (shrimkithe Blue region), and/or changing various of@ameters (e.g., v in the
vulnerability model) in response to Blue or Red wins.

20



3 Variations

The basic task (sd2escription Section 2) is manipulated acroagsionsas needed to measure
Blue sensemaking processes and cognitive biases (per BAA Table 3). Inlpariics useful to
distinguish three different but related cognitive processes as follol@sencing, decision-

making (based on inferencing), afaraging (based on inferencing and decision-making). These
processes are highlighted and evaluated in Missions 1-3 as described belowidn exidit

useful to distinguish betwegmognostic inferencingto predict future attacks, afarensic
inferencing to explain previous attacks. Missions 1-3 are focused on prognostic inferencing,
whereas Missions 4-5 require forensic inferencing as a basis for progntesencing.

Mission 1. You judge the chand@nferencing) Mission 1 is focused on measuring how Blue
updates his HUMINT and BLUEBOOK prior (B with SIGINT (R) likelihoods to compute a
posterior probability i, . Mission 1 also measures how Blue combinggdm BLUEBOOK
with P; from HUMINT to compute the priorg2 Each trial of Mission 1 involves only one Blue
point, and the Red tactics jRare specified by the BLUEBOOK as a function of P andgs P
fn(P, U), as follows:

U=2or3 U=4o0r5
P > 25% 20% 40%
P<25% 60% 80%

Based on previous research (Burns, 2007) and pilot studies, we expect to see a n@nB=Evat
in human posteriors;R, where B, cis computed as an average pdRd B rather than a
Bayesian-normalized product of &d B This bias can be characteriz&dchoring and
Adjustment(Tversky & Kahneman, 1974), wherednd B c act as anchors and the averaging of
these anchors reflects an inadequate adjustment made in computing the fgieide also
expect to see a conservative bias in estimategitseER. This bias can be characterized as
Avalilability (Tversky & Kahneman, 1974), where humans tend to use the readily available
SIGINT likelihood P(SIGINT]| attack) as a surrogate for the Bayesiamalzed posterior =
P(attack| SIGINT). Finally, we expect to see a bias in human estiofdtesprior B¢ This bias
can be characterized as a fornRapresentativenedshown as the "conjunction fallacy”,
whereby humans computg fas an average of,@nd R, and thereby fail to compute a joint
probability B .= B, * P that is less thangRand less than,P

As such, Mission 1 addresses Octaloop (Burns, 2014) step [3] estimating likelihoodlsaas we
Octaloop step [4] aggregating confidence. Note that here in Mission 1, Blue's thtdivert”

or "~divert" will be made by a Blue agent (not the human), to ensure that alhlsurgcts
receive the same post-judgment stimuli (which may affect Blue'smdagrg behavior).
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Mission 1 addresses the BAA "core sensemaking processkesanf Frames (Features)
Recognize Patterns / Select a Frame, Assess the Frame, Re-frameufEsat

Mission 2. You make the choigeecision-making)Mission 2 is focused on measuring how
Blue uses his estimate of PR, cfrom inferencing (discussed above), along with the known
values of P and U, to make choices (Octaloop step [5], speculating consequencesg)tdfoidi
"~divert" and then adapt to outcomes (Octaloop step [6], evaluating consequeredjidsion
1, Mission 2 also measures inferencesfdhd Ry . Each trial involves only one Blue point,
but the Red tactics are not known for certain. Instead, the BLUEBOOK spettiiels a
probabilities B as a function of P and U, for two Red styles: Passive and Aggressive.

The Passive Red tactics,(Passive) = fn(P, U), are as follows:

U=2or3 U=4o0or5
P > 25% 20% 30%
P<25% 40% 50%

The Aggressive Red tactics,(Rggressive) = fn(P, U), are as follows:

U=2or3 U=4o0r5
P > 25% 50% 60%
P<25% 70% 80%

Using these two BLUEBOOK tables, a normative solution focg? be can be computed on

each trial using the attack history up to that trial,S@ensic Inferencingn Section 4.4. A
normative solution for each stageRybgnostic Inferencingper Section 4.1, can then be
computed in the same manner as for Mission 1. Finally, given the results of eiigren
normative solution fobDecision-makingsee Section 4.2) computes the Blue option (divert or
~divert) with highest expected utility. We expect that humans will exhiloitra 6f Probability
Matching (Burns & Demaree, 2009) in which choices to divert or ~divert are biased, such that
human decisions will often deviate from normative decisions.

In addition to the core processes addressed in Mission 1, Mission 2 addresses the8AA "c

sensemaking processes'Laarn Frames (Actions)Generate Expectations of Missing Data
(SIGACT), Acquire Additional Data (SIGACT), Re-frame (Actions)
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Mission 3. You send the spié®raging)} Mission 3 is focused on measuring how Blue allocates
limited resources in collecting information (per Octaloop step [7], anticipatiitgnce) to

support choices of actions (divert or ~divert) like those made in Mission 2 (perSitepsl [[6]

of Octaloop). Each trial involves two Blue points, but Red can attack at only one farheft

the Blue points. Also, Blue can obtain a SIGINEport at only one of the two points.

A normative solution for Blue's choice of SIGINT location (Section 4.3.2) can be computed b
considering both SIGINT options (point 1 and point 2), and by evaluating the expected gain in
information from each option. Before SIGINT, Blue is asked to consider RegensityP,

(given by the BLUEBOOK) and Redtsipability P (given by HUMINT) in order to estimate

Pp.c without SIGINT. After reporting 2, Blue is asked to pick one Blue point for collecting
SIGINT, before making his decision to divert or ~divert at each point.

For example, Blue may choose to get SIGINT at the Blue point of highest Red attaaki iy
(highest B ), or the point with highest Blue vulnerability (lowest P), or the point of highest
utility (highest U). We expect to s&@onfirmation Bias in Seeking EvidencéNickerson, 1998;
Klayman & Ha, 1987; Fischhoff & Beyth-Marom, 1983), where Blue seeks SIGINT onlbke B
point with the highest attack probability. However, as noted in Section 4.3.2, this so-cled bi
is actually the optimal behavior for maximizing expected information gains fr@NSI
Therefore, the non-normative bias is to NOT always seek SIGINT at th@stoeath highest

Pp.e and the frequency at which humans exhibit this behavior will be taken as a measure of
Confirmation Bias

In addition to the core processes addressed in Missions 1 and 2, Mission 3 addres&As the B
"core sensemaking processes'Ganerate Expectations of Missing Data (SIGINT), Acquire
Additional Data (SIGINT)

Missions 4,5. You spot the changdissions 4-5 differ from Missions 1-3 in that Red tactics
change at some point in time. In Mission 4, the change is from Passive to Aggm@ssige
versa, where the parameters of each style are the same as in Mission 2 abd&siéor5, one
style is P-sensitive, as defined by the following values,@-Bensitive):

U=2or3 U=4o0r5
P > 25% 40% 40%
P<25% 60% 60%

The other style is U-sensitive, as defined by the following valueg(0t$ensitive):

19 More complex tasks might present more than tweBlaints on each trial, and/or or require thatBhee player choose
among various INTS (i.e., OSINT, IMINT, HUMINT, SIST) with the choice being subject to some spedifienstraint(s) —
e.g., choose only one or two or three of the fdiir$, and do so at only some (not all) of the Bloafs.
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U=2or3 U=4o0r5

P >25% 20% 80%

P<25% 20% 80%

In these missions, Blue must infer Red's tactics in the first place, lessvadtect the change at
some unknown point in time, in order to support inferencing and decision-making. To enable
testing of more trials, the sources of intelligence for Missions 4-5 aredinatOSINT and

IMINT (i.e., no HUMINT or SIGINT) "within" each trial. Also, to support Blue'darences

about Red tactics "between" trials, on selected trials (e.g., everydish Biue is allowed to
create and inspect "batch plots" of past attacks. In so doing a player isnegffarensic

foraging through previous attack histories (SIGACTS), which differs fronpthgnostic
foragingfor intelligence (SIGINT) in Missions 1-3.

Missions 4 and 5 differ from one another primarily in the difficulty of detecting &s=t$ and
the change in Red tactics. In Mission 4, Red's tactics are known to retthectaeiPassive™ or
"Aggressive" style, and the style can be inferred from the total frequémast attacks. In
Mission 5, the possible Red styles are "P-sensitive"” or "U-sensitivé'thase styles cannot be
inferred only from the total frequency of past attacks. Instead, the infaesoees attention to
values of P and U in subsets of past attacks.

Missions 4-5 are designed to measure three final biases, n@heatge BlindnessPersistence

of Discredited EvidenceandSatisfaction of SearchForChange Blindnesswe expect that
humans will be delayed in detecting the change of Red tactics, and possibly eteddtact

the change at all — especially in Mission 5. Persistence of Discredited Evidenage expect

that human uncertainty about the Red style will persist to the end of Mission 4, i.e.,teven af
obtaining ample evidence (SIGACTS) to discredit beliefs held before the cimaRgd style.

For Satisfaction of Searchwe expect that humans will terminate their searches for data through
batch plots prematurely, i.e., not perform an exhaustive search through allquzkst thtat are
available in batch plots.

Missions 4-5 address Octaloop steps [8] discriminating evidence, [1] isolaittemnee, and [2]
generating hypotheses.

In addition to the core processes addressed in Missions 1-3, Missions 4-5 address therBAA

sensemaking processes'L@arn Frames (Tactics)enerate Expectations of Missing Data
(Batch Plots), Acquire Additional Data (Batch Plots), Re-frame (Tactics).
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4 Solutions

4.1 Inferencing (Prognostic)

4.1.1 Inferencing at One Blue Point

Forinferencingin aprognosticsense, i.e., to predict the probability of Red attack, the normative
solution at each stage of a trial depends on the probabilities being aggregatetssiar M B

is given by the BLUEBOOK based on OSINT (P) and IMINT (U), aptsBiven by HUMINT.

For Mission 2, Blue must perforforensic inferencingsee Section 4.4) to obtain the value of

Py. In both missions, Land B are normatively combined as a simple product becayse P
P(propensity, capability) = P(capability) * P(propensity|capabiit$ * Pp.

In the next stage of a trialp, Pand R are normatively combined in a Bayesian updatg: PR *
Pocand (1-Rpd ~ (1-R) * (1-P,,0), where ~ implies a normalization (i.e., division by the sum [P
*Ppc+ (1-R) * (1-Py o] to ensure that the posteriors, Pand 1-P, . sum to 1). Notice that
aggregation at this stage is different than at the first stage, becaeise ther second stage the
probabilities being combined are both referring to the same hypothesis that may not be

true, namely the hypothesis that Red will attack. Conversely, at the first thtageobabilities
being combined refer to different hypotheses, namely a hypothesipadbilityto attack (B

and a hypothesizearopensityto attack (B) assuming the capability, where an actual attack
would require that both hypotheses be true.

In Missions 1 and 2, another twist arises becauger®dt provided directly but rather must be
inferred from the SIGINT likelihoods (Burns, 2006). These likelihoods are given tcaBlue
follows: P(Y]y) = 60%, P(N]y) = 40%, P(Y|n) = 20%, and P(N|n) = 80%, where "Y" ahd "N
refer to signals (SIG = YES or NO) whereas "y" and "n" refer to the groutid(i/es or no). In
effect, the human must first "invert" the SIGINT likelihoods from P(evidegpethesis) to
compute posteriors P(hypothesis|evidence) using Bayes Rule. ThisRyiel&gy|S) and 1+
1-P(y|S) = P(n|S) for whichever signal was received (S =Y or S =oNgxXample, if SIGINT
reports Y then we have (assuming a uniform prior):

P. = PylY) = P(Y]y) / [P(Y]y) + P(Y|n)] = 60% / [60% + 20%] = 75%
1-R = P(n|Y) = 25%.
On the other hand, if SIGINT reports N then we have (assuming a uniform prior):
P. = P(y|N) = P(N]y) / [P(N]y) + P(N|n)] = 40% / [40% + 80%] = 33%
1-R = P(n|N) = 67%.

In short, the Bayesian value aofi® 75% (not 60%) if SIGINT reports Y, and 33% (not 40%) if
SIGINT reports N.
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4.1.2 Inferencing at Two Blue Points

The above solutions for prognostic inferencing apply to trials of Missions 1 and 2,allhere
INTS (OSINT, IMINT, HUMINT, SIGINT) are provided at only one Blue poine(j one

location in the region of Blue defense) on each trial. In Mission 3, each trial gréds@&ft at

two Blue points. The same solution fgy” P * Ppapplies at each location on a trial of Mission
3, because the HUMINT (Prepresenting Red attackpability applies equally to any and all
locations. However, in Mission 3 the BLUEBOOK specifies different values fdraack
propensity(P,) at each location based on OSINT (P) and IMINT (U), as follows:

U=2or3 U=4o0r5
P > 25% 10% 20%
P<25% 30% 40%

Note that each of these values is one half the corresponding value specifie@by HROOK
in Mission 1, because here in Mission 3 Red may attack at either (or neither) ob tBiéwv
locations.

After reporting B¢ on a trial of Mission 3, at each of two Blue locations, Blue must choose a
location (denoted 1 or 2) at which to receive SIGINT. The normative solution for thisoteisi
developed in Section 4.Bpraging Depending on whether SIGINT returns "chatter" (SIG =
YES) or "silence" (SIG = NO), the Bayesian distributior, {RR} at the location where SIGINT
was obtained (call it location 1) will be either {75%, 25%]} or {33%, 67%]}, see Section 4.1.1.

Because Red can attack at only one (or neither) location, but not both locations, thaeeare
hypotheses {A, B, C} that must be considered: A = attack at location 1; B = attackion 2;

C = no attack at location 1 or 2. The priors are given by {FPyc2 1-Bc.r-Ppc.2, respectively.

The likelihoods given "chatter" at location 1 (assumed to be the location at WGiltiTSvas
obtained) are {75%, 12.5%, 12.5%}, and the likelihoods given "silence" at location 1 are {33%,
33.5%, 33.5%]}. Note that these likelihood distributions are each of the foun({FR 1)/2, (1-
P.1)/2}, because the probability 1-Papplies to hypotheses B and C (i.e., ~A).

Finally, the prior distribution is updated using the likelihood distribution, to compute the
posterior distribution as a Bayesian-normalized product of prior and likelihood. Noteehat
posterior probability of attack will differ from the prior probability of akaven at location 2
for which no SIGINT was obtained. This is because of the dependency between locations
introduced by the assumption that Red can attack at only one (or neither) location.
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4.2 Decision-Making

4.2.1 Non-equilibrium Solution

The non-equilibrium solution for each player (Blue or Red) is computed from the pagtoft m
(Figure 5) by assuming that the probability of an opponent's action is known.

For Blue, the expected utility (E) of each option (divert or ~divert) is compstémlaws:

Ea=Py* {0} + (1-Po) *{-1} = P,- 1
Eq=Pa*{U*[2*P-1]} + (1-Po) *{0} =P *{U*[2* P - 1]}

where Ris the probability that Red will attack, P is the probability that Blue wikakeRed if
Red attacks, and U is the utility gained by the winner of a showdown.

Blue should divert if E> Eg, i.e., if Ey- E.4> O:

By - Eq (R-1)-R*{U*[2*P-1]}>0

R-(P*U*2*P)+ (P*U)>1

or-P*[2*U* P> -Pa* (U+1)+1.

Hence Blue should divert whenP <[P, * (U+1)-1]/(2* U * P,).

For Red, the expected utility (E) of each option (attack or ~attack) is codrgaifellows:

Ea=-Pg*{U*[2*P-1]} + (1 - P-g) * {0} = -P¢* {U*[2*P - 1]}
Ea=Pg*{0}+(1-Pg*{1}=1-P4

where B4 is the probability that Blue will ~divert, P is the probability that Blue detfeat Red if
Red attacks, and U is the utility gained by the winner of a showdown.

Red should attack if B E., i.e., if - E.;> 0. That is:
E.- Ea = -Pyg*{U*[2*P-1]}- (1 - P-g) > 0.

Notice this is the same as the equation for Blue, if we repla@e e equation for Blue) by-p
(in the equation for Red).

Thus Red should attack when: P < [By* (U + 1) - 1]/ (2 * U * Py).

These non-equilibrium solutions for Blue and Red are illustrated in Figure 6 and eéscuss
further below for two cases of interest: P > 0.5 and P < 0.5.
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Figure 6: Non-equilibrium solutions for Blue (left) and Red (ight).

For Blue, when P > 0.51f Blue ~divert then his expected utility is > O (if Red attacks) or £ 0 (i
Red ~attack). If Blue diverts then his expected utility is = 0 (if Redlat}jaor = -1 (if Red
~attack). Thus regardless of Blue should always ~divert when P > 0.5.

For Blue, when P < 0.51f Blue ~divert then his expected utility is < O (if Red attacks) or £ 0 (i
Red ~attack). If Blue diverts then his expected utility is = O (if Redlkat}aor -1 (if Red

~attack). Because neither option (~divert or divert) is always better nBlgeconsider the
probability B of Red attack. As Rlecreases, ~divert by Blue is less likely to result in a
showdown with negative expected utility and more likely to result in O expectiyl tilus, the

P threshold for ~divert decreases (from 0.5 to smaller valueg)dexfeases (from 1 to smaller
values) along a line of constant U (see Figure 6). At a given valug thieRexpected loss (i.e.,
magnitude of expected utility < 0) resulting from Blue ~divert and Redkattareases as U
increases. Thus the P threshold for ~divert increases as U increases.

For Red, when P > 0.51if Red attacks then his expected utility is < O (if Blue ~divert) or = O (if
Blue diverts). If Red ~attack then his expected utility is = O (if Blue ~dieert +1 (if Blue
diverts). Thus regardless of#’Red should always ~attack when P > 0.5.

For Red, when P < 0.5if Red attacks then his expected utility is > O (if Blue ~divert) or = O (if
Blue diverts). If Red ~attack then his expected utility is = O (if Blue ~dieert1 (if Blue

diverts). Because neither option (attack or ~attack) is always better, i&t@donsider the
probability P4 of Blue ~divert. As By decreases, attack by Red is less likely to result in a
showdown with positive expected utility and more likely to result in O expected.utifitis, the

P threshold for ~attack decreases (from 0.5 to smaller values) @sdreases (from 1 to smaller
values) along a line of constant U (see Figure 6). At a given valug,ah® expected gain (i.e.,
magnitude of expected utility > 0) resulting from Red attack and Blue tdneeases as U
increases. Thus the P threshold for ~attack increases as U increases.
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4.2.2 Nash-Equilibrium Solution

The Nash-equilibrium solution is computed, in two steps (Davis, 1997), from the payoff matr
in Figure 5. Note that this solution applies only to a zero-sum game.

First, for the case where P > 0.,5nspection of the payoff matrix (Figure 5) shows that ~divert
(~d) dominates divert for Blue and ~attack (~a) dominates attack (a) for Redvfiéad > 0.5
Blue should always ~divert (~d) and Red should always ~attack (~a). Alsagsee Eiabove.
The "value" of the game to each player is the expected utility assumieg@Blays chooses
~divert and Red always chooses ~attack. This value, per the payoff matrix, islOef@nBé Red.

Then, for the case where P < 0,5he optimal strategy for each player i$v@xed strategy”
where each option is played at a probability, (Br Blue and Rfor Red), which in turn depends
on P and U.

For Blue, we consider the expected utility (across options, divert and ~dorezgdh of Red's
options (i.e., attack or ~attack). If Red attacks, Blue's expected ility i

Pg* {U*[2%P - 1]} + (1 - P-g) * {0}

where By is the probability that Blue will ~divert and 1 -4fs the probability that Blue will
divert. If Red ~attack, Blue's expected ultility is:

Pa* {0} + (1- P * {1}
Because the game is zero-sum, Red's expected utility for each Redsaatiwayis the negative
of Blue's expected utility (derived above). Therefore Blue's mixatksgly (Ry) can be
computed by equating the two expected utilities written above and solving;fas @llows:
Pg*{U*[2*P -1]=P_4— 1, which reduces to:
Pg*[2*P*U-U-1]=-1

So Blue's optimal mixed strategy is as follows (see Figure Pig= 1/[1-U*(2*P - 1)].

Using the same approach to solve for Red's optimal mixed strategy we obtain:
P {U*[2*P-1]} +(1-Py*{0}=Pa* {0} + (1- Py *{1}
This produces an equation foytRat is the same as the equation fordbove.

So Red's optimal mixed strateqgy is as follows (see Figure Py= 1/[1-U*(2*P - 1)].

Finally, the value of the game to a player is the expected utility for @fiten (e.g., Blue
~divert or divert) assuming the numerical value of the associated mixesygtréhus the value
of the game for Blue is given by 1, as follows:
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Ve=Pg-1=1/[1+U-2*U*P]-1
=[1-1-U+2*U*P]/[1+U-2*U*P].

The value of the game for Blue is (see Figure 8)s\= (U*[2*P-1])/(1-U*[2*P - 1]).

The value of the game for Red is (see Figure 8)xr\V¢ -(U*[2*P-1])/(1-U*[2*P - 1]).

. U =1 (flatter) to 10 (steeper) ; U =1 (flatter) to 10 (steeper)
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Figure 7: Nash-equilibrium solutions for Blue (left) and Red(right).
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Figure 8: Nash-equilibrium value of the game to Blue (left) and Reftight).
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4.2.3 Decision-Making at Two Blue Points

When two (or more) Blue points appear on a trial, Blue must consider the pgssititid
attack at each point. As discussed in Mission Barfations(Section 3), Red can attack at only
one (or neither) Blue point, but Blue can divert (or ~divert) from either one or both Blue points

Thus Blue has four options across the points [1,2] as follows: Aeb]dB = [d1,~¢], C =
[~d1,db], and D = [~d,~c]. And Red has three options across the points [1,2] as follows: A =
[a1,~a], B = [~a,&], and C = [~a~a].

Unlike the simpler case where Blue only needs to consider the Red attack proBahbtlione
point, Blue now has to estimate the probability of each Red option (A, B, C). The non-
equilibrium strategy is described here, assuming the probability of each Red(@gtich

depends on Blue's modek Bf Red tactics) is specified in the BLUEBOOK. To start, it is
assumed that the BLUEBOOK specifies a "two point" propensity funcjenfi{P, U, B) that
can be computed for each of the two Blue poingsaRd B, using the probabilities (PP,) and
utilities (Uy, U,) at these two points as known from OSINT and IMINT, respectively. Note that
Po1 + P2 < 1, because Red can attack at only one (or neither) Blue point.

Each value of Pcan then be combined witk @vhich is the same for each Blue point) and P
(seeForagingbelow), to compute the probability of attack at each poiat=f®c1and R, =
Pip.c.2 also the probability of no attack, which is equal to,#M,. This gives Blue the
probability of each Red option (A, B, C).

Using these three probabilities, Blue can use the payoff matrix alohdimetvn values of
probabilities (R, P,) and utilities (4, U,) to compute the expected utility for each Blue option: A
= [dy,db], B = [d1,~k], C = [~d,dy], and D = [~d,~dy]. Given the resulting vector of expected
utilities [Ua, Ug, Uc, Up], the optimal Blue decision is to always choose the option with the
highest expected utility. Unlike the simpler case of one Blue point analyzedtinrs4.2.1, the
optimal solution in this case is a more complex function of three (not just two) Redbiptidsa
and four (not just two) Blue options — hence not readily illustrated in parametricikéoEsdure

6.

4.3 Foraging

Forforaging in Mission 3, Blue must choose one of two Blue points at which to receive
SIGINT. After SIGINT, Blue must update his beliefs and make a decision (ileoj@eof

option A, B, C, or D irDecision Making at Two Blue Pointdiscussed above). In many cases of
real-world importance, theollectionsandanalysisfunctions are separated from the operations
function, such that the collector and analyst do not know exactlydelsegionsheir intelligence
will be used to support. Indeed even within the intelligence function itself, tregrédena
separation between collection and analysis such that the collector does not kribywéyec
inferencedhis intelligence (e.g., SIGINT) will be used to support. Thus there are spussihle
solutions to the foraging mission posed by TACTICS, two of which are derived below.
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4.3.1 Maximizing the Information Gain at Independent Points

To begin, assume there are teallectionsoptions for Blue: option 1 is to get SIGINT at point 1,
and option 2 is to get SIGINT at point 2. The expected informatic utilities (i.e., expect
information gains) are denoted &nd E, respectively. The collections problem is to compuyte E
and E, so that Blue can then select the option (1 or 2) with highest E, i.e., mBX(E

At a given Blue point (1 or 2), the computation of E requires two forms of input. One input is the
current probability of attackPi.e., "prior" to receiving SIGINT (which will be received only if

this Blue point is chosen). The other input is knowledge of SIGINT reliability, in the foam of

"hit rate" (h), "miss rate" (1-h), "false alarm rate" (f), andrfect rejection rate" (1-f). As

outlined inDescription(Section 2), the likelihoods of signals (S =Y or S = N) given ground

truth (y or n) are as follows:

h =p(Y]y) =0.60
1-h = p(N]y) = 0.40
f=p(YIn) =0.20
1-f = p(N|n) = 0.80.

Using u to denote the informatic utility from each possible SIGINT returor (Y), the expected
information gain for SIGINT at a Blue point is given as follows:

E =p(Y) *u(Y) + p(N) * u(N).

The marginal probabilities p(Y) and p(N) of signals (Y and N) are each comsutied sum of
joint probabilities, as follows:

p(Y) =p(y) * p(Yly) + p(n) *p(Y|n) =p*h + (1-p) * f
P(N) = p(y) * p(Nly) + p(n) * p(N|n) = p * (1-h) + (1-p) * (1-f)

where p = p(y) = Pis the "prior" (before SIGINT) probability of Red attack at the Blue point,
and p(n) = 1-p(y) = 1-p.

The informatic utilities u(Y) and u(N) depend on the probability of attack beftteafter
SIGINT. More specifically, the gain in information (Shannon & Weaver, 1949) ipotad as
the KL-divergence (Kullback & Leibler, 1951) of a posterior (after SIGINMDbability
distribution P' = {p', 1-p'} relative to a prior (before SIGINT) probability wisttion P = {p, 1-
p}, where the posterior P'(Y) is computed assuming a signal Y and the posteriasP'(N)
computed assuming a signal N. These KL-divergences of P' from P are computeaas foll

u(Y)=X[P *log,Py'] + Z [P * log, P]
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UN) =X [P *log Pyl + Z [P * log, P]

where each sum is taken over the two probabilities in each distribution, e.g., P = {p, 1-p} =
{p(y), 1-p()}, Pv' = {p'(ylY), 1-p'(y[Y)}, and R" = {p'(yIN), 1-p'(yIN)}.

The posterior distributionsyP= {p'(y|Y), 1-p'(y|Y)} and R' = {p'(y|N), 1-p'(y|N)}, are
computed from the prior distribution P = {p(y), 1-p(y)} = {p, 1-p} and parameters (h, f) of
SIGINT, via the application of Bayes Rule as follows:

P'(ylY)=(*h)/(p*h)+(1-p) * ]
P'(YIN) =[p * (1-h)] / [(p * (1-h) + (1-p) * (1-N)].

Thus to recap: The expected information gain E for SIGINT at a Blue point is@dbiai four
steps:

First compute the marginal probabilities p(Y) and p(N) of each signal, usrayior
probabilities P = {p, 1-p} and reliabilities (h, f) of SIGINT.

Then compute the posterior probabilities P' = {p', 1-p’} conditional on each signad(Y a
N), via Bayes Rule using the prior probabilities P = {p, 1-p} and likelihoods (reliaisiiti
of SIGINT.

Then compute the informatic utilities u(Y) and u(N), as the KL-divergences of posteri
probabilities P' from prior probabilities P for each signal.

Finally, compute expected utility E as the product of probability * utility sechover
both possible SIGINT returns (Y, N).

Figure 9 shows the results for E as a function,ef P, assuming h = 0.6 and f = 0.2. This figure
shows that E is high when p is small or large. For intermediate values of p, E isdowtavery
sensitive to p. Thus, if there are no further constraints,@ tRe two Blue points (i.e., iPand
P.2 are independent), then the optimal choice (of point 1 or point 2, to receive SIGINT) will
depend (per Figure 9) on the relative magnitudesoditl Bo. If P4y is small or large and pis
intermediate, then the optimal choice is point 1. LikewisesifdPsmall or large and,Pis
intermediate, then the optimal choice is point 2. Otherwise the optimal choice depemels on t
precise values ofjPand Ro».
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Figure 9: Expected gain in information (E) from SIGINT, as a functon of prior probability,
with SIGINT hit rate (h) = 0.6 and false alarm rate (f) = 0.2.

4.3.2 Maximizing the Information Gain at Dependent Points

The above analysis applies only if the two or more Blue points are treated asdetgpe
However, in real-world situations, there is often further knowledge that consdraihagical
inferences and hence affects the optimal choice for collection. The saneirs TACTICS,
wherethe Blue analyst knows that Red can attack only one (or neither) Blue poion a

given trial, i.e., By + P,2< 1. With this knowledge, the value of;Ronstrains the value off
and vice versa.

To account for this constraint requires a more complex treatment than theupranalysis
performed for one point at a time. More specifically, we can define a fradiscgfrnment (set
of hypotheses) to cover the set of Red attack possibilities: {A, B, C}, where A~g]aB =
[~a1,&], and C = [~a~&)]. The corresponding set of probabilities {P(A), P(B), P(C)} z{P.2,
1-P,1-Ps2} is hereafter denoted as the prior probability distribution P4 9, pc}-

With this prior distribution and SIGINT parameters (h, f), the expected infanmgéain for
SIGINT at each Blue point (1 and 2) is as follows:

Er = pu(Y) * ua(Y) + pau(N) * us(N)
Ex = p(Y) * ua(Y) + pa(N) * ux(N).

The marginal probabilities are computed as the sum of joint probabilities|assfol

P(Y) = pa(y) * pa(Y]y) + pu(n) * pa(Y[N) = * h + (1-pu) * f
P2(Y) = pa(y) * p2(Y]y) + p(n) * pY[n) = * h + (1-ps) * f
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Pi(N) = pu(y) * pa(Nly) + pu(n) * po(NIn) = * (1-h) + (1-p) * (1-9)
P2(N) = pa(y) * p2(Nly) + (n) * p2(NIn) = p * (1-h) + (1-p) * (1-f)

The informatic utilities, computed as KL-divergences of P' from P are asvioll

U]_(Y) =-3 [P * |ng PYll] +3 [P * |ng P]
Uz(Y) =-X [P * |ng PYZI] +X [P * |ng P]

U]_(N) =y [P * |ng PN]_'] +X [P * |ng P]
W(N) =X [P *logx Pn2] + 2 [P * log P

where each sum is taken over the three probabilities in each distribution, e.ga,Pss fB) =
{P(A), P(B), p(C)}, R1" = {p(A[Y1), p(B|Y1), p(C|Y1)}, etc.

The posterior distributions are computed from the prior distributions and likelihoods
(reliabilities) of SIGINT, via the application of Bayes Rule. The ltketids (L) of SIGINT are
as follows:

Lv1 = {P(Y4A), P(Y1|B), P(Y1|]C)} = {h, f, f}
Lv2 = {P(Y2|A), P(Y2B), P(Y2|C)} = {f, h, f}

Lyt = {P(Na|A), P(Ni|B), P(NJC)} = {1-h, 1-f, 1-f}
Lz = {P(N2|A), P(N:B), P(NC)} = {1+, 1-h, 1-f}.

For example, referring to the likelihood distributiop LP(Y1|A) refers to the probability of

receiving a signal Y at point 1 assuming Red option A (i.e., Red attack at point lis thadhit

rate, h. Conversely, P(}B) refers to the probability of receiving a signal Y at point 1 assuming
Red option B (i.e., Red attack at point 2, which means no Red attack at point 1). This is the false
alarm rate, f. Similarly, P(MC) refers to the probability of receiving a signal Y at point 1

assuming Red option C (i.e., no Red attack at point 1 or point 2, which means no Red attack at
point 1). This is also the false alarm rate, f. The likelihood distributignsLobtained by the

same logic.

Referring to the likelihood distributionyk, P(N;|A) refers to the probability of receiving a signal

N at point 1 assuming Red option A (i.e., Red attack at point 1). This is the miss rate, 1-h.
Conversely, P(NB) refers to the probability of receiving a signal N at point 1 assuming Red
option B (i.e., Red attack at point 2, which means no Red attack at point 1). This is thee correc
rejection rate, 1-f. Similarly, P(\C) refers to the probability of receiving a signal N at point 1
assuming Red option C (i.e., no Red attack at point 1 or point 2, which means no Red attack at
point 1). This is also the correct rejection rate, 1-f. The likelihood distributigrslobtained by

the same logic.

Thus to recap: The expected information gainartl & for SIGINT at Blue points 1 and 2,

subject to the constraint that Red can attack at only one (or neither) point, aredoibtéooe
steps:
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Then compute the informatic utilities, as the KL-divergences of posterior proiesbili

from prior probabilities for each signal at each point.
Finally, compute expected utility as the product of probability * utility summed lmtbr

Then compute the posterior probabilities conditional on each signal at each point, via
possible SIGINT returns at each point.

First compute the marginal probabilities of each signal at each point, usimgathe
Bayes Rule using the prior probabilities and likelihoods (reliabilities) ofNBIG

probabilities and reliabilities (h, f) of SIGINT.
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Figure 10: Difference in expected information gains (E- E;) for SIGINT at two points (1 and 2).



Figure 10 shows the results assuming SIGINT reliabilities are h = 0.6=a@@f This figure
plots the difference in expected information gains; E, as a function of P(prior probability
at point 1) and g (prior probability at point 2). The figure shows that the differencelz is > 0
(denoted by the symbol x) wheneverPPs, and the difference E E; is < 0 (denoted by the
symbol *) whenever P< Bs. In other words, the optimal point (1 or 2) at which to request
SIGINT is whichever point has the higher prior probability (i.e.fd? point 1 or B for point 2).

This result is consistent withcnfirmation preferenceaka "positive test strategy”, which is
known to be an optimal strategy for seeking information in hypothesis testing ofreadisyic
situations (Klayman & Ha, 1987). The result is also consistent with the normaltivies
computed for the Phase 1 challenge problem (Burns, Greenwald, & Fine, 2014), whioh was t
seek SIGINT on the enemy group with the highest attack probability. Importeduisly
confirmation preferences not aConfirmation Biasper se because the strategy is actually
optimal (i.e., not sub-optimal).

4.4 Inferencing (Forensic)

In Missions 2, 4, and 5, forensic analyses are required to infer the Red style froouprevi
attacks. These forensic inferences are needed to support prognostic ederethe Red attack
probability B, as a function of P and U, on each trial. A normative (Bayesian) solution can be
computed assuming there is no change in Red style over time. This solution appiesiygo
Mission 2 but only approximately to Missions 4 and 5 (where there is a change in Ieed sty

The solution, which assumes no change in Red style over time, is computed as fotktws: Fi
actual data from SIGACTS (attack or ~attack) on all previous trialssae to compute the total
frequency (F) of attack, i.e., the number of attacks (n) divided by the numbetsoftjri& = n/t.
Then, the likelihood (probability) of actually observing this frequency (F) is cadgat two
generative models of attack frequency (f). For example, in Mission 4 theggeherative
models would bepfssiveand hggressive Which are computed from the BLUEBOOK values of Red
attack probability — with each BLUBOOK value (corresponding to a P,U combinateghted
by the actual frequency of the associated P,U conditions. Finally, thadi&dlof observing F
for each generative model f can be computed from the binomial distribution, wheshtiges
probability p(F|f) = [t! / (n! (t-n))] * f * (1-H®™. Assuming a uniform prior distribution in
which each generative model is equally likely ppfdivd = p(faggressivd, the posterior probability
p(f|[F) of each Red style is computed from Bayes Rule to obtain p(Passive) andegéhgr

Given this forensic inference of p(Passive) and p(Aggressive), values of P aothO@&INT
and IMINT) can be used along with BLUEBOOK values of Red attack probatoiltgmpute:
P(Attack| IMINT, OSINT) = p(Passive) * P(Attack| BLUEBOOK($3ive), IMINT, OSINT) +
p(Aggressive) * P(Attack| BLUEBOOK(Aggressive), IMINT, OSINT).

Note that for Mission 2, the calculation of generative model frequency f would be basgd on P
Py, where Ris given by HUMINT for each trial (but:fs the same for each model f). In
Missions 4-5, P= 1 always. For Mission 5, the calculation of p(F|f) would be performed
separately for each P,U cell of the BLUEBOOK, and then cells for each Btglengitive and U-
sensitive) would be aggregated to obtain p(P-sensitive) and p(U-sensitive).
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5 Evaluation

This section outlines the methods to be employed in Comparative Performancasges
Cognitive Fidelity Assessment, and Neural Fidelity Assessment. TheapfEbach for each
type of assessment is similar to that of Phase 1 (Burns, Greenwald, & Fidg,tB8fefore this
section focuses on differences in Phase 2.

5.1 Comparative Performance Assessment (CPA)

Comparative Performance Assessment (CPA) will assess a model'sssnceatching human
performance, per the BAA Table 4 criterion %26 success ratgor Phase 2). The primary

data represenudgmentsn the form of probability distributions, reported by humans and models
on stages of trials of missions that requmferencing(seeVariations,Section 3). These data on
judgments are assessed byMosolute Success RafASR), discussed in Section 5.1.1 below.
Additional data represehoicesmade on stages of trials of missions that reqis@sion-
makingandforaging (seeVariations Section 3). These data on choices are assessed by a
Relative Match Rat€RMR), discussed in Section 5.1.3 below.

For both ASR and RMR, human data from individual participants are aggregated into smieasure
of average performance order to assess neural models. This is discussed further in Section
5.1.2 below. Also, ASR and RMR are subjecivieighting factordhat are applied to each

mission in computing a model's overall performance on CPA. This is discussed furtbetiom S
5.1.4 below. The methods and missions for CPA are summarized in Table 3.

Table 3: Methods and missions for Comparative Performance AssessmgCPA).

Mission
Process Method 1 > 3 7 5
Inferencing ASR X X X X X
Decision-making RMR X X X X
Foraging RMR X

5.1.1 Absolute Success Rate (ASR)

The primary measures of sensemaking are probability distributions repoitediays and

models on stages of trials of missions. In Phase 1, a model distribution was cbtopihee

human distribution using Relative Success Ra{&SR) that accounts for two forms of

similarity. One similarity is between the human distribution P and a modebdigin M,

denoted &v. The other similarity is between the human distribution P and a "random”
(maximum entropy) distribution R, denotegkSThese similarity measures, in turn, are based on
an information-theoretic (Shannon & Weaver, 1949) measure of "divergencejg&lulf.

Leibler, 1951), denoted K, between two probability distributions.
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All of these quantities (RSRp, Ser, Kpm, and Kpg) are defined and discussed in the Phase 1
Challenge Problem Design and Test Specification (Burns, Greenwald, & Fine, 2014). Fo
convenience the equations are repeated here as follows:

Kem=-Z [P * logz M] + = [P * log, P]
Kpr= -2 [P *log; R] +Z [P * log, P]

Sem = 100% * (2 -Kou)
Spr=100% * (2 " -IoR)

RSR = max[0%, (S - Sr) / (100% - $R)]

where P, M, and R are discrete probability distributions, e.qg., P = {P, 1-P} for thefdase
hypotheses; P is the human distribution; M is a model distribution; and R is the "random"
(uniform) distribution, e.g., R = {0.50, 0.50}.

Using these equations, the RSR for one data point (i.e., a probability distributioedepo&

stage of a trial of a mission) is computed as follows: Firsl, &d K-r are computed from P, M,

and R. These K values range from 0 (perfect match of model to human) to infinisg (wor

possible match of model to human). Then, the K values are converted to S values that range from
0% (worst match, K is infinite) to 100% (perfect match, K is zero). Finaphy,iSscaled by &

and the final RSR is limited to values G¥RSR< 100%.

The scaling of &y by Sris performed because even a poor match of model to human will often
produce ky < 1 and henceply > 50%. Per RSR, a model's match to human data is therefore
measured on a scale of 0-100&ativeto a random model's match to human data. If a neural
model matches human data worse than the random model, then RSR is set to its miniaum val
of 0%. Otherwise RSR > 0%. For example, if M matches P with similasify=80%, and R
matches P with similaritygg = 40%, then M would score (80 — 40) / (100 — 40) = 67%.

The above approach from Phase 1 is problematic for Phase 2, because in Phase 2 it is more
difficult to design trials for which human performance is far from random (e.g.f@amni
probability distribution {P, 1-P} in which P = 1-P). In that case, there is little or no jeltéort

any model to outperform a random model, so the "relative” success measured isyrir8r

zero even when the "absolute” difference between model and human distributions. is smal

To address this issue, Phase 2 will adopt a different metric for use in CPA. The mnewsnas
Absolute Success Rate (ASRIefined as follows:

ASR = max[0%, (100% - 2 * RM)]

where RM$y is the Root Mean Squared error between the human (P) and model (M)
distributions.
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For example, assume the human distribution is P = {70%, 30%]} and the model distribution is M
={53%, 47%}. In that case RM{% = 17% and ASR = 66%. Thus with two hypotheses, the
Phase 2 criterion of 65% would be satisfied by a model with RMSL7.5%.

Besides ASR, which will be used to score model performance, RSR will also be comapate
indication of how much predictive capability a model has relative to (i.e., over anel)@ov
random solution.

Note that the definition of ASR above includes a factor of two. This factor is deroradhfr
principled approach to address the fact that RMS errors are dependent on the number of
hypotheses. The factor of two assumes there are two hypotheses, as therd &ialsrofl

Phase 2, e.g., {attack, ~attack}. The factor accounts for the difference betwregximum

entropy distribution and minimum entropy distribution when there are two hypathésess,

the RMS distance between maximum entropy {50%, 50%} and minimum entropy {100%, 0%}
is 50%, so the "zero-value" of ASR is set to occur when RMS = 50%, such that tinesfact
100%/50% = 2. By the same logic, with four hypotheses the RMS distance betwesmumaxi
entropy {25%, 25%, 25%, 25%} and minimum entropy {100%, 0%, 0%, 0%} is 43.3%, so the
appropriate ASR factor would be 100%/43.3% = 2.31 (rather than 2).

Per the above logic, ASR is scaled by the difference between a maximampyginéndom) and
minimum-entropy distribution, in order to account for the number of hypotheses in probability
distributions. In that sense there is some notion of "relative” scaling. Bus thisch different

from the "relative" performance that is modeled by RSR, because ASR can leedmghthen

the human distribution is nearly random. Therefore ASR is inde@thsolute Success Ratbat
differs markedly from th&®elative Success RARSR.

5.1.2 Average Performance

As discussed above, ASR is concerned yutlgmentgeported in the form of probability
distributions. In that case, the average human performance at one data pointdge. od & trial

of a mission) is aaverage probability distributior computed as a simple average across the N
human subjects. On the other hand, RMR (discussed below) is concernetloagtsreported

in decision-making and foraging, where each human subject makes a forced choige amon
options (e.g., option A or option B). In that case the average human performance at one data
point is anaggregate frequency distributiehcomputed by summing the number of responses
for each option and dividing by the number of human subjects.

Per the BAA, CPA reduces individual human responsasd¢cage human performangeorder
to assess model predictions. T&E requires that a model compute a compaeabte model
performancelt is the responsibility of the modeler (not T&E) to determine how the average
model performance is computed. It is also the responsibility of the modeltwsre to
compute average model performance and report each data point as a single (espomst a
collection of individual model responses).
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5.1.3 Relative Match Rate (RMR)

Absolute Success Rate (ASRIjscussed in Section 5.1.1, applies to hujupdgmentghat are
reduced taverage probability distributiond different metric, calledRelative Match Rate

(RMR), applies to humaahoicesthat are reduced tggregate frequency distributions.
Mathematically, these frequency distributions, e.g. {A%, B%}, are equivalent tetisc
probability distributions in that each value is a number 0-100% and the numbers sum to 100%.
However, the single (forced choice) response of a model on each trial is akinqoeéye of

{100%, 0%} or {0%, 100%}. Thus RMR differs from RSR in computing the relative match of
the model's forced choice responses to human forced choice frequency distributions.

The calculation of RMR on each trial is performed much like in Phase 1. First, the oflion wi
highest frequency in the average human data is identifiegha$S€cond, the human frequency
corresponding to the model choice is identified.as Finally, the ratio fodfmax iS taken as the
measure of RMR on the trial.

For example, assume the average human frequencies for options {A, B} on a trial are {60%,
40%}. A model that chooses option A would score 60/60 = 100%, and a model that chooses
option B would score 40/60 = 67%. By this method, a model scores 100% for a choice that
matches the dominant human response. The model scores a ratio amount (< 100%) for a choice
that does not match the dominant human response, and the ratio decreases as the non-dominant
human frequency decreases relative to the dominant human frequency.

This approach applies to any choice between two options, e.g.d@&tismon-makinghoices
between {d, ~d} in Mission 2, or Blu®rging choices between {point 1, point 2} in Mission 3.
The same approach would extend to larger sets involving three, four, or more options.

5.1.4 Relative Weighting

As described above, ASR or RMR will be computed for each data point (stage on trial) m one o
more missions, see Table 3. Within a missionjudijmentdata points will be weighed equally

in computing an average ASR for the mission, antbedled choicedata points will be weighed
equally in computing an average RMR for the mission. Similarly, all missidhseniveighed

equally in computing the overall ASR and overall RMR. Finally, ASR and RMR wiNdighed
equally in computing the overall score of a model on CPA.

5.2 Cognitive Fidelity Assessment (CFA)

Cognitive Fidelity Assessment (CFA), like Comparative Performansesssnent (CPA), is
concerned with how well a model predicts human performance — but more spgaifitakh
focus oncognitive biasesThe two assessments are clearly related, because any model that
closely matches human data per CPA will naturally replicate behaviasdiHowever, CFA is
distinguished by an explicit focus on cognitive biases, to encourage gesteyalend
application of models and insights to real-world intelligence and operatianBAReTable 4,

for Phase 2, a model is required to exhibit 5 of the 8 biases listed in BAA Table 3.
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CFA requires formal (computational) definitions of biases — i.e., so the exdsi€b@s in

human data can be identified in experiments, and so the extent of such bias exhibitedlby neur
models can be evaluated (and possibly extrapolat€chimsition see Section 6). These
definitions, in turn, require a reference model or "benchmark" from which biasdsec

measured objectively. Although omniscient benchmarks like "ground truth" or "hindsigjttt mi
be chosen, these are unfair standards because they assume more informatioretiee rtreker
himself has when he needs to make sense. Thus the proper standemdriatavemodel

(Edwards, 1954; Edwards, 1961; Edwards, et al., 1963), which is given the same information
(knowledge and data) as the human sensemaker but corBayesanjudgments (in

inferencing and choices (idecision-makingndforaging).

By this approach, normative solutions provide a critical foundation for defining and megasurin
cognitive biases. The necess&aglutionsare derived in Section 4, as the first step in preparing
for CFA. The next step is to describe and define the BAA (Table 3) bias¢isertdeathese
normative solutions (or relative to some other benchmarks when normative solutions are
intractable). The last step in preparing for CFA is pilot testing of hunigieds, in order to
establish at which stages of which trials of which missions the humans diagas per the
definitions.

All eight BAA biases were described brieflyMariations(Section 3), as a preview of how
various missions might elicit these biases. The following sections provide maitedlet
descriptions and computational definitions, with each section focusing on biases fotlume of
cognitive processes outlinedWariations(Section 3), namelynferencing(Section 5.2.2),
decision-makingSection 5.2.3), anfibraging (Section 5.2.4). But before addressing the biases
individually, it is useful to consider them collectively, and especially to highlirgghtifference
betweerheuristicsandbiases

5.2.1 Heuristics and Biases

As defined in the literature on judgment and decision-making (Kahneman, et al. 198&IGil
et al., 2002)heuristicsare simplified processes (aka "rules of thumb") in human thinking that
cause subjective judgments and decisions to deviate from normative (optimal) fisi gmed
decisions. The deviations themselves, measured objectively, arelzaied For example, a
heuristic known aRepresentativenegsay produce a bias known @eange Blindnessa
heuristic known aévailability may produce a bias known &atisfaction of Searchand a
heuristic known a&nchoring and Adjustmenimay produce a bias known @snfirmation

Bias.

includes the six heuristics and biases noted above but refers to them alles''Basause half
of them are actually heuristics, the BAA biases may be somewhat redunithargspect to the
human behaviors that are implied. In CFA, T&E must define distinct behaviors for eideh of
eight BAA biases — even those that are actually heuristics. Second, onlyds@asssasurable
directly from human behavioral experiments, because the associated tearestnerely
conjectures about the cognitive processes that produce biases. This requir&k tisself make
subjective judgments about which heuristics are causing which biases, in orédaswalkeight
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of the BAA biases (which actually include some heuristics). Finally, theneeidap even among
the biases themselves, because different heuristics may produce the samiardsehavioral
bias. For example, Rersistence of Discredited Evidenaad aConfirmation Biascan refer to
the same response in which the weighing of evidence is skewed toward "confienfiavgied
hypothesis more than it should be by "discredited" evidence.

In theory, a single heuristic may produce different and perhaps even opposit@isefmases)
in different situations. Similarly, a single bias may actually refesetveral different behaviors
that stem from different heuristics in different missions of TACTICS .dxample,
Confirmation Biasis a broad term (Nickerson, 1998) that can refer to bias in aggregating
likelihoods (in inferencing) and/or bias in selecting evidence (in foraglingse issues have
been carefully considered in the definition of biases and specification of nietri€BA, in
order to meet the intent as well the content of the BAA's guidance (Table 3 antApige In
so doing, each BAA "bias" will be assigned a formal metric that can beuredadirectly in
human data from the Phase 2 experiment. These metrics are similar to thos aled
employed in Phase 1, which included four of the eight biases for Phase 2.

The metrics and missions for CFA are summarized in Table 4. Note that in sseedlemmetric

is the same for different biases, e.gs,NNq. In that case the measured bias is the same, but the
postulated heuristic that causes the bias in a context (i.e., stage of triabmimhis different

and consistent with the BAA "bias".

Table 4: Metrics and missions for Cognitive Fidelity Assessmel(CFA).

BAA Bias Metric Mission
1] 2 3] 4] 5
Anchoring and Adjustment Np < Ng X | X
Persistence of Discredited Evidence Np < Ng X | X
Representativeness P>Q X| X| X
Availability Np < Ng X
Probability Matching n X X | X
Confirmation Bias f X
Satisfaction of Search S X| X
Change Blindness b X1 X
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5.2.2 Inferencing

As discussed ivariations(Section 3), the main BAA biases associated withrencingare
Anchoring and AdjustmentPersistence of Discredited Evidendgepresentativenesand
Availability.

One bias can be measured simply by comparing the human probability (P) ty¢lseaBa
probability (Q). That is, iprognostic inferencingt the start of a trial in Missions 1-3, it appears
from pilot data that humans are typically computipg & the arithmetic average ofdéhd B.

This average is greater than the normative solution given,by & * P, Therefore, the bias is
measured by R > Q, . The underlying heuristic is one Bepresentativenesa which
capabilityandpropensityare treated as equaligpresentativef the composite activity (attack),
such that Pand B are averaged to obtaip £

For the remaining three inferencing biases, it is useful to distinguish tgatige" from "non-
conservative biases — where conservatism is computed by a quantitydredeasblegentropy

(also used in Phase 1, see Burns, Greenwald, & Fine, 2014). Negentropy ranges from 0% to
100% as entropy ranges from maximum entropy to minimum entropy, and entrifprgiess to
the uncertainty across a set of hypotheses. For example, {50%, 50%]} represemsmax
entropy (0% Negentropy), and {100%, 0%} represents minimum entropy (100% Negentropy)
Mathematically, entropy is computed as follows:

Ep=2XP*log P
and Negentropy is computed as follows:
Np = (Emax- E) / Bnax

where Eax depends on the number of hypotheses in the frame of discernment,ze. 1Hor
the case of two hypotheses, ang,& 2 for the case of four hypotheses.

A conservative bias in inferencing is defined as one in which a human extsscts/erall

certainty than he or she should from the evidence he or she is given (Edwards, 1982), i.e., the
distribution P is too "flat". A non-conservative (confirmation) bias in inferenisitige opposite
case in which a human assigns too much certainty, i.e., the distribution P is toa"peake
Mathematically, the difference is captured by comparing Negentrepy tie human

distribution P to Negentropy\of the Bayesian distribution Q. A conservative bias impliesN
No, and a non-conservative bias impligs>\NNq. Thus, N allows us to distinguish one class of
inferencing biases from the opposite class of inferencing biases.

In the case dfiorensic inferencingin Missions 4 and 5, pilot data suggest that humans are
conservative in their estimate of P(style), where the styles asv@asnd Aggressive in

Mission 4; P-sensitive and U-sensitive in Mission 5. Although we only compute a quasi-
Bayesian solution, under the assumption that there is no change in Red style duging thes
missions (see Section 4.4), pilot data show that humans are more conservative thanithis quas
Bayesian — especially after the change in Red style. This conser{itistiNg) can be
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characterized aBersistence of Discredited Evidendeecause too much uncertainty
(conservatism) "persists" in the human distribution even though early egiffemm SIGACTS)
has been "discredited" by later evidence (from SIGACTS).

Returning to the task @rognostic inferencingn Missions 1-2, two additional conservative
biases can be measured hy<d\No. First, in Mission 1, pilot data show that humans are
conservative in reporting the distribution,{-R}, which represents the probability of {attack
~attack} based only on SIGINT. In effect, humans are failing to compute aiBayesmalized
posterior and instead report the raw SIGINT likelihoods (see Section 4.1). Titrdiged to
Avalilability as the SIGINT likelihoods are readily available whereas the normative ditdsbi
{P:, 1-R} require further computation (i.e., normalization over the hypotheses {attack,k}attac
The bias is measured only in Mission 1 because this is the only mission for whichssatgec
required to report P

The final conservative bias occurs in Bayesian updating ofvith B to compute . Pilot

data suggest that humans are once again averaging, muchRi&presentativenessiscussed
above. However, here the normative solution is to compute a Bayesian-normalized product
Po.c and R, rather than a simple product. For this Bayesian update, the conservative bias
stemming from averaging is characterized\ashoring and Adjustment- because there are
effectively two "anchors" () and B) and the inadequate adjustment is to compute an arithmetic
average of the anchors rather than a Bayesian-normalized product. Like thebodewative
biases mentioned above, tischoring and Adjustments measured by A< No.

5.2.3 Decision-Making

As discussed ivariations(Section 3), the main BAA bias associated wigtision-makings
Probability Matching In CFA this bias is assessed for Missions 2, 4, and 5. On these missions,
Blue decisions to divert (d) or not divert (~d) represent choices that will besadsgsing the

metric RMR in CPA. Thus CFA uses a different measure of performanatyedb normative
solutions (not considered in CPA), aimed specifically at the biRsadfability Matching

In particular, on each trial the normatiSelutions(Section 4) can be used to compute the
optimal (Bayesian) Blue choice. We expect human choices will sometimiasedieom the
Bayesian choices, for various reasons. For example, humans may be biased itintatioe®f
expected utility for each optiongland E4. On the other hand, humans may properly compute
expected utilities (or at least their relative magnitudes as neededecopiamal choices, i.e.E
> E 4 or By < E-g) butsometimes not chooge option (d or ~d) with higher expected utility.
That behavior would implf?robability Matching where humans are presumably choosing the
two options at frequencies governed by their relative expected utilitiealad by a

multinomial logit function (see Burns & Demaree, 2009).

In Mission 2 (and other missions), humans are not asked to report expected utilgresore

any bias in decisions would include bias in estimating expected utditabkias in applying the
estimates peProbability Matching Nevertheless, T&E will compute the deviation in decisions
(relative to normative solutions) and use those errors as a measure of the BA# bia

Probability Matching On each trial, a number 1 or O will be assigned to a human's decision. The
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number 1 means the human chose the normative option (d or ~d), and the number O means he or
she did not. Across all subjects, the numbers (1 or 0) will be used to compute an average number
n on each trial of each mission. Finally, the average numpacnoss all trials of the mission

will be taken as the measureRrobability Matching For example, if p= 1 then there is no

bias in decisions relative to normative solutions. Aslecreases there is more bias, and at least
some (perhaps much) of this bias might be attributed to the mechanisms of protetdhing.

A similar calculation will be done for a model, to compute an equivalent average mymbe
across all trials of a mission. This model numhgmil be compared to the human numbegr n
in order to asseg$3robability Matching The comparison ofynto ny will assessed by a
Marginal Success RatéMSR, discussed in Section 5.2.6 below).

With respect td/ariations(Section 3), some of theferencingbiases may also be exhibited in
decision-making- especiallyAvailability, RepresentativenesandAnchoring and Adjustment
The reason, mentioned above, is that these are actually heuristic processesésdabid such
heuristics may apply to inferencing, decision-making, or other cognitivega®eseror example,
a decision-making situation may kepresentativef familiar situations, and/or the outcome of
an earlier decision may especially vivid or othervasailablefrom memory, and either or both
phenomena may cause a human tamehoredto a sub-optimal strategy.

Therefore, in theory these heuristics might be measured in the context afrecaking as
well as in the context of inferencing. However, in TACTICS human subjectaai®g choices
that have outcomes, so the sequences of choices and outcomes across trialseatefaliféach
subject. This makes it infeasible to assess these heuristics (biabesgamtext of decision-
making or foraging (Section 5.2.4), so instead they are assessed only in the context of
inferencing (Section 5.2.2).

5.2.4 Foraging

The remaining biases listed in Table 4 are assessed in the context of fokagiisrussed in
Variations(Section 3), Mission 3 involvgwognostic foragingto obtain SIGINT) whereas
Missions 4 and 5 involvirensic foragingto review SIGACTS).

First, for prognostic foraging in Mission 3, the variablesRa measure of the humans'
confidence in Red attack at each Blue point (1 or 2), i,eari®l B.. In the case of a "pure”
confirmation preference, humans would always seek SIGINT on the point (1 or 2) withjghe
in order to "confirm” their belief. Instead we expect (based on pilot data) thainisumill often

but not always do so, as measured by a frequency f. Therefore, similar to the nynamet &,
computed folProbability Matching we will compute numbers;fand f; as a means of assessing
Confirmation Bias The comparison offto fy will be assessed byMarginal Success Rate
(MSR, discussed in Section 5.2.6 below).

Here it is important to note that, although the t€omfirmation Biasis being used by T&E per
BAA, the actual behavior here is a confirmatpmeferenceand it is not a confirmatiobias per
se. As found irBolutions(Section 4), the optimal choice (under reasonable assumptions for
maximizing information gain) is to seek SIGINT on the Blue point (point 1 or point B)tket
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higher R. In that sense the only "bias" is actually a conservative (not confirmatesj)n which
humangdo not alwaysxhibit the confirmation preference. But even the status of this
conservative behavior as a "bias" is not so clear cut, because the norolatiea sissumes
there is no second-order uncertainty (i.e., a probability of the probabjlith Ruman being
who feels he or she does not knoywmith certainty may adopt a form Bfobability Matching
where the frequency at which he or she does not choose the point with highestdses as
second-order uncertainty increases. Indeed that very strategy has beenosshewpttmal
(normative), in the context of other tasks with second-order uncertainty for whicmé anea
found to exhibitProbability Matching (Burns & Demaree, 2009).

Finally, two additional biases will be assessed in the context of forensgnfgrthrough batch

plots in Missions 4 and 5. These two biag&sange BlindnessandSatisfaction of Searchare
somewhat different from the other biases in three respects. First, thesednawt typically

appear in the literature on judgment and decision making (Kahneman, et al., 1982; étovich
al., 2002) or in discussions of how that literature may apply to the practice afarted

analysis (Heuer, 1999). Second, it is not clear what assumptions should be made in computing
normative solutions fo€hange BlindnesandSatisfaction of Search

The literature on these biases implies #rat changeshould be detected aatl searches

should be exhaustive, yet that is clearly infeasible and unreasonable forraqresgent that has
limited resources. Moreover, a normative solution that did address such limitatiolusalso

need to make assumptions about the potential benefits of detecting changes oir@pmplet
searches — and these assumptions would be very dependent on the context of the change or
search situation. Finallfzhange BlindnesgMacknik, et al., 2008) an8atisfaction of Search
(Berbaum, et al., 1990) are largely biases in attention and visual perception, and tkese low
level cognitive processes are outside the scope of the ICArUS BAA.

In that lightChange BlindnessandSatisfaction of Searclare treated somewhat differently from
the other BAA biases, and defined relative to omniscient knowledge and unlimited-eftah
thatany change that is not successfully detected will be characterizeGleange Blindness
andanysearch that is not completed will be characterizedSaiafaction of Searchin effect,

the bias will be defined as a specific change not detected or search not ednfetexample,

in Missions 4 and 5, if Red tactics actually change on trial t, then the extéhainfe Blindness
will be measured by the numbey of trials it takes for subjects to detect the change (measured
by a report of P(style) > 50% for the correct post-change style).

Similarly, when a search though "batch plots" of previous trials is requiredeict &ed's style,
the extent oBSatisfaction of Searclwill be measured by the fractiop ef all items (on average
across subjects) searched in "mouse clicks" associated with batch pletthe.ikumbers n (for
Probability Matching), f (for Confirmation Biag), and b (forChange Blindnesk the number s
(for Satisfaction of Searchwill be assessed by comparing the model valju®the human

value g and computing thMarginal Success Rat@VSR, discussed in Section 5.2.6 below).
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5.2.5 Simple Match Rate (SMR)

As discussed in Section 5.2.2, ihéerencingbiases Anchoring and AdjustmentPersistence of
Discredited EvidenceRepresentativenesandAvailability) are all defined by some measure of
probability or Negentropy in an inequality (human relative to Bayesianadkt stage of each
trial of a mission, the model either satisfies the same inequality as hanthisassigned a
score of 1, or the model does not satisfy the same inequality as humans anaésl @ssapre of
0. The scores are then summed over a mission to obtain a fraction (0-100%), c&ledpllee
Match Rate(SMR). All missions for which a bias is assessed (see Table 4) will p&tedi
equally in computing an overall SMR for that bias. The resulting score will bpazeohto the
BAA passing threshold of > 65% (Phase 2) for each bias.

5.2.6 Marginal Success Rate (MSR)

The biases inlecision-makingProbability Matching andforaging (Confirmation Bias
Satisfaction of SearchandChange Blindnesgare all defined by a single number (i.e., n, f, s, or
b) computed for humans (e.gy)rand a model (e.g.um). Each number applies to a mission, and
the number for each bias (on each mission) is assessdddrgmal Success Rat@MSR),

defined below.

Given a numberypfrom humans and a corresponding numbefar a model, the quantityn

nu| / ny provides a proportional measure of error or "failure” of the model. The@foeasure

of success is 1 - @ nv| / ny). When iy < ny, this measure of success is always > 0 and < 1.
When iy < ny < 2*ny, the measure of success is also > 0 and < 1. However, e my

then the measure of success is < 0, so a "floor" is imposed to keep it = 0. The margasal succ
rate is thus defined as follows:

MSR = max[0, 1 - (ja- nw| / n)].

For example, assume & 0.8. In that case, a model witfy & 0.6 would score MSR = 75%, and
a model with g = 1.0 would also score MSR = 75%. Substituting other symbols for n, the same
measure oMarginal Success RatéMSR) applies to f, s, and b.

Like SMR above, results for MSR are averaged across missions with equalvgegdtgach
mission on which the bias is assessed (see Table 4). The resulting scbeeowithpared to the
BAA passing threshold of > 65% (Phase 2) for each bias.

5.3 Neural Fidelity Assessment (NFA)

CPA and CFA are guantitative assessments, hence sensitive to detailseofgehpibblem

design. Neural Fidelity Assessment (NFA) performs qualitative sissggs, using methods that
would apply to any challenge problem design. Details of the NFA approach and schedule, for
Phase 2 as well as Phase 1, have already been documented in the Phase 1 Challenge Problem
Design and Test Specification (Burns, Greenwald, & Fine, 2014). Per BAA TableRhdse 2,

a model is required to faithfully represent 5 of 7 key brain systems.
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6 Transition

As outlined inintroduction(Section 1), the Phase 2 challenge problem is intended to serve two
purposes. The primary purpose, discussed in earlier sections, is to provide a riggirbad for
measuring and modeling human sensemaking performance. The secondary pugpaisikins
relevantTransition And Communication To Intelligence Community Stakeholdef$is

purpose, like the primary purpose, is accomplished by the computational design ofCRETI
which enables a relational mapping to real-world cases of geospatiidamed.

6.1 Relational Mapping

The mapping highlights six specific types of intelligence analysis thahadeled by variables
of TACTICS, namelyvulnerabilityanalysis (P)ppportunityanalysis (U)capabilityanalysis
(Po), activity analysis (B, frequencyanalysis (B, andintentionalityanalysis (B). All six types
of analyses were observed across 26 real-world case studies, developed ptilescri
(Cognitive) Task Analysis (MITRE, 2013), via structured interviews with areasd reviews
of published articles. These case studies informed challenge problem design, ardeaigos
review was performed to make the mapping explicit.

Results of the review are provided in Table 5, showing the six types of analysessaaidted
variables of TACTICS for each of the cases by title (MITRE, 2013). The Xssable are
admittedly subjective judgments and are probably incomplete, as they ededashort stories
by which the case studies are documented. Nevertheless, the mapping doeshatgepast
case study involves at least one of the six types of analysis, and mosheaklestwo or more
of the six types. In making this mapping, the following questions were used to judtypd of
analysis (P, U, PP, R, or R) applied ("yes" = X) or not ("no" = blank) to each case study:

P: Does the analysimodel spatial constraints on probabilities of activitjesich as
proximity or other properties?

U: Does the analysimodel spatial constraints on utilities of activitiesuch as density or
other properties?

P.: Does the analysimodel temporal constraints on probabilities of activitiesich as
recency or other properties?

P:: Does the analysixploit current reports on probabilities of activitiesuch as signals
from SIGINT data?

F: Does the analysi®view previous reports of activities and frequengissch as "hot-
spot” (heat map) plots of SIGACTS?

P.: Does the analysisvolve predictions (prognostic) or explanations (forensaf)

operations (how) and intentions (why) — i.e., beyond merely observations (who, what,
when, and where) and visualizations of activities and frequencies?
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Table 5: Mapping variables of TACTICS to case studies of intelligersc

No. | Title of Case Study P U |P |P |F |P,
1 Clinical vs. Actuarial Geospatial Profiling Strategies X

2 Route Security in Baghdad X | X X
3 International Security Assistance Force Handoff X

4 Explosively Formed Penetrator Placement X

5 Finding Osama Bin Laden X

6 Geospatial Abduction Problems X

7 Mapping of Cholera in Nineteenth-Century London X
8 Clandestine Airstrips in Guatemala X

9 Mapping of Arsenic in Twentieth-Century Bangladesh X
10 | Complexity and Accuracy of Geospatial Profiling Strategies X X

11 | Geospatial Analysis of Terrorist Activities X X
12 | District Control X | X
13 | Tunisian Refugee Flow X

14 | Improvised Explosive Device (IED) Use in Afghanistan and Pakistan X

15 | Gang Roundup X

16 | Gang Geographic Movement X

17 | Predicting Mortgage Fraud X X

18 | Tracking High-Value Cargo X X | X

19 | Environmental Study X X

20 | Trench Mystery X X

21 | IED Attack Patterns X X

22 | Underground Facility X X

23 | Memphis Airport Communications Failure X

24 | Banking Infrastructure X | X

25 | The Lone Reconnaissance Vehicle X | X | X |X

26 | Road Network Impact on Insurgency X X KX X
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Table 5 shows that the majority of cases invelumerability (P) analysis anftequency(F)
analysis. Theulnerability (P) analyses typically employ various distance functions by which
suitability is modeled, much like spatial proximity of a Blue point to the Blue beaitestrains
the probability P (vulnerability) in TACTICS. THeequency(FR) analyses typically produce "dot
plots" of historical activities, overlaid on geographic displays, much likebduwel plots” in
TACTICS.

In about half of the 26 cases, there was atgiy (U) analysis, and/arapability (P;) analysis,
and/orintentionality (P;) analysis. Of particular interest are the 10 storigatefntionality (P,)
analysis, because these are the cases that most clearly go beyoniitysaiabysis to require
sensemaking- i.e., inpredictionsandexplanationsper the definition of sensemaking outlined
in Introduction(Section 1) an@efinitions(Section 7). Referring to Table 5, two cases of
predictingintentionality involveactivity (P;) analysis to support the estimation gf P
prognostically, whereas eight casegwgplainingintentionality involvefrequency(FR) analysis to
support the estimation of,Rorensically.

As discussed iDescription(Section 2), TACTICS involves all six types of analyses — although
the focus is on intentionality analysis)@s Blue's main task is ppedictthe probability that
Red will attack and texplainRed tactics — i.e., because these are the key functions of
sensemaking. The various other analyses are greatly simplified in T8ZTbmpared to real-
world intelligence, to the point where results for most individual typssitdibility (capability,
activity, etc.) analyses are computed by the "system" and provided toBIN& &data" along
with associatedtlkelinoods (probabilities). This makes the task posed by TACTICS closest to
that of an "all-source" analyst who acquires and exploits data from varioysatabs
intelligence sources (OSINT, IMINT, HUMINT, SIGINT, and SIGACT#®) fact the task of
TACTICS goes beyond that of an all-source analyst to include the job of a decaken-mho
uses the all-source assessment to select operational courses of action.

6.2 Analytical Systems

Here it is important to acknowledge that raw data (INT reports) are utmiesnsemaking,
unless some person or system can assign correspdikeéiitgpods (discussed above). In the
real-world this step is often tacit as an analyst may reason withoutgrakior her estimates of
likelihoods explicit. But the fact is that there must be at least an implsigrament of
likelihoods to raw data, if such data are to be of any ussagoning to thenost likely
explanation (a hypothesis) or prediction (of evidence)

The ICArUS challenge problem must make such likelihoods explicit (see,BAd14), in order
to separate the function of estimating individual likelihoods from the function ofgajare
multiple likelihoods. This separation is required, for rigor in measuring varioustivegbiases
that would otherwise be confounded in experiments.

For example, consider the judgment of Red attack probability, B, ¢, which is an aggregation
of various individual probabilities (PP, and R) and an input to decision-making. If a human
experiment measures only Blue decisions (d or ~d), without measuring theyinudeidigments
of P, that affect such decisions, then there is no way to establish if a biasedrdst@ans from
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bias in B or from biases in other parameters of the decision (e.g., R, 8,4t Likewise, if the
contributing judgments (PR, P.) are not measured individually (and collectively), then there is
no way to establish if bias in,Btems from estimating the individual probabilities (and which
ones?) and/or aggregating the multiple probabilities (at which stage?).

The same separation is also quite relevant to real-world intelligence edchighlights the
computational importance tkelihoods, which are required either implicitly or explicitly to

"make sense" of any data. This is especially relevant to the enginektsygtems" that might

usefully support sensemaking, as such systems must be able to both compute and communicate
likelihoods to human sensemakers (Burns, 2007; 2006).

In fact the distinction betweasstimatingindividual probabilities andggregatingmultiple
probabilities was the focus of early efforts to design machine systems ththsappbrt humans
in real-world intelligence and operations functions (see Edwards & PhilBgg,; Edwards, et
al., 1968). Those groundbreaking efforts were aimed at mitigating conseivatnan biases
(Edwards, 1982) by having systems aggregate the likelihoods in tasks of Bayksiamce.
Unfortunately the systems were largely unsuccessful in practice, foeasons.

First, the job of estimating individual likelihoods (needed for input to the aggregajmnitiain)

was left to human beings, so inputs to the system were subject to human biasesabdikel
estimation. Second, and more importantly, it was unrealistic to expect that humgs) dmild

and would provide the proper conditional likelihoods needed as input to the system — especially
when they did not intuitively understand the aggregation algorithm (Burns, 2007; 2006).

In short, the problem to be solved is separationof the two functions (i.egstimationversus
aggregation. Rather the problem iategrationof the two functions — which hinges on
communication and coordination whenever the two functions are performed by twondiffere
agents (human and system, or human and human, or system and system).

More recently, a prototype system was developed to support humans in performingtia¢eidte
functions of likelihood estimation and aggregation. This system, dadgdsian Boxe@Burns

2007; 2006), is an interactive visualization using geometric representations of probabilis
information. The system helps humans understand what likelihoods must be estimated, and how
they are then aggregated — by intuitively illustrativitatare the inputs and outputs, as well as
howthe outputs are computed from the inputs. As such, the system is an example of "visual
analytics" (see National Research Council, 2013, discussed in Section 6.4.1), vgitheni
implemented, evaluated, and demonstrated in TACTICS.

TACTICS is a useful test-bed in this regard, because it naturally posasaltgablems of
estimating likelihoods (from BLUEBOOK knowledge and/or experience) ane:ggtmg those
likelihoods with various INT likelihoods from OSINT, HUMINT, and SIGINT. Each of ¢hes
INT reports is accompanied by an associated probability that quantifiesahilitgr capability,
or activity, respectively, akin to the likelihoods that might be developed ittplciexplicitly in
real-worldsuitability analyses.
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As mentioned in footnotes throughddeéscription(Section 2), each form of suitability analysis
might be made more realistic in more complex versions of the basic task. THalitffexakes
TACTICS scalable to any level of complexity, ranging from the curdabt' vversion (which
could be further simplified, if desired) to almost any "real” demonstratiomrigitt be deemed
useful in transition. More realistic demonstrations might be used to portrayegesited
challenges of estimating individual likelihoods and aggregating multkgéHoods, as
discussed above.

The lab version of TACTICS developed for Phase 2 is purposely limited with regjleet t
details of various suitability analyses, for both practical and programreasons. From a
practical perspective, if humans were required to perform more detailabiktyianalyses
themselves, it would detract from the current focus of experiments on senseitsfingrom a
programmatic perspective, more complex and realistic suitability asal@dd require human
visual perception and natural language processing capabilities, as wetéasive domain
expertise (i.e., rich and sophisticated knowledge representations, RASKR), vehathcatside
the scope of the ICArUS BAA.

6.3 Adversarial "Agents"

Despite limitations noted above, the lab version of TACTICS may hold potentiabfevoed
applications of ICArUS models and insights. This promise stems from adakesguects of the
task, which serve to make TACTICS:

A game of repeated risk assessment and action (Kaplan & Garrick, 1980; Gatrrick, et al.,
2004), posing cognitive challenges that are prototypical of intelligence and operations in
threat situations (Burns, 2010; McDonald, 1950) — including counterinsurgency (COIN)
and other security domains (airport/border, cyber/network, crime/fraud, drugs/gangs,
etc.).

In particular, a model that plays TACTICS (Blue or Red or both) with human-likedjias
measured and modeled in the lab, may be a useful "agent” in agent-based simulaétvod,(A
1984; Axelrod, 1997; National Research Council, 1998). Computational simulations are
currently performed in many real-world security domains, but the agent moel¢ypiaally not
grounded in psychological or neuro-biological research on cognitive biasesrédiesscan
opportunity for models that are more firmly based on behavioral research, pdyticuddels
that can credibly extrapolate from constrained lab conditions (in which theydeestped and
validated) to real-world situations of interest to the Intelligence Comgnunit

It remains to be seen how well neural models developed by ICArUS can exedpotzore
complex sensemaking (especially given scope limitations of the programssisgcabove).
Nevertheless, applications may be possible for game situations that irelahxety simple
background knowledge and payoff structures, such as the "Stackelberg" gamamisula
currently being performed to support airport security operations. In factat igady in this
domain by Pita, et al. (2010) highlights the importance of agent models that cathdatman
bias, noting that:
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“Our results show that the anchoring bias may play an important role in human
responses... and exploiting this bias can lead to significant performance improvements.
This is an important conclusion... [with] real deployment at LAX and Federal Air
Marshals service.”

As currently designed in TACTICS, a Blue human plays against a Red agemat weity simple
payoff structure for both players. Possible extensions that may prove useéuisition include
a Blue agent playing against a Red human, or a Blue agent playing against amiédsam
most agent-based simulations, which have no humans in the loop). Extensions might also
introduce more complex payoff structures, and/or scale-up complexity ahyngy all of the six
(or more?) types of geospatial intelligence noted above in Section 6.1 — perhapseasny] tf
Blue (and Red) comprising different individuals, each performing differemytara and
operational functions but acting together in a coordinated fashion (Powers, et al., 2010).

6.4 Organizational Training

As discussed abovAdversarial AgentandAnalytical Systemare two areas for transition of
ICArUS models and insights. A third area that holds potential for transitf@rgesnizational

Training, based on lessons learned from the design of TACTICS and human/model experiments
with the game. Some topics that might be addressed in such a training prograrfirese iout

the following sections.

6.4.1 What is Sensemaking, Anyway?

As a practical matter, trmomputationadesign of TACTICS (also see Burns, 2014) serves to
expose and explain sensemaking more formally than previous research on theaopic (se
Introduction Section 1). In a first step toward transition, the computational approach haslenable
a relational mapping of TACTICS to 26 cases of real-world intelligence, disguis Section

6.1. This mapping may allow intelligence analysts as well as ICArUIStiideetter understand
analytic "tradecraft" from the scientific perspective of cognitemputing.

Further steps in the same direction may be informed by knowledge gained in thegshal
problem design process, particularly insights associated with cognitiseshiSection 5) and the
normative solutions (Section 4) that are required for rigorously measuringaatadimg such
biases. These insights might be elucidated by a training program that tietesrsiases in
hands-on fashion using the current version or tailored demo of TACTICS as a use case.

Perhaps the most important and underappreciated insight of all, which would be maunte clear
such a demao, is the key role playedikglihoods—i.e., likelihoods o&videncegiven
hypothesesand likelihoods ohypothesegivenevidenceThese likelihoods are the critical
components oframes or scripts or whatever else one chooses to call the knowledge structures
involved in sensemaking.

As discussed in Section 6.2, data are useless for sensemaking without some pestemdhay
infers or assigns associatédelinoods So tools and techniques for "storing” (warehousing) or
"seeing" (visualizing) or "sharing” (disseminating) data are usefddinsemaking only to the
extent that they represdikelihoods(which most current systems do not) and/or support human
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users in estimating and aggregatikglihoods(which most current systems do not). This
suggests opportunities to advance the practice of intelligence sensemakirgy gBdrl), where

a focus orikelihoods may lead to novel systems (Section 6.2) as well as future training for the
geospatial intelligence workforce.

For example, a recent report by the National Research Council (NRC, 20R)tore U.S.
Workforce for Geospatial Intelligencé&egins by stating that:

"We live in a changing world with multiple and evolving threats to national security,
including terrorism, asymmetrical warfare, and social unrest. Visually depicting and
assessing these thregsmphasis added] using imagery and other geographically-
referenced information is the mission of the National Geospatial-Intelligence yAgenc
(NGA). As the nature of the threat evolves, so deathis, knowledge, and skills needed
to respond.”

The NRC report reviewsxistingdisciplines and core competencies of geospatial intelligence,
including those associated with Geographic Information Systems, which areilgrocoacerned
with visuallydepictingvarious aspects of the threats. The report also idergifiesging
disciplines where new competencies are requireddsessinghese threats, includiffpuman
geography"(i.e., understanding the activities of individual and organizatiévisyal

analytics" (i.e., cognitive reasoning, especially as aided by visual interfacesoaachsting"
(i.e., anticipating outcomes or behaviors using statistics and modeling).

Notice that these new and emerging areas are less concernegpwitingaspects of threats
and more concerned widssessinghe threats themselves — ultimately to support appropriate
actions. As such the emerging disciplines of geospatial intelligencesargy/aligned with the
practice ofsensemakingwhich is concerned witbxplaining(understanding) angredicting
(forecasting) the behavioral activities of actors in geospatias afaaterest. The more
established disciplines of geospatial intelligence are geared maeitdeveloping and
depicting data, and performing various forms of suitability (vulnerability, appity, capability,
etc.) analyses, which in turn serve as inputbiteat assessmenrtin sensemaking

The NRC report goes on to observe that academic degrees and agency trainingnergivege
disciplines of geospatial intelligence are still in their infancy. Tloeeshew training programs,
like new "tools" (systems, see Section 6.2), represent an opportunity for agpteigated
Cognitive-neuroscience Architectures for Understanding Sensemaking.IC&Ciay be useful
for that purpose as the game itself is a tool that could be used in traidinguistic and
biases" (discussed below).

6.4.2 Heuristics and Biases

Although there is much talk of "bias" in the Intelligence Community (e.g., @eoiBruce,

2008), most of this talk is not grounded in computational theory or experimental testalgnéet

a combination of the two. As a result there are many unsupported arguments about ifrand whe
humans are biased or not — and why it is important — and what can be done about it. Conversely,
the academic literature contains many computational and experimentaksitidognitive
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biases, but each is typically limited to one (or a few) isolated bias(esgdindhe context of an
artificial lab task that lacks natural richness. A potential contribution of TIES is to help
bridge this apparent gap with an adversarial game task combining sciegdifiavith analytic
relevance.

The design of TACTICS shows first-hand how difficult it is to rigorously defhevant biases,
because such definitions are sensitive to assumptions that must be made in comlptitng.s
For example, perhaps the most infamous bias discussed in intelligence si@dedimation

Bias and yet the normative analyses of TACTICS show tlcahéirmation preferencén

seeking evidence) is actually optimal assuming realistic values farqerameters — hence it is
not really a "bias" per se. This suggests that other so-called biasedsm&g useful (if not
optimal), too — at least in many situations of real-world importance. In fadt negearch in
recent years points to the advantages of heuristics that are natomalbyed in cognitive
reasoning (Gigerenzer, 2000; Gigerenzer & Selten, 2001; Gigerenzer & Todd, 1999).

It appears that even the most basic distinction between a "heuristich@psyical process) and
"bias" (behavioral result) is not well-appreciated in the IntelligerararGunity, despite the
influential Psychology of Intelligence Analygideuer, 1999). Thus a training program may add
value simply by clarifying and exemplifyidtpeuristics and biases'in a use case of geospatial
intelligence demonstrated by TACTICS. More value could be added by addrettsng
important definitions and distinctions from a computational perspective, much likesilya dé
TACTICS itself began by formalizing vague notions like "frames" andraming” and "set-
shifting” in terms ohypothesesvidence, antkelihoods This would help relate the emerging
view of "sensemaking” to an established view of "hypothesis testing"”, which haadestby
some in the Intelligence Community for decades (Zlotnick, 1970; Fisk, 1972; Soenw&R76;
Heuer, 1999) to formalize the practice of the same basic process that ICAS)Sensemaking.

Beyond these definitions and distinctions, a training program might also distingelisbgnitive
processes that can lead to various sensemaking biases, i.e., the processesahmpfe
decision-making, and foraging. For instance, one can postuiafamation Biasn

combining likelihoods, and/or in assigning likelihoods (which would then be used in combining
likelihoods), and/or in selecting evidence (which would then be used in assigningplidsiand
combining likelihoods). Typically authors focus on only one of these behaviors without
addressing the others in concert. For example, two recent and relevant exfseome
Confirmation Biagneasured the relative "weight" of support assigned to one or more hypotheses
(Lehner, et al., 2008; Lehner, et al., 2009). However, the "overweighting" observecein thes
studies might be mitigated or even reversed by the "conservative" biasesd&dl@82) known

to affect human aggregation of such "weights" (which are actiikdlijhoods).

In some cases it appears that the so-c&lafirmation Biagmay actually be an author's own
bias — as the term has come to be a catch-all for almost any favoredheftehe author himself
would like to "confirm” in lab testing or storytelling. This was illustrated inrenfl analysis
(Burns, 2005) of a well-known story dealing with so-callahfirmation BiagPerrow, 1984).
TACTICS enables more integrated and empirical measures of therhsimgfi and
"disconfirming" cognitive processes, so that associated biases (whaieyare called) can be
studied in a more rigorous and relevant fashion.
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Finally, it should be acknowledged that a completely different ty@oafirmation Biasmay in
fact be the most ubiquitous and important — and yet it is apparently the least studiethait al
type of Confirmation Biasapplies tacreating a frame of discernment (set of hypotheses) in the
first place, whereby an analyst may tend to confirm one or more of his cuypenthéses rather
than generate new hypotheses that may better explain the evidence. Thisnsliduetias we
see in major intelligence failures sometimes referred téadsres of imagination'(The 9/11
Commission Report, 2004).

Unfortunately this bias is difficult to study with computational and experirhggta. Instead it
is easier to study how people reason over a controlled (fixed and known) sets of $sqdiue
here again, the literature on biases itself may be "biased" in "confirnvimaf'is most
convenient to study rather than addressing what is most relevant and importantedghrtiie
design of TACTICS also suffers from this same bias, driven by the need to A%et B
requirements for evaluating models in Comparative Performance Assdeq€RA) and
Cognitive Fidelity Assessment (CFA). However, Missions 4 and 5 of TACTICS doabpeao
more creative sensemaking in which humans are making forensic infereadaglzer level of
abstraction (e.g., the Red style, Passive or Aggressive) in order to support fpcagfesshces
at a lower level of abstraction (e.qg., the probability of Red attack).

Looking beyond Phase 2, TACTICS might be extended to support future research on more
"wicked" (open) problems posing challenges of creative (abductive) sensgmiBkese are
clearly the problems of most relevance to the Intelligence Community, effgored in "team"
training and Red-Blue exercises. But thus far they have not been reseaitthedieh rigor
using computational models and experimental testing (Powers, et al., 2010; Ami¥kbsen&
2008). These problems that require "creative thinking" have also not been addressedroi re
on "critical thinking", which is typically measured by closed-form qoestin multiple-choice
format (MITRE, 2014).

6.4.3 Structured Analytic Techniques

A final topic that deserves mention, in the contexDadanizational Trainingis Structured
Analytic Techniques (SATs). The SATs include Analysis of Competing HypaltiasH, see
Heuer, 1999), designed to help addi@esfirmation Biasas well as many other techniques
(Beebe & Pherson, 2012). These SATs are promoted as tools that can mitigatenbligpsesent
intelligence failures, and they may indeed do so. But it is not clear to wieat &ATs actually
help, or in what respects SATs may not help and may even hurt.

For example, one empirical study@bnfirmation BiagLehner, et al., 2008) showed that ACH
offered a significant reduction in bias only for participants without inexilig analysis
experience. Also, results of the ICArUS experiments (using experiencedexiperienced
participants) shows that numerous biases remain even when structured techkeqd€slliare
employed. In Phases 1 and 2, the experimental protocol effectively forqgedtaipants to

adopt the technique of ACH, and yet significant biases were still measuretividual and
average human responses. This suggests that ACH does not eliminate biases, anceiht may e
introduce biases.
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The point here is not to argue for or against the use of ACH or any other SAT. Rt hpaint

is that much work remains to establish the advantages and disadvantages of S§Tgarsius
and relevant evaluations. Moreover, it should be noted that most "structured" teclanegques
merely "questions" or "checklists", so they are basically what mostsaséht least experienced
analysts) would be doing anyway — implicitly and naturally. This may hellaiexthe limited
benefit of ACH noted above (Lehner, et al., 2008), which was found only for participants
without intelligence experience.

Moving beyond the questions and checklists of SATSs, there appear to be opportunitiegfor mor
revolutionary advances in analytic tools, techniques, and training. But these adviinces

require a cognitive-scientific approach that addresses intelligenkysiarfeom a computational
perspective (Burns, 2014), like the approach adopted by ICArUS and its challengenpobbl
TACTICS.

6.5 Conclusion

As noted in théntroduction(Section 1), a computational approach is needed to advance the
scientific understanding of sensemakinduaictional, psychological, and biologiclvels of
abstraction. Research products of ICArUS span all three levels, to promgigdrain the form
of Analytical System®rganizational TrainingandAdversarial Agentsas follows:

At thefunctionallevel,formal designof a challenge problem exposes the computational
functions of sensemaking, including inferencing (prognostic and forensic),atecisi
making, and foraging. In that regard, ICArUS holds potential for transitiémadytical
Systems

At the psychologicalevel,human dataand Bayesian benchmarks enable a deeper
understanding of heuristics and biases in geospatial sensemaking. lganet IEArUS
holds potential for transition tOrganizational Training

At the biological level, neural modelsghat emulate human behavior can help explain the

fundamental mechanisms that give rise to sensemaking biases. In that (e4dus |
holds potential for transition tadversarial Agents
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7 Definitions

Abductingis a form ofsensemaking whichre-framingcreates newypothesesot previously
considered in onefsame of discernment

Bayesianrefers to the use of Bayes Rule for updating beliefg/pothesegivenevidence
Bayes Rule is mathematical specification of hmwer (beforeevidencg probabilitiesof
hypotheseand conditionalikelihoodsof evidencggivenhypothesesare combined to compute
posterior(afterevidencg probabilitiesof hypotheseBayesiaralso refers to the optimal
computation of expected utility, in decision-making situations, as the product of pityteinl
utility summed across all possible outcomes of an option.

Causal Hierarchyis an ordering of causal factors in which higher factor(s) cause or ¢onstra
lower factor(s), such that: the assumption of a higher faleygothesiscan be used to infer the
probability of a lower factorgvidencg— in apredictionof evidencg(i.e., in forward inference);
and the observation of a lower factevidencg can be used to infer the probability of a higher
factor (ypothesis— in anexplanationof evidencd(i.e., in backward inference). In TACTICS,
the causal hierarchy is represented by four arrewysas follows intent— tactic— action—
feature— datum

Confidenceis a measure of belief in the truth ofigpothesigi.e.,confidencean explanation or
evidencdi.e.,confidencan predictior), quantified as &kelihood (probability) ranging from
zero to one. [In a more specific sense, not used benéidencas a measure of second-order
probability, i.e., theprobability that someprobability is correct.]

Evidenceis a report of a datum or feature or action or tactic or anything elseittat be
observed at any level ofcausal hierarchyThe termevidencanay be used in referring to actual
observations (i.egvidencehat may bexplainedby hypotheseandlikelihoodg or potential
observations (i.eevidencehat may beredictedby hypotheseandlikelihoods.

Explanationsare backward inferences about likelihoodsof hypotheses light of evidence

Framesare knowledge structures, comprismgothesesvidenceandconfidencesincluding
conditionallikelihoodsof evidencdi.e., conditional omypothesésas well as conditional
likelihoodsof hypotheseéi.e., conditional orevidencg In spatial context frames, likelihoods
depend on spatial factors. éwent sequence frames, likelihoalgpend on temporal (and spatial)
factors.

Frame of Discernmentefers to the set dfypothesegand/or set oévidencg over which one
reasons and assigosnfidence

Hypothesesre possibl@xplanationsof evidencetypically involving causal reasons for
evidence.

Inferencing is the assignment abnfidenceso hypotheses one'srame of discernment
Abductingis a class oinferencingthat involves the creation of ndwpotheses
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Likelihood is a general term referring tmnfidenceneasured bprobability. The term
likelihoodis also used in a more specifigafyesiaf sense when referring to theobability of
someevidenceconditional on dypothesis

Posteriorrefers to the result @dayesianupdating, in whictprior probabilitiesare updated with
likelihoods(of evidencegivenhypothesgsto computeosterior probabilitiegof hypotheses
givenevidence

Predictionsare forward inferences about tlileelihoodsof evidencen light of hypotheses

Prior refers to therobability of ahypothesisn the absence @videncei.e.,prior to obtaining
theevidence

Probability is a mathematical measure of belief in the truth lof@othesir evidenceAs such,
probability is a measure of mentabnfidence

Re-framing (aka Set-shifting is a revision ohypothesesor revision ofconfidencescross
hypothesesan which the most likelynypothesichanges due to the observation of surprising
evidencdi.e.,evidencehat is not likely to be caused by the currently-most-likeigothesisor
hypothesés

Sensemakings a recurring cycle of obtainirgyidenceand updatingonfidencan competing
hypothesedo explainandpredictan evolving situation.

Set-shiftingis another term fare-framing
Spatial Hierarchyis an ordering of spatial features in which higher level(s) include feattires

lower level(s). In TACTICS, an area of interest includes regions, andamr@giudes circles
around points — thus the spatial hierarchy is: area(region(circle(point))).

Temporal hierarchyis an ordering of temporal events in which higher level(s) include events at
lower level(s). In TACTICS, a mission is a sequence of batches, and a batchusrcseof

trials. Each trial includes a sequence of temporal-spatial featuregefdsefrom INT reports),

in stages of the trial, thus the temporal hierarchy is mission(batdfstag))).
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