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Abstract

The IARPA (Intelligence Advanced Research Projects Activity) prod@mUS (Integrated
Cognitive-neuroscience Architectures for Understanding Sensemaking) deveidpedtad
brain-based computational models of “sensemaking” — a cognitive component afents
analysis. MITRE’s role was in Test and Evaluation (T&E) of the neural-catipoal models
developed by several teams of performers. This document discusses the gotergiasition of
T&E products beyond ICArUS to practical applications and future researchlmehgence
Community. The products and potential uses are summarized by a table in Section 1
Introduction and the most promising opportunities are highlighted in Secti@mn8lusion.
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1 Introduction

This document discusses potential uses of Test & Evaluation (T&E) productsdAmdS.:
Integrated Cognitive-neuroscience Architectures for Understandingi@akimg, a program
funded by the Intelligence Advanced Research Projects Activity (IARPétails of the
ICArUS program are provided in the Broad Agency Announcement (BAA, 2010) laleadia
http://www.iarpa.gov/index.php/research-programs/icarus/baa

A summary of T&E products is provided IGArUS: Overview of Test and Evaluation Materials
(Burns, Bonaceto, Fine, & Oertel, 2014), availabld#p://www.mitre.org/publications/alThe
present document differs in addressing how these T&E products can be applied beyond t
ICArUS program itself, to practical applications and further researd¢teimtelligence
Community (IC).

As stated in the BAA (2010)The goal of the ICArUS Program is to construct brain-based
computational models of the process known as sensemaking. Sensemaking, a core human
cognitive ability, underlies intelligence analysts’ ability to recognize and explitaeships
among sparse and ambiguous data. By shedding light on the fundamental mechanisms of
sensemaking, ICArUS models will enable the Intelligence Community to better predant-
related strengths and failure modes in the intelligence analysis process and will powt to ne
strategies for enhancing analytic tools and methods.”

Consistent with that objective, the present document is concerned with how productslb ICA
T&E canenable the Intelligence Community to better predict human-related strengths and
failure modes in the intelligence analysis process and point to new strategies for enhancing
analytic tools and method$he focus of this MITRE report is on T&E materials, rather than
neural-computational models developed by ICArUS performer teams, for tsangea

First, the role of MITRE and its subcontractors on the ICArUS program wast tanie evaluate
neural models developed by performer teams. Second, the scope of neural modeling in the
program was limited to laboratory challenge problems designed by MITREandance with
T&E requirements of the BAA (2010). This scope excluded important aspects woforddl-
sensemaking that were deemed infeasible to address in integrated eeggutiescience
architectures, including natural language processing as well ashttendsophisticated
knowledge representations (RASKRSs) by which intelligence analysts nrade clereal-world
situations.

With these scope limitations, the integrated cognitive-neuroscienceeatahits developed by
ICArUS performer teams serve as laboratory demonstrations of computatmaels — rather
than field-ready implementations of functional systems. Therefore the pbfentear-term
transition of ICArUS to practical applications lies primarily in the praeslot T&E, especially
those products that extend beyond the program’s scope of computational neural modeling.

The remainder of this report discusses eight such products and potential usesyaszahin
Table 1.


http://www.iarpa.gov/index.php/research-programs/icarus/baa
http://www.mitre.org/publications/all

Table 1. Potential usesand usersof ICArUS T& E productsin the Intelligence Community (1C).

[°2)

Product Purpose Potential Uses Potential Users
of T&E inT&E inthelC inthelC
Doctrinal Defining the scope and | Comparing the GEOINT Analysts, Instructors,
Review methods of GEOINT. perspectives of various Engineers, Researcher
agencies across the IC and
DoD.
Analytical Identifying the challenges| Training in the use of Analysts, Instructors,
Stories of sensemaking. Bayesian analytic techniquesEngineers, Researcher

192}

Computational
Basis

Modeling the componentg
of analysis.

Developing techniques,
training, and tools to suppor

reasoning in accordance with

Bayesian principles.
Directing future R&D toward
open-ended problems that
require creative
sensemaking.

Analysts, Instructors,
t Engineers, Researcher

[*2)

[°2)

Prototypical Exemplifying tasks of Relating the missions of Analysts, Instructors,
Problems geospatial intelligence. ICArUS experiments to reali Engineers, Researcher
world challenges of
geospatial intelligence.
Functional Simulating geospatial Demonstrating the cognitive
Software intelligence missions. challenges of geospatial Engineers, Researcher

intelligence.

[°2)

Mathematical
Benchmarks

Evaluating sensemaking
performance.

Quantifying the value of
information and
effectiveness of inferences.

Engineers, Researcher

[*2)

Experimental
Data

Uncovering biases and
individual differences.

Understanding analytic
performance and cognitive
biases in sensemaking.

Engineers, Researcher

[*2)

Behavioral
Model

Computing human
heuristics and biases.

Predicting cognitive biases @
simplified deviations from
normative standards.

1S
Engineers, Researcher

192}

As outlined in Table 1, the eight T&E products fall into two categories with reBppotential
users identified in the rightmost column. The first four products are most geragaligable
and potentially of use to analysts, instructors, engineers, and researtieses products are

discussed in Sections 2.1, 2.2, 2.3, and 2.4 below. The next four products are more specific to

ICArUS and primarily of use to engineers and researchers. These proéuditcassed in
Sections 2.5, 2.6, 2.7, and 2.8 below.



2 Discussion

2.1 Doctrinal Review: Defining the Scope and Methods of GEOINT

In accordance with T&E requirements of the ICArUS BAA (2010), MITREghesl “challenge
problems” to measure the sensemaking performance of human beings and neuralAtsadiels
accordance with the BAA (2010, page 10), these challenge problems ifivobhe analysis of
simulated GEOINT datg’where GEOINT is defined by the BAA (2010, page 8) consistent with
Title 10 U.S. Section 467 a&the exploitation and analysis of imagery and geospatial
information to describe, assess, and visually depict physical features and geographically
referenced activities on Earth”

The program’s focus on GEOINT was intended to promote transfer of insightsGratd $
R&D to stakeholders at the National Geospatial-Intelligence Agen@AjNas well as other
organizations in the IC that create or consume geospatial intelligenckesaribed in a recent
report by the National Research Council (NRC, 2013) onFhoe&ute U.S. Workforce for
Geospatial Intelligence”

“We live in a changing world with multiple and evolving threats to national security,
including terrorism, asymmetrical warfare, and social unrest. Visually depicting and
assessing these threats using imagery and other geographically-referenced information is
the mission of the National Geospatial-Intelligence Agency (NGA). As the nathee of t
threat evolves, so do theols, knowledge, and skills needed to respond.”

Sensemaking applies directly to this mission of NGA as an important asssiesking the

threats Thus as a first step toward design of ICArUS challenge problems, MITiREmed a

review of geospatial intelligence doctrine — in order to better understand how various
organizations and individuals defined the concept of GEOINT and prescribed theepoécti
GEOINT. This effort, known as the Prescriptive-Cognitive Task Analysi&\|P¥as

documented in a comprehensive report (MITRE, 2012a) and summarized in a companion paper
submitted to NGA's journalGeospatial Intelligence Reviei8tech, 2014).

The PTA reviews doctrinal definitions of GEOINT put forth by NGA, DoD (D&pant of
Defense, including Joint Staff, Marines, Army, and Air Force), and other orgjangalhe
report also reviews various GEOINT methods, including: Intelligence Prepacdthe
Battlespace; GEOINT Preparation of the Environment; Structured Gedgyslgtic Method;
and Querying, Mining, Assembly, Dissemination, and Integration. All of thed®ongare
variations on a common theme in which functional processes seolexgion(getting
GEOINT), depiction (showing GEOINT)gexploitation(using GEOINT), andliissemination
(sharing GEOINT) are integrated in the overall practice of geospagdligence.



Although details of the PTA were derived from documents published by governmeatezge

the MITRE report (2012a) and paper (Stech, 2014) hold potential for transition backGdae |
virtue of reviewing and relating the GEOINT perspectives of various aggeacross the IC and
DoD. Further potential for transition exists with respect tceettoitationof GEOINT, as

ICArUS developed insights into how (and how well) analysts can use GEOINT to makefense
uncertain situations and therelagsess the threats{see NRC, 2013, noted above). For
example, ICArUS formally identified the cognitive demands of GEOINTesaaking, and
experimentally uncovered cognitive biases suctoaservatisnthat can compromise efficient
exploitation of GEOINT by intelligence analysts. These and other insigmslICArUS, which

are outlined in the remainder of this document, may be usedmaiystsengaged in GEOINT,;
instructorswho teach and train GEOIN‘€ngineersvho design systems that are employed in
GEOINT; andresearchersvho advance the development of concepts, models, systems, or other
aspects of GEOINT.

2.2 Analytical Stories: Identifying the Challenges of Sensemaking

The PTA (see Section 2.1) reviewed how GEOB\iduld bedone per relevant doctrine. In
addition, MITRE also reviewed how GEOINS doneby various analysts. This work is
documented in a Descriptive-Cognitive Task Analysis (DTA), which includessz6stadies of
geospatial sensemaking (MITRE, 2013).

The DTA is the product of structured interviews with intelligence analysts were encouraged
to tell stories of cases in which they had to make sense of some anomalous iofoomati
uncertain situation. Analysts were also told that ICArUS was most iredrestases where a
surprising discovery was made, while analyzing geospatial informattaohwnabled the
explanation or prediction of some entity or activity. Over a dozen intervievespeeiformed

with analysts across various agencies of the IC and DoD, and these interviews we
supplemented by reviews of published papers addressing similar problems ofigeaspbfsis.

The primary purpose of the DTA was to ensure that ICArUS challenge problerddeadlated
directly to GEOINT practice as well as to GEOINT doctrine (per the PAAxamination (see
Burns, 2014b) of all 26 stories in the DTA uncovered six inferential variables that wer
repeatedly involved in sensemaking about adversarial situations (e.g., asthesHingats). The
six variables, identified in Table 2 for each of the 26 stories in which they appear
characterized as followsulnerability, opportunity capability, activity (prognostic)activity
(forensic) andpropensity These variables are routinely addressed in analytic practicesssuch a
“Suitability Analysis”, which includes assessmentswhherability, opportunity andcapability;
and “Activity-Based Intelligence”, which involves prognostic and forensiceniezs about
hypothesizedctivitiesas well as associatgropensitief adversaries to act. Therefore the
ICArUS Phase 2 challenge problem (Burns, 2014b) was designed to include alladegan
diverse “missions” posed by ICArUS experiments. The ICArUS Phasdlgradmproblem
(Burns, Greenwald, & Fine, 2014) involved similar variables, but focused on spatisibnaria
without temporal dependencies.



Table 2: Mapping six variables of the | CArUS challenge problemsto 26 case studies of intelligence.
Thevariablesareasfollows: P = vulnerability, U = opportunity, P, = capability, P; = activity
(prognostic), F; = activity (forensic), and P, = propensity. (For details see Burns, 2014b).

No. | Title of Case Study P U |P.|P |F | Py
1 Clinical vs. Actuarial Geospatial Profiling Strategies X

2 Route Security in Baghdad X | X X
3 International Security Assistance Force Handoff X

4 Explosively Formed Penetrator Placement X

5 Finding Osama Bin Laden X

6 Geospatial Abduction Problems X X

7 Mapping of Cholera in Nineteenth-Century London X
8 Clandestine Airstrips in Guatemala X

9 Mapping of Arsenic in Twentieth-Century Bangladesh X
10 | Complexity and Accuracy of Geospatial Profiling Strategies X X

11 | Geospatial Analysis of Terrorist Activities X X X
12 | District Control X | X
13 | Tunisian Refugee Flow X

14 | Improvised Explosive Device (IED) Use in Afghanistan and Pakistan X

15 | Gang Roundup X

16 | Gang Geographic Movement X

17 | Predicting Mortgage Fraud X X

18 | Tracking High-Value Cargo X X | X

19 | Environmental Study X X

20 | Trench Mystery X X

21 | IED Attack Patterns X X

22 | Underground Facility X X

23 | Memphis Airport Communications Failure X X

24 | Banking Infrastructure X

25 | The Lone Reconnaissance Vehicle X | X | X |X

26 | Road Network Impact on Insurgency X X KX X




Besides the primary purpose of guiding challenge problem design, a sgcpumgerse of the
DTA was to promote a program-long dialogue between ICArUS researahernC stakeholders.
The DTA stories helped ICArUS researchers understand the cognitive dearmahdontext of
real-world sensemaking. The mapping of these stories to ICArUS mpalfgoblems helped IC
stakeholders understand how laboratory research on sensemaking relatesdddemalytic
practice.

Consistent with this secondary purpose, DTA may be useful for continuing tarditiCAruS
insights to the IC. As a specific example, MITRE has identified the pdtémtideveloping a
new analytic technique to support Bayesian reasoning, as discussed belowoim &Z8ctlThe
DTA stories can serve as real-world case studies for training analyste of this technique,
and for testing analysts on their understanding of the underlying principles.

2.3 Computational Basis: Modeling the Components of Analysis

Along with a focus on GEOINT (see PTA and DTA in Sections 2.1 and 2.2), the BAA (2010)
required that ICArUS challenge problems address core sensemaking gaegbsed in a so-
called“data-frame theory of sensemakingKlein, et al., 2007).

The data-frame theory offers a conceptual description of sensemaking, but doewidet a
computational specification of functional processes or knowledge representatsonsedad for
rigorous design and assessment of ICArUS challenge problems. In particalICArUS BAA
(2010) required that T&E include two types of quantitative assessments, namalyatative
Performance Assessment (CPA), using a numerical percentage to measurglronewral
model matches human sensemaking performance; and Cognitive FidelitymrAessefSFA),
using normative (Bayesian) solutions as benchmarks for measuring whethemnmesileksd
exhibit cognitive biases like those of human subjects.

To meet these requirements, MITRE developed a Bayesian framework that sersalsaking
in a recurring cycle of eight stages, dubbedQktaloop(Burns, 2014a). The stages are
numbered and named as follows:

1. Isolate Evidence

2. Generate Hypotheses

3. Estimate Likelihoods

4. Aggregate Confidence

5. Prognosticate Consequence
6. Evaluate Consequence

7. Anticipate Evidence

8. Discriminate Evidence

Steps 1-4 model processesrderencing Steps 5-6 model processesletision-makingwhich
rely on results from inferencing. Steps 7-8 model procesdesagfing, which rely on results
from inferencing and then support inferencing in the next cycle of sensemaking.



This model, derived from a real-world story of sensemaking by Klein, et al. (2685 )sed to
design challenge problems that satisfied two major program constfémststhe challenge
problems were designed to pose cognitive demands of geospatial intelligenmBngcbre
sensemaking processes identified in the BAA (2010). Second, the challenge prabtems
designed to enable quantitative assessments of human and model performanc&Ad&r the
(2010), including the computation of normative (Bayesian) solutions needed for mgasurin
cognitive biases exhibited by human subjects and neural models in ICArUS expsrim

In light of other program constraints, discussed in Section 1 (also see Burns, 281824 rtJS
challenge problems are necessarily simplified with respect to méd-sensemaking. The
Octaloop, which was derived from examples of real-world sensemaking, helps pinpaiht ex
what cognitive representations and processes are simplified in IC&réalienge problems, and
why the simplifications were necessary in order to accomplish T&E pdCrUS BAA

(2010). The Octaloop also helps point to how these simplifications can be overcome ilotransit
to IC applications beyond the scope of ICArUS itself. In particular, Secfioarsitionof the
Octaloop document (Burns, 2014a) discusses practical applications to aealyticues

training, andtools— as well as to furthdR&D.

With respect taechniquesSection 7.1 of the document (Burns, 2014a) suggests that the
Octaloop can be used to develop a new Structured Analytic Technique (SAT) — dubbed HELP
(hypotheses, evidence, likelihoods, priors, and posteriors). This technique addresgems

of existing SATs (Beebe & Pherson, 2012), such as Brainstorming and Analysismpeting
Hypotheses (ACH, see Heuer, 1999), which do not support analytical reasoning in amcordan
with Bayesian principles. Initial transition of HELP to intelligencecpiteners and researchers
has been accomplished by a paper submitted timtbnational Conference on Naturalistic
Decision MakingBurns, 2014c).

With respect tdraining, Section 7.2 of the Octaloop document (Burns, 2014a) suggests that
sensemaking stories can be useful for training HELP as a BayesiaiB8gides the story by

Klein, et al. (2007), which was used to develop and demonstrate the Octaloop, all 26 stories of
sensemaking contained in the DTA (MITRE, 2013) have been informally reviewed te &mesur
the Octaloop and associated HELP technique do apply. A more formal application adBayes
HELP to any of these stories could be performed in order to support case-basegl +rae., to

tailor the training to case studies that are most relevant to an individualtanatgsests and
expertise.

With respect tdools, Section 7.3 of the Octaloop document (Burns, 2014a) highlights those
steps of cognitive processing that were performed for human participants (aridnoslets) in
ICArUS experiments, rather than by participants in these experimentsdfople, the four
Octaloop steps ddiscriminate Evidencdsolate EvidenceGenerate HypothesgandEstimate
Likelihoodswere all performed by the computer. The results of these steps were thencptovide
participants as inputs from simulated intelligence systems, whicleiparits used in the

Octaloop step oAggregate Confidendg.e., to evaluate the probabilities of competing
hypotheses given evidence from various sources/systems). These sirmiéligence systems
represent prototypmolsthat might be extended and implemented in real-world systems, to
support human sensemaking by automating the associated steps of the Octaloop.



Those steps of the Octaloop that were performed by participants in ICAgg8ments include
Aggregate Confiden¢@rognosticate Consequendevaluate ConsequencandAnticipate
Evidence At these steps ICArUS measured and modeled human sensemaking, including
cognitive biases relative to normative (Bayesian) solutions. The experimeniis suggest a
number of opportunities for designing tools that can help humans overcome biased behaviors —
i.e., by automating aspects of the Bayesian SAT dubbed HELP. For exampegasis

observed in the step aiggregate Confidenogas conservatism, in which participants reported
probability distributions that were too close to {0.50, 0.50} compared to the Bayesian solution
for two hypotheses {H, ~H}. Computational systems might be developed to accompliskghis st
and/or advise analysts on how to aggregate more effectively. One example afsystem uses
“structure-mapping” visualizations to assist users in applying Baygsinciples (Burns, 2006;
2007), and this as well as other opportunities for support systems are discussed ialtiop Oct
document (Burns, 2014a).

With respect tdR&D, Section 7.4 of the Octaloop document (Burns, 2014a) suggests that a
Bayesian approach can help bridge the gap that currently exists betweeactive jof
intelligence analysis and research efforts in academia and industrytitalpa, the Octaloop
document identifies those cognitive-computational processes that are netmssampetence
in sensemaking, highlighting which processes have been addressed OyeCirUS R&D

and which processes remain to be addressed in future R&D. As noted above, the greates
opportunities for further research appear to exist at the Octaloop stegEminate Evidence
Isolate EvidenceGenerate HypothesgandEstimate Likelihoodswvhich were all performed for
participants (by simulated systems) rather than by participants in regest

As discussed in the Octaloop document (Burns, 2014a), these cognitive processes @auld not
measured and modeled by challenge problems within the scope of the ICArUSpruyr
several reasons. One reason is that the BAA (2010) required measuring and noddelangge
human performance, which meant that all human participants had to use the santegviden
hypotheses, and likelihoods. Another reason is that visual perception and natural language
processing wereut of scopdor neural modeling and hence not tested in ICArUS challenge
problems. These two cognitive capabilities are especially important inctaéo@p steps of
Discriminate Evidencandlsolate EvidenceFinally, the BAA (2010) required minimizing any
role played by humans’ RASKRs, which are the cognitive basis by which humamnatgene
hypotheses and estimate the likelihoods of evidence (in light of hypotheseshidhgithe role
of RASKRs meant eliminating the stepsGé#nerate HypothesesmdEstimate Likelihoodfrom
the scope of cognitive demands posed by ICArUS challenge problems.

Clearly these cognitive processes and the RASKRs that they employpamtant to real-world
sensemaking. In fact, the stepG#nerate HypothesesmdEstimate Likelihoodare arguably

the most important steps of all — as they provide the foundation for subsequent steps in which
analysts make sense of evidence by assessing the probabilities of coryediingses.

Therefore one important direction for future research is to address Vefesgnsemaking — in
“open-ended” problems where hypotheses, likelihoods, and evidence are not pre-defined b
experimenters and not provided to participants as inputs.



2.4 Prototypical Problems: Exemplifying Tasks of Geospatial Intelligence

As described above, efforts to design ICArUS challenge problems wenm@udryy GEOINT
doctrine and practice as well as by a Bayesian-computational modekehsaking. The
resulting challenge problems pose cognitive demands that are prototymealspatial
intelligence analysis and are quantifiable in accordance with the IEBAA (2010).

Different challenge problems were developed for Phases 1 and 2 of the prograRhasié 1
focused on spatial sensemaking and Phase 2 focused on spatial-temporal sensestaked).
documents describe the design rationale and associated test specsficatPimase 1 (Burns,
Greenwald, & Fine, 2014) and Phase 2 (Burns, 2014b).

The test specifications are necessarily specific to the ICArUSaoigself. Therefore the
underlying design rationale is likely to be among the most useful aspeCiarf$ challenge
problems in transition to IC applications. In particular, the Phase 2 design docunnest, (B
2014b) includes a Section 6 dransitionthat maps all 26 case studies of sensemaking obtained
from DTA (see Section 2.2) to key variables of the challenge problem. Thensagmpég also
addresses practical applications to tools, training, and techniques, similadisctigsion
summarized in Section 2.3 above.

Besides the challenge problems themselves, associated products of [C&BISclude
Functional SoftwareMathematical BenchmarkExperimental Dataand aBehavioral Model
All of these products might be leveraged in engineering applications and futurelmesea
investigations, as discussed in Sections 2.5, 2.6, 2.7, and 2.8 below.

2.5 Functional Software: Simulating Geospatial Intelligence Missions

A useful feature of the ICArUS challenge problems is that they arenmepled in functional
software — as employed in ICArUS experiments. This software might beeddapbther uses,
for example to assess the cognitive biases of individual analysts, and for teaialggts to
overcome their biases. However, such applications would require major modifidatibies
ICArUS challenge problem software, for several reasons.

First, although the challenge problem software measures individual resporssesstiione per
the BAA (2010) in order to obtain a robasterageof performance and biases across a
population of participants (roughly N = 100 in each phase of the program). The exyakime
design of stimuli and measures of performance did not address matters deoogsisthin
each individual’'s responses, as would be needed to establish the reliability oflanenstor
testing an individual’s biases.

Second, the challenge problem software was designeestimghuman subjects (and neural
models), and fomeasuringcognitive biases relative to normative standards. The software
contains no functionality faraining human subjects or otherwisgtigating cognitive biases. In
fact, the software was specifically designed not to introduce any traiahg/ould mitigate

10



biases, because the purpose of ICArUS experiments was to measuredbibegeaist
naturally. A major re-design effort would be required to augment the exisfifngase with
capabilities for training analysts and mitigating biases.

Because the ICArUS challenge problem software was designed foediffrirposes, it is not
recommended for use in testing individual analysts or training analysts to oedo@ses.
Instead the computational basis for design of ICArUS challenge problemsyribet@ttaloop
is recommended for these uses as discussed in Section 2.3. Nevertheless,diGNange
problem software may be useful fdemonstratinghe cognitive task demands of geospatial
sensemaking. This is because the software was designed to engage particigamie-like
simulations of geospatial intelligence “missions”, prototypical of veald analysis (within
program constraints), and great care was taken by designers in communieatimgsions to
participants as needed to conduct meaningful experiments. In particulaftieers for each
challenge problem includes an overall tutorial and mission-specific instmacpresented to
participants at the start of an experiment and available for reference throtighexperiment.
These materials are non-technical and understandable by experts and ntniexiieiplines
of geospatial analysis, as evidenced by successful completion of all mibgibandreds of
diverse participants in ICArUS experiments.

As a product of T&E, all screen shots comprising the tutorials and mission itstsuate

captured in a “walkthrough” document for Phase 1 (Burns, Fine, Bonaceto, & Beltz,a2@il4)
Phase 2 (Burns & Bonaceto, 2014). Compared to the challenge problem design documents
(Burns, Greenwald, & Fine, 2014; Burns, 2014b), the walkthrough documents provide a much
more accessible introduction to ICArUS challenge problems. Theref@e wedkthrough
documents would be a good starting point for those interested in using the challenge problem
software for purposes beyond ICArUS experiments. For software developtrst tietails of

the input/output file formats are available in a development guide for Phase téRo&dine,
2014a) and Phase 2 (Bonaceto & Fine, 2014b). Other files and folders included in tmgehalle
problem software are describedIIBArUS: Overview of T&E MaterialéBurns, Bonaceto, Fine,

& Oertel, 2014).

2.6 Mathematical Benchmarks: Evaluating Sensemaking Performance

Across both phases of the ICArUS program, an important aspect of challengerpdasign
was to compute normative (Bayesian) solutions — as benchmarks for measucogritige
biases of human subjects and neural models. This was a difficult requiremeistfyo asit
discussed i\ Computational Basis for ICArUS Challenge Problem DegRurns, 2014a). As a
result, the specific task demands of Phase 1 and Phase 2 challenge problemspediaisiey
by the cognitive biases (relative to normative solutions) that were iggeloyf the BAA (2010)
for Cognitive Fidelity Assessment (CFA). There were four biases isePhaand four more for a
total of eight biases in Phase 2 as outlined in Table 3.

11



Table 3: Cognitive biases addressed in | CArUS challenge problems.

Behavior (bias)

Example (referring to evidence, hypothesis, and confidence)

Anchoring and Adjustment

When new evidence supports a hypothesis, a person’s confidence in that

hypothesis goes up less than it should.

Persistence of Discredited
Evidence

When new evidence refutes a hypothesis, a person’s confidence in
hypothesis goes down less than it should.

Representativeness

When evidence is typical of a hypothesis, a person discounts other
relevant evidence (such as base rates) in assigning confidence to th
hypothesis.

Availability

When a hypothesis (or evidence supporting a hypothesis) is vivid or
otherwise memorable, a person assigns too much confidence to the
hypothesis.

Probability Matching

When given a choice among options, a person will not always choos

that

e

5e the

option that is probably the best, but rather will choose each option at a

frequency equal to its probability of being the best.

Confirmation Bias

When given a choice among sources of evidence, a person will see
evidence that is likely to support the most probable hypothesis.

Satisfaction of Search

When collecting evidence to evaluate a hypothesis, a person will
prematurely terminate the search upon finding supporting evidence.

Change Blindness

When monitoring evidence to evaluate a hypothesis, a person witl fa
detect evidence that supports another hypothesis.

il t

In order to assess these biases, design of the challenge problems (Burns, I@r&eRina,
2104; Burns, 2014b) included development of a mathematical equation (inequality) that defined
each bias as a deviation from normative (Bayesian) performance. Theseglefjuations were

used in Cognitive Fidelity Assessment (CFA), and they are also usgrd#&CArUS as
concise and computable statements of the biased behaviors. Often in the ICvahere|se
claims about biases are lacking normative benchmarks and objective measgexdealsto
establish the existence and extent of biases. The defining equations developedfa s
offer a more rigorous approach, at least for the biases and task demands wittmpehef she
ICArUS program. These defining equations may be useful in future resmaitqractice aimed
at uncovering and overcoming biases in intelligence analysis.
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Similarly, Comparative Performance Assessment (CPA) required matiltahmeasures of
sensemaking performance — in order to compare human and model performance to eash other a
well as to normative solutions. These mathematical measures (Burns, 2014b; Beensydkd,
& Fine, 2014; Burns, 2011) employ information-theoretic concepts, such ase@atropy, to
guantify the overall divergence of one belief structure (e.g., human or modeBiatrer (e.g.,
Bayesian or random). The same information-theoretic measures were ussabiotias “value of
information” — i.e., to measure how strongly some evidential data (from intelegsources)
should affect the beliefs of a human or model. Like the measures of cognitiee tissussed
above for CFA, these measures of sensemaking performance may be useful ie$etnchras
well as practical applications — to quantify the value of information and e#eess of
inferences under uncertainty.

Beyond ICArUS, the mathematical measures developed for CFA and CPA woutdkkef

most use to engineers who design advanced systems for “fusing” intelligesroeatidn. In
particular, the state of the art in “high-level information fusion” is known to lknigenodels

and measures of sensemaking, as discussed by Blasch, et al. (2012). The Bagtbsiaratical
Octaloop (Burns, 2014a) and associated information-theoretic measures ahpaderBurns,
2014b; Burns, Greenwald, & Fine, 2014; Burns, 2011) can advance this state of the art — by
providing a formal model and measures to quantify human, machine, and combined human-
machine performance. Previously such efforts have been hampered by a heskiettand
models that express human sensemaking in computational terms, consistent witiséubis

the engineering of machine systems and needed for integrating humamenaatiormance.

Also within the realm of data fusion, a notion of “layers” or “levels” appeaadmost all work
aimed at integrating systems and humans. Although obviously simplified, the IGhdli&nge
problems are useful for understanding how levels of human sensemaking relp¢estoia
system designers. In particular, besides charactestaggof sensemaking in the Octaloop, the
ICArUS challenge problems also highlight causal-hierarchesalsat which information is
processed in sensemaking, as follows: intertctic— action— feature— datum; where

arrows indicate the direction of causality (i.e., from cause to effect: eawtect). This

hierarchy was made explicit in design of the Phase 2 challenge problem, and &2 Bbsign
document (Burns, 2014b) provides a brief discussion of how the five levels relate tydge la
of a well-known data fusion model (Steinberg & Bowman, 2004).

2.7 Experimental Data: Uncovering Biases and Individual Differences

Besides the functional software and mathematical benchmarks used fefS@A&periments,
MITRE has also made available the human behavioral data collected in Phasd Q3N =
participants) and Phase 2 (N = 123 participants) of the program. The softwareditaigepa
includes source code for analyzing all behavioral data, along with resdltacanalyses in
numerical and graphical formats, as described in the D&&rviewdocument (Burns, Bonaceto,
Fine, & Oertel, 2014).
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These human data may be useful to engineers and researchers interestsdiimgiaend
modeling cognitive performance. As described in Section 2.6, the challenge prolkkonm
were designed to elicit and evaluate eight different cognitive biasgsdefined by a
mathematical equation (inequality) based on information-theoretic quastitbsas entropy.
ICArUS experiments involve a diverse set of missions and biases, which offerdataset to
researchers who wish to model cognitive performance on laboratory task® thygiical of
geospatial intelligence. This was the purpose for which human data wedembin ICArUS
experiments, i.e., for use by researchers building neural-computational maddlse same
data may be useful to other researchers in future modeling efforts.

Per the BAA (2010), ICArUS experiments were aimed at measuring andingoaletrage
human performance across all participants in each experiment. However eseareh teams
wished to explore the potential for predictindividual human performance. This was of interest
to ICArUS from a transition perspective, because of its potential for infigrpgrsonnel
selection in the practice of real-world intelligence. One hypothesis wasdnadual
differences could be attributed to cognitive “phenotypes” and distinguished ¢yopsgtric
instruments based on underlying neural attributes — such as the scales fooaéhavbition
System (BIS) and Behavioral Activation System (BAS) proposed by Carver hite {4994).
Also a number of demographic variables were hypothesized to affect individuegmiités in
performance, including years of experience as a practicing analgide\eel of training in
probability and statistics.

MITRE performed regression analyses (for numerical variables) and Agsaly¥ariance
(ANOVAs, for categorical variables) to establish whether any of thesther independent
variables affected dependent measures of performance in the Phase 2 exgbrmm&23).

There were three dependent measures of interest, nanfefgncing(about hypotheses given
evidence)decision-makingabout the best course of action, given results of inferencing), and
foraging (to obtain information for use in inferencing and decision-making). Results shoated th
none of the dozen-plus psychometric or demographic variables that were acalyizied
significantly (p < 0.05) and substantially R 10%) predict any of the dependent measures of
performance (inferencing, decision-making, or foraging). These resigggest that individual
differences in sensemaking performance are very difficult to predtthat such differences
are not readily attributed to parameter variations in neural models. Tha @salsupport the
approach of the ICArUS BAA (2010), which was to focus the program on measuring and
modelingaveragesensemaking performance (rather than individual differences) in order to
understand the existence and extent of cognitive biases relative to nornzatoler ds.

2.8 Behavioral Model: Computing Human Heuristics and Biases

As a final T&E product, MITRE developed a behavioral modeCfomputing Analytical Biases
dubbedCAB. This model differs from the Bayesian Octaloop (Section 2.3), which is a normative
model of the sensemaking cycle. CAB is a cognitive model, using simple equatiomsgote
human sensemaking responses and to characterize biases as deviations ésamBay
computations — for specific tasks/trials that were presented to participa@isruS

experiments.
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For instance, some tasks of ICArUS challenge problems presented proldtitibutions that
participants were required to aggregate in order to evaluate competingdsipoT he normative
procedure for doing so, per the Octaloop stefggregate Confiden¢és to compute the
normalized product of input probabilities. As an example; i 0.80, 0.20} and P= {0.60,
0.40} are provided as independent probability distributions for hypotheses {A, B}, then the
Bayesian aggregation is P’ = {0.86, 0.14}, which is computed as a producantii®
normalized across the two hypotheses as follows:

P’(A) = (0.80 * 0.60) / [(0.80 * 0.60) + (0.20 * 0.40)] = 0.86
P’(B) = (0.20 * 0.40) / [(0.80 * 0.60) + (0.20 * 0.40)] = 0.14

As modeled by CAB, the cognitive heuristic for combining®d B is to average the two
probability distributions, which produces P’ = {0.70, 0.30}. Notice that this result is conservati
(also called “regressive”) relative to the Bayesian result P’ = {0.86, 0.14auked’ = {0.70,
0.30} is closer to a maximum entropy distribution {0.50, 0.50}.

This conservative bias was observed throughout ICArUS experiments (as otbkas

experiments that have been published, see Edwards, 1982), and the magnitude of bias was found
to be well-predicted by the averaging heuristic discussed above. Thus for theredgsk of
aggregating two independent probability distributions (esgané B) regarding the same set of
hypotheses (e.g., {A, B}), the CAB model uses a simple average instead of computing the
Bayesian-normalized product. Similarly, CAB implements other simple ieggdb model other
cognitive biases as heuristic deviations from Bayesian computations.

The simple equations of the CAB model were found to be remarkably accurate atipgedi

human performance and sensemaking biases (MITRE, 2014; 2012b). In fact the CAB a®del w
comparable to the best neural models developed by ICArUS performer teandictiye

human responses and biases, per the program metrics for CPA and CFA (discusgezhin Sec
2.6).

Of course CAB is only a parametric model of heuristic strategies, andaslses not offer
mechanistic insights into underlying neural-biological processes. But caiopataimplicity
and behavioral accuracy combine to make CAB a useful model for predicting theudegmaf
analytical biases in laboratory situations as well as real-worldigeete.

For example, as discussed in Section 2.3, training of a Bayesian technique dubbed $1ELP ha
been proposed as one way to help analysts overcome the conservative bias found throughout
ICArUS experiments. One use of the CAB model would be to compute the expectedideagnit
of bias in practical situations, as a measure of the potential benefit to be lggithe Bayesian
technique. In addition to theveragingheuristic discussed above, CAB also computes other
heuristics and biases at other steps of the Octaloop. This makes the model uasfdssing

which steps of the Octaloop, and associated heuristics/biases, would be mostabémefici
address with new analytic techniques, training, and tools.
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3 Conclusion

This document reviewed eight products of ICArUS T&E, and discussed how each might be
extended beyond ICArUS to practical applications and future research in thgdnte
Community (IC). Referring to Table 1 of Sectiotntroduction the eight products fall into two
categories. The first four products deal most generally with the cogriialecges of
sensemaking, as prescribed by geospatial intelligence doctrine (Secjiare&ctibed in
analytical case studies (Section 2.2), modeled in a Bayesian-computatomalvirk (Section
2.3), and captured in the experimental designs of ICArUS challenge problectisiiR.4).
These products hold promise for use by analysts, instructors, engineerseandhers across
the IC. The next four products deal more specifically with software (Be2tb), metrics
(Section 2.6), data (Section 2.7), and insights (Section 2.8) from ICArUS experimeénts a
analyses. These products would be most useful to information system engineeseanthers
developing computational-cognitive models.

Among the eight products, one appears especially promising for near-tasitigrato the IC.

This product is the Bayesian-computatioBataloopthat was developed @&sComputational

Basis for ICArUS Challenge Problem Desid@urns, 2014a). As detailed in Sectiofransition

of that document, and discussed in Section 2.3 of the present document, the Octaloop can be
used as a Structured Analytic Technique (SAT) to support inferencing in accovdtnce
Bayesian principles. This technique, dubbed HELP (hypotheses, evidence, likelihoods, prior
and posteriors), could be taught in the context of real-world case studies sh$eassed to
develop the Octaloop in the first place. The technique and associated trainingussedis

further in a paper submitted to thgernational Conference on Naturalistic Decision Making
(Burns, 2014c).

With respect to future R&D, an important direction is to measure and model Veteati
sensemaking on “open-ended” problems that more directly address the Octaloab steps
Discriminate Evidencdsolate EvidencgGenerate HypothesgandEstimate Likelihoods
Human performance on these aspects of sensemaking could not feasibly bedveeasure
modeled within the constraints of the ICArUS program. Nevertheless, thesésasipe
sensemaking are obviously important and arguably of most importance to real-wwbtths of
intelligence analysis.
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