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Abstract 
The IARPA (Intelligence Advanced Research Projects Activity) program ICArUS (Integrated 
Cognitive-neuroscience Architectures for Understanding Sensemaking) developed and tested 
brain-based computational models of “sensemaking” – a cognitive component of intelligence 
analysis. MITRE’s role was in Test and Evaluation (T&E) of the neural-computational models 
developed by several teams of performers. This document discusses the potential for transition of 
T&E products beyond ICArUS to practical applications and future research in the Intelligence 
Community. The products and potential uses are summarized by a table in Section 1 
Introduction, and the most promising opportunities are highlighted in Section 3 Conclusion.  
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1 Introduction 
This document discusses potential uses of Test & Evaluation (T&E) products from ICArUS: 
Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking, a program 
funded by the Intelligence Advanced Research Projects Activity (IARPA). Details of the 
ICArUS program are provided in the Broad Agency Announcement (BAA, 2010) available at: 
http://www.iarpa.gov/index.php/research-programs/icarus/baa.  
 
A summary of T&E products is provided in ICArUS: Overview of Test and Evaluation Materials 
(Burns, Bonaceto, Fine, & Oertel, 2014), available at: http://www.mitre.org/publications/all. The 
present document differs in addressing how these T&E products can be applied beyond the 
ICArUS program itself, to practical applications and further research in the Intelligence 
Community (IC). 
 
As stated in the BAA (2010): “The goal of the ICArUS Program is to construct brain-based 
computational models of the process known as sensemaking. Sensemaking, a core human 
cognitive ability, underlies intelligence analysts’ ability to recognize and explain relationships 
among sparse and ambiguous data. By shedding light on the fundamental mechanisms of 
sensemaking, ICArUS models will enable the Intelligence Community to better predict human-
related strengths and failure modes in the intelligence analysis process and will point to new 
strategies for enhancing analytic tools and methods.” 
 
Consistent with that objective, the present document is concerned with how products of ICArUS 
T&E can enable the Intelligence Community to better predict human-related strengths and 
failure modes in the intelligence analysis process and point to new strategies for enhancing 
analytic tools and methods. The focus of this MITRE report is on T&E materials, rather than 
neural-computational models developed by ICArUS performer teams, for two reasons.  
 
First, the role of MITRE and its subcontractors on the ICArUS program was to test and evaluate 
neural models developed by performer teams. Second, the scope of neural modeling in the 
program was limited to laboratory challenge problems designed by MITRE in accordance with 
T&E requirements of the BAA (2010). This scope excluded important aspects of real-world 
sensemaking that were deemed infeasible to address in integrated cognitive-neuroscience 
architectures, including natural language processing as well as the rich and sophisticated 
knowledge representations (RASKRs) by which intelligence analysts make sense of real-world 
situations.  
 
With these scope limitations, the integrated cognitive-neuroscience architectures developed by 
ICArUS performer teams serve as laboratory demonstrations of computational models – rather 
than field-ready implementations of functional systems. Therefore the potential for near-term 
transition of ICArUS to practical applications lies primarily in the products of T&E, especially 
those products that extend beyond the program’s scope of computational neural modeling.  
 
The remainder of this report discusses eight such products and potential uses, as summarized in 
Table 1. 
 

http://www.iarpa.gov/index.php/research-programs/icarus/baa
http://www.mitre.org/publications/all
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Table 1: Potential uses and users of ICArUS T&E products in the Intelligence Community (IC). 

 

Product 
of T&E 

Purpose 
in T&E 

Potential Uses 
in the IC 

Potential Users 
in the IC 

Doctrinal 
Review 

Defining the scope and 
methods of GEOINT. 

Comparing the GEOINT 
perspectives of various 
agencies across the IC and 
DoD. 

Analysts, Instructors, 
Engineers, Researchers 

Analytical 
Stories 

Identifying the challenges 
of sensemaking. 

Training in the use of 
Bayesian analytic techniques. 

Analysts, Instructors, 
Engineers, Researchers 

Computational 
Basis 

Modeling the components 
of analysis. 

Developing techniques, 
training, and tools to support 
reasoning in accordance with 
Bayesian principles. 
Directing future R&D toward 
open-ended problems that 
require creative 
sensemaking. 

Analysts, Instructors, 
Engineers, Researchers 

Prototypical 
Problems 

Exemplifying tasks of 
geospatial intelligence. 

Relating the missions of 
ICArUS experiments to real-
world challenges of 
geospatial intelligence. 

Analysts, Instructors, 
Engineers, Researchers 

Functional 
Software 

Simulating geospatial 
intelligence missions. 

Demonstrating the cognitive 
challenges of geospatial 
intelligence.  

 
Engineers, Researchers 

Mathematical 
Benchmarks 

Evaluating sensemaking 
performance. 

Quantifying the value of 
information and 
effectiveness of inferences.  

 
Engineers, Researchers 

Experimental 
Data 

Uncovering biases and 
individual differences. 

Understanding analytic 
performance and cognitive 
biases in sensemaking.  

 
Engineers, Researchers 

Behavioral 
Model 

Computing human 
heuristics and biases. 

Predicting cognitive biases as 
simplified deviations from 
normative standards. 

 
Engineers, Researchers 

 
 

As outlined in Table 1, the eight T&E products fall into two categories with respect to potential 
users identified in the rightmost column. The first four products are most generally applicable 
and potentially of use to analysts, instructors, engineers, and researchers. These products are 
discussed in Sections 2.1, 2.2, 2.3, and 2.4 below. The next four products are more specific to 
ICArUS and primarily of use to engineers and researchers. These products are discussed in 
Sections 2.5, 2.6, 2.7, and 2.8 below.  
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2 Discussion 
 

2.1 Doctrinal Review: Defining the Scope and Methods of GEOINT 

 
In accordance with T&E requirements of the ICArUS BAA (2010), MITRE designed “challenge 
problems” to measure the sensemaking performance of human beings and neural models. Also in 
accordance with the BAA (2010, page 10), these challenge problems involve “… the analysis of 
simulated GEOINT data”, where GEOINT is defined by the BAA (2010, page 8) consistent with 
Title 10 U.S. Section 467 as: “The exploitation and analysis of imagery and geospatial 
information to describe, assess, and visually depict physical features and geographically 
referenced activities on Earth”. 
 
The program’s focus on GEOINT was intended to promote transfer of insights from ICArUS 
R&D to stakeholders at the National Geospatial-Intelligence Agency (NGA), as well as other 
organizations in the IC that create or consume geospatial intelligence. As described in a recent 
report by the National Research Council (NRC, 2013) on the “Future U.S. Workforce for 
Geospatial Intelligence”: 
 

“We live in a changing world with multiple and evolving threats to national security, 
including terrorism, asymmetrical warfare, and social unrest. Visually depicting and 
assessing these threats using imagery and other geographically-referenced information is 
the mission of the National Geospatial-Intelligence Agency (NGA). As the nature of the 
threat evolves, so do the tools, knowledge, and skills needed to respond.” 
 

Sensemaking applies directly to this mission of NGA as an important aspect of assessing the 
threats. Thus as a first step toward design of ICArUS challenge problems, MITRE performed a 
review of geospatial intelligence doctrine – in order to better understand how various 
organizations and individuals defined the concept of GEOINT and prescribed the practice of 
GEOINT. This effort, known as the Prescriptive-Cognitive Task Analysis (PTA), was 
documented in a comprehensive report (MITRE, 2012a) and summarized in a companion paper 
submitted to NGA’s journal, Geospatial Intelligence Review (Stech, 2014). 
 
The PTA reviews doctrinal definitions of GEOINT put forth by NGA, DoD (Department of 
Defense, including Joint Staff, Marines, Army, and Air Force), and other organizations. The 
report also reviews various GEOINT methods, including: Intelligence Preparation of the 
Battlespace; GEOINT Preparation of the Environment; Structured Geospatial Analytic Method; 
and Querying, Mining, Assembly, Dissemination, and Integration. All of these methods are 
variations on a common theme in which functional processes such as collection (getting 
GEOINT), depiction, (showing GEOINT), exploitation (using GEOINT), and dissemination 
(sharing GEOINT) are integrated in the overall practice of geospatial intelligence. 
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Although details of the PTA were derived from documents published by government agencies, 
the MITRE report (2012a) and paper (Stech, 2014) hold potential for transition back to the IC by 
virtue of reviewing and relating the GEOINT perspectives of various agencies across the IC and 
DoD. Further potential for transition exists with respect to the exploitation of GEOINT, as 
ICArUS developed insights into how (and how well) analysts can use GEOINT to make sense of 
uncertain situations and thereby “assess the threats” (see NRC, 2013, noted above). For 
example, ICArUS formally identified the cognitive demands of GEOINT sensemaking, and 
experimentally uncovered cognitive biases such as conservatism that can compromise efficient 
exploitation of GEOINT by intelligence analysts. These and other insights from ICArUS, which 
are outlined in the remainder of this document, may be useful to analysts engaged in GEOINT; 
instructors who teach and train GEOINT; engineers who design systems that are employed in 
GEOINT; and researchers who advance the development of concepts, models, systems, or other 
aspects of GEOINT. 
 

2.2 Analytical Stories: Identifying the Challenges of Sensemaking 

 
The PTA (see Section 2.1) reviewed how GEOINT should be done per relevant doctrine. In 
addition, MITRE also reviewed how GEOINT is done by various analysts. This work is 
documented in a Descriptive-Cognitive Task Analysis (DTA), which includes 26 case-studies of 
geospatial sensemaking (MITRE, 2013). 
 
The DTA is the product of structured interviews with intelligence analysts, who were encouraged 
to tell stories of cases in which they had to make sense of some anomalous information or 
uncertain situation. Analysts were also told that ICArUS was most interested in cases where a 
surprising discovery was made, while analyzing geospatial information, which enabled the 
explanation or prediction of some entity or activity. Over a dozen interviews were performed 
with analysts across various agencies of the IC and DoD, and these interviews were 
supplemented by reviews of published papers addressing similar problems of geospatial analysis. 
 
The primary purpose of the DTA was to ensure that ICArUS challenge problems could be related 
directly to GEOINT practice as well as to GEOINT doctrine (per the PTA). An examination (see 
Burns, 2014b) of all 26 stories in the DTA uncovered six inferential variables that were 
repeatedly involved in sensemaking about adversarial situations (e.g., assessing the threats). The 
six variables, identified in Table 2 for each of the 26 stories in which they appear, are 
characterized as follows: vulnerability, opportunity, capability, activity (prognostic), activity 
(forensic), and propensity. These variables are routinely addressed in analytic practices such as 
“Suitability Analysis”, which includes assessments of vulnerability, opportunity, and capability; 
and “Activity-Based Intelligence”, which involves prognostic and forensic inferences about 
hypothesized activities as well as associated propensities of adversaries to act. Therefore the 
ICArUS Phase 2 challenge problem (Burns, 2014b) was designed to include all six variables in 
diverse “missions” posed by ICArUS experiments. The ICArUS Phase 1 challenge problem 
(Burns, Greenwald, & Fine, 2014) involved similar variables, but focused on spatial variations 
without temporal dependencies.  
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Table 2: Mapping six variables of the ICArUS challenge problems to 26 case studies of intelligence. 
The variables are as follows: P = vulnerability, U = opportunity, Pc = capability, Pt = activity 

(prognostic), Ft = activity (forensic), and Pa = propensity. (For details see Burns, 2014b). 

 

No. Title of Case Study P U Pc Pt Ft Pa 

1 Clinical vs. Actuarial Geospatial Profiling Strategies X    X  

2 Route Security in Baghdad X X   X X 

3 International Security Assistance Force Handoff X X X  X X 

4 Explosively Formed Penetrator Placement X X X  X X 

5 Finding Osama Bin Laden X X X    

6 Geospatial Abduction Problems X    X  

7 Mapping of Cholera in Nineteenth-Century London     X  

8 Clandestine Airstrips in Guatemala X      

9 Mapping of Arsenic in Twentieth-Century Bangladesh     X  

10 Complexity and Accuracy of Geospatial Profiling Strategies X    X  

11 Geospatial Analysis of Terrorist Activities X X   X  

12 District Control     X X 

13 Tunisian Refugee Flow   X    

14 Improvised Explosive Device (IED) Use in Afghanistan and Pakistan     X  

15 Gang Roundup     X  

16 Gang Geographic Movement     X  

17 Predicting Mortgage Fraud X X   X X 

18 Tracking High-Value Cargo X X X X  X 

19 Environmental Study X  X    

20 Trench Mystery X X X  X X 

21 IED Attack Patterns  X X X  X X 

22 Underground Facility X X X  X X 

23 Memphis Airport Communications Failure  X X     

24 Banking Infrastructure X X     

25 The Lone Reconnaissance Vehicle X X X X  X 

26 Road Network Impact on Insurgency X X X  X  
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Besides the primary purpose of guiding challenge problem design, a secondary purpose of the 
DTA was to promote a program-long dialogue between ICArUS researchers and IC stakeholders. 
The DTA stories helped ICArUS researchers understand the cognitive demands and context of 
real-world sensemaking. The mapping of these stories to ICArUS challenge problems helped IC 
stakeholders understand how laboratory research on sensemaking relates to real-world analytic 
practice.  
 
Consistent with this secondary purpose, DTA may be useful for continuing transition of ICArUS 
insights to the IC. As a specific example, MITRE has identified the potential for developing a 
new analytic technique to support Bayesian reasoning, as discussed below in Section 2.3. The 
DTA stories can serve as real-world case studies for training analysts in use of this technique, 
and for testing analysts on their understanding of the underlying principles. 
 

2.3 Computational Basis: Modeling the Components of Analysis 

 
Along with a focus on GEOINT (see PTA and DTA in Sections 2.1 and 2.2), the BAA (2010) 
required that ICArUS challenge problems address core sensemaking processes outlined in a so-
called “data-frame theory of sensemaking” (Klein, et al., 2007).  
 
The data-frame theory offers a conceptual description of sensemaking, but does not provide a 
computational specification of functional processes or knowledge representations – as needed for 
rigorous design and assessment of ICArUS challenge problems. In particular, the ICArUS BAA 
(2010) required that T&E include two types of quantitative assessments, namely: Comparative 
Performance Assessment (CPA), using a numerical percentage to measure how well a neural 
model matches human sensemaking performance; and Cognitive Fidelity Assessment (CFA), 
using normative (Bayesian) solutions as benchmarks for measuring whether neural models 
exhibit cognitive biases like those of human subjects. 
 
To meet these requirements, MITRE developed a Bayesian framework that models sensemaking 
in a recurring cycle of eight stages, dubbed the Octaloop (Burns, 2014a). The stages are 
numbered and named as follows:  
 

1. Isolate Evidence 
2. Generate Hypotheses 
3. Estimate Likelihoods 
4. Aggregate Confidence 
5. Prognosticate Consequence 
6. Evaluate Consequence 
7. Anticipate Evidence 
8. Discriminate Evidence. 
 

Steps 1-4 model processes of inferencing. Steps 5-6 model processes of decision-making, which 
rely on results from inferencing. Steps 7-8 model processes of foraging, which rely on results 
from inferencing and then support inferencing in the next cycle of sensemaking.  
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This model, derived from a real-world story of sensemaking by Klein, et al. (2007), was used to 
design challenge problems that satisfied two major program constraints. First, the challenge 
problems were designed to pose cognitive demands of geospatial intelligence, including core 
sensemaking processes identified in the BAA (2010). Second, the challenge problems were 
designed to enable quantitative assessments of human and model performance, per the BAA 
(2010), including the computation of normative (Bayesian) solutions needed for measuring 
cognitive biases exhibited by human subjects and neural models in ICArUS experiments. 
 
In light of other program constraints, discussed in Section 1 (also see Burns, 2014a), the ICArUS 
challenge problems are necessarily simplified with respect to real-world sensemaking. The 
Octaloop, which was derived from examples of real-world sensemaking, helps pinpoint exactly 
what cognitive representations and processes are simplified in ICArUS challenge problems, and 
why the simplifications were necessary in order to accomplish T&E per the ICArUS BAA 
(2010). The Octaloop also helps point to how these simplifications can be overcome in transition 
to IC applications beyond the scope of ICArUS itself. In particular, Section 7 Transition of the 
Octaloop document (Burns, 2014a) discusses practical applications to analytic techniques, 
training, and tools – as well as to further R&D.  
 
With respect to techniques, Section 7.1 of the document (Burns, 2014a) suggests that the 
Octaloop can be used to develop a new Structured Analytic Technique (SAT) – dubbed HELP 
(hypotheses, evidence, likelihoods, priors, and posteriors). This technique addresses limitations 
of existing SATs (Beebe & Pherson, 2012), such as Brainstorming and Analysis of Competing 
Hypotheses (ACH, see Heuer, 1999), which do not support analytical reasoning in accordance 
with Bayesian principles. Initial transition of HELP to intelligence practitioners and researchers 
has been accomplished by a paper submitted to the International Conference on Naturalistic 
Decision Making (Burns, 2014c).  
 
With respect to training, Section 7.2 of the Octaloop document (Burns, 2014a) suggests that 
sensemaking stories can be useful for training HELP as a Bayesian SAT. Besides the story by 
Klein, et al. (2007), which was used to develop and demonstrate the Octaloop, all 26 stories of 
sensemaking contained in the DTA (MITRE, 2013) have been informally reviewed to ensure that 
the Octaloop and associated HELP technique do apply. A more formal application of Bayesian 
HELP to any of these stories could be performed in order to support case-based training – i.e., to 
tailor the training to case studies that are most relevant to an individual analyst’s interests and 
expertise. 
 
With respect to tools, Section 7.3 of the Octaloop document (Burns, 2014a) highlights those 
steps of cognitive processing that were performed for human participants (and neural models) in 
ICArUS experiments, rather than by participants in these experiments. For example, the four 
Octaloop steps of Discriminate Evidence, Isolate Evidence, Generate Hypotheses, and Estimate 
Likelihoods were all performed by the computer. The results of these steps were then provided to 
participants as inputs from simulated intelligence systems, which participants used in the 
Octaloop step of Aggregate Confidence (i.e., to evaluate the probabilities of competing 
hypotheses given evidence from various sources/systems). These simulated intelligence systems 
represent prototype tools that might be extended and implemented in real-world systems, to 
support human sensemaking by automating the associated steps of the Octaloop. 
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Those steps of the Octaloop that were performed by participants in ICArUS experiments include 
Aggregate Confidence, Prognosticate Consequence, Evaluate Consequence, and Anticipate 
Evidence. At these steps ICArUS measured and modeled human sensemaking, including 
cognitive biases relative to normative (Bayesian) solutions. The experimental results suggest a 
number of opportunities for designing tools that can help humans overcome biased behaviors – 
i.e., by automating aspects of the Bayesian SAT dubbed HELP. For example, a strong bias 
observed in the step of Aggregate Confidence was conservatism, in which participants reported 
probability distributions that were too close to {0.50, 0.50} compared to the Bayesian solution 
for two hypotheses {H, ~H}. Computational systems might be developed to accomplish this step 
and/or advise analysts on how to aggregate more effectively. One example of such a system uses 
“structure-mapping” visualizations to assist users in applying Bayesian principles (Burns, 2006; 
2007), and this as well as other opportunities for support systems are discussed in the Octaloop 
document (Burns, 2014a). 
 
With respect to R&D, Section 7.4 of the Octaloop document (Burns, 2014a) suggests that a 
Bayesian approach can help bridge the gap that currently exists between the practice of 
intelligence analysis and research efforts in academia and industry. In particular, the Octaloop 
document identifies those cognitive-computational processes that are necessary for competence 
in sensemaking, highlighting which processes have been addressed directly by ICArUS R&D 
and which processes remain to be addressed in future R&D. As noted above, the greatest 
opportunities for further research appear to exist at the Octaloop steps of Discriminate Evidence, 
Isolate Evidence, Generate Hypotheses, and Estimate Likelihoods, which were all performed for 
participants (by simulated systems) rather than by participants in experiments. 
 
As discussed in the Octaloop document (Burns, 2014a), these cognitive processes could not be 
measured and modeled by challenge problems within the scope of the ICArUS program, for 
several reasons. One reason is that the BAA (2010) required measuring and modeling of average 
human performance, which meant that all human participants had to use the same evidence, 
hypotheses, and likelihoods. Another reason is that visual perception and natural language 
processing were out of scope for neural modeling and hence not tested in ICArUS challenge 
problems. These two cognitive capabilities are especially important in the Octaloop steps of 
Discriminate Evidence and Isolate Evidence. Finally, the BAA (2010) required minimizing any 
role played by humans’ RASKRs, which are the cognitive basis by which humans generate 
hypotheses and estimate the likelihoods of evidence (in light of hypotheses). Minimizing the role 
of RASKRs meant eliminating the steps of Generate Hypotheses and Estimate Likelihoods from 
the scope of cognitive demands posed by ICArUS challenge problems. 
 
Clearly these cognitive processes and the RASKRs that they employ are important to real-world 
sensemaking. In fact, the steps of Generate Hypotheses and Estimate Likelihoods are arguably 
the most important steps of all – as they provide the foundation for subsequent steps in which 
analysts make sense of evidence by assessing the probabilities of competing hypotheses. 
Therefore one important direction for future research is to address “creative” sensemaking – in 
“open-ended” problems where hypotheses, likelihoods, and evidence are not pre-defined by 
experimenters and not provided to participants as inputs.  
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2.4 Prototypical Problems: Exemplifying Tasks of Geospatial Intelligence 

 
As described above, efforts to design ICArUS challenge problems were informed by GEOINT 
doctrine and practice as well as by a Bayesian-computational model of sensemaking. The 
resulting challenge problems pose cognitive demands that are prototypical of geospatial 
intelligence analysis and are quantifiable in accordance with the ICArUS BAA (2010).  
 
Different challenge problems were developed for Phases 1 and 2 of the program, with Phase 1 
focused on spatial sensemaking and Phase 2 focused on spatial-temporal sensemaking. Detailed 
documents describe the design rationale and associated test specifications for Phase 1 (Burns, 
Greenwald, & Fine, 2014) and Phase 2 (Burns, 2014b). 
 
The test specifications are necessarily specific to the ICArUS program itself. Therefore the 
underlying design rationale is likely to be among the most useful aspects of ICArUS challenge 
problems in transition to IC applications. In particular, the Phase 2 design document (Burns, 
2014b) includes a Section 6 on Transition that maps all 26 case studies of sensemaking obtained 
from DTA (see Section 2.2) to key variables of the challenge problem. The same mapping also 
addresses practical applications to tools, training, and techniques, similar to the discussion 
summarized in Section 2.3 above.  
 
Besides the challenge problems themselves, associated products of ICArUS T&E include 
Functional Software, Mathematical Benchmarks, Experimental Data, and a Behavioral Model. 
All of these products might be leveraged in engineering applications and future research 
investigations, as discussed in Sections 2.5, 2.6, 2.7, and 2.8 below. 
 

2.5 Functional Software: Simulating Geospatial Intelligence Missions 

 
A useful feature of the ICArUS challenge problems is that they are implemented in functional 
software – as employed in ICArUS experiments. This software might be adapted for other uses, 
for example to assess the cognitive biases of individual analysts, and for training analysts to 
overcome their biases. However, such applications would require major modifications to the 
ICArUS challenge problem software, for several reasons. 
 
First, although the challenge problem software measures individual responses, this was done per 
the BAA (2010) in order to obtain a robust average of performance and biases across a 
population of participants (roughly N = 100 in each phase of the program). The experimental 
design of stimuli and measures of performance did not address matters of consistency within 
each individual’s responses, as would be needed to establish the reliability of an instrument for 
testing an individual’s biases. 
  
Second, the challenge problem software was designed for testing human subjects (and neural 
models), and for measuring cognitive biases relative to normative standards. The software 
contains no functionality for training human subjects or otherwise mitigating cognitive biases. In 
fact, the software was specifically designed not to introduce any training that would mitigate 
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biases, because the purpose of ICArUS experiments was to measure biases as they exist 
naturally. A major re-design effort would be required to augment the existing software with 
capabilities for training analysts and mitigating biases. 
 
Because the ICArUS challenge problem software was designed for different purposes, it is not 
recommended for use in testing individual analysts or training analysts to overcome biases. 
Instead the computational basis for design of ICArUS challenge problems, namely the Octaloop, 
is recommended for these uses as discussed in Section 2.3. Nevertheless, ICArUS challenge 
problem software may be useful for demonstrating the cognitive task demands of geospatial 
sensemaking. This is because the software was designed to engage participants in game-like 
simulations of geospatial intelligence “missions”, prototypical of real-world analysis (within 
program constraints), and great care was taken by designers in communicating the missions to 
participants as needed to conduct meaningful experiments. In particular, the software for each 
challenge problem includes an overall tutorial and mission-specific instructions, presented to 
participants at the start of an experiment and available for reference throughout the experiment. 
These materials are non-technical and understandable by experts and non-experts in disciplines 
of geospatial analysis, as evidenced by successful completion of all missions by hundreds of 
diverse participants in ICArUS experiments. 
 
As a product of T&E, all screen shots comprising the tutorials and mission instructions are 
captured in a “walkthrough” document for Phase 1 (Burns, Fine, Bonaceto, & Beltz, 2014) and 
Phase 2 (Burns & Bonaceto, 2014). Compared to the challenge problem design documents 
(Burns, Greenwald, & Fine, 2014; Burns, 2014b), the walkthrough documents provide a much 
more accessible introduction to ICArUS challenge problems. Therefore these walkthrough 
documents would be a good starting point for those interested in using the challenge problem 
software for purposes beyond ICArUS experiments. For software developers, further details of 
the input/output file formats are available in a development guide for Phase 1 (Bonaceto & Fine, 
2014a) and Phase 2 (Bonaceto & Fine, 2014b). Other files and folders included in the challenge 
problem software are described by ICArUS: Overview of T&E Materials (Burns, Bonaceto, Fine, 
& Oertel, 2014).  
 

2.6 Mathematical Benchmarks: Evaluating Sensemaking Performance 

 
Across both phases of the ICArUS program, an important aspect of challenge problem design 
was to compute normative (Bayesian) solutions – as benchmarks for measuring the cognitive 
biases of human subjects and neural models. This was a difficult requirement to satisfy, as 
discussed in A Computational Basis for ICArUS Challenge Problem Design (Burns, 2014a). As a 
result, the specific task demands of Phase 1 and Phase 2 challenge problems were shaped largely 
by the cognitive biases (relative to normative solutions) that were specified by the BAA (2010) 
for Cognitive Fidelity Assessment (CFA). There were four biases in Phase 1, and four more for a 
total of eight biases in Phase 2 as outlined in Table 3. 
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Table 3: Cognitive biases addressed in ICArUS challenge problems. 

 

Behavior (bias) Example (referring to evidence, hypothesis, and confidence) 

Anchoring and Adjustment 
When new evidence supports a hypothesis, a person’s confidence in that 
hypothesis goes up less than it should. 

Persistence of Discredited 
Evidence 

When new evidence refutes a hypothesis, a person’s confidence in that 
hypothesis goes down less than it should.  

Representativeness 
When evidence is typical of a hypothesis, a person discounts other 
relevant evidence (such as base rates) in assigning confidence to the 
hypothesis. 

Availability 
When a hypothesis (or evidence supporting a hypothesis) is vivid or 
otherwise memorable, a person assigns too much confidence to the 
hypothesis.  

Probability Matching 
When given a choice among options, a person will not always choose the 
option that is probably the best, but rather will choose each option at a 
frequency equal to its probability of being the best. 

Confirmation Bias 
When given a choice among sources of evidence, a person will seek 
evidence that is likely to support the most probable hypothesis. 

Satisfaction of Search 
When collecting evidence to evaluate a hypothesis, a person will 
prematurely terminate the search upon finding supporting evidence. 

Change Blindness 
When monitoring evidence to evaluate a hypothesis, a person will fail to 
detect evidence that supports another hypothesis. 

 
 
In order to assess these biases, design of the challenge problems (Burns, Greenwald, & Fine, 
2104; Burns, 2014b) included development of a mathematical equation (inequality) that defined 
each bias as a deviation from normative (Bayesian) performance. These defining equations were 
used in Cognitive Fidelity Assessment (CFA), and they are also useful beyond ICArUS as 
concise and computable statements of the biased behaviors. Often in the IC and elsewhere, 
claims about biases are lacking normative benchmarks and objective measures as needed to 
establish the existence and extent of biases. The defining equations developed for use in CFA 
offer a more rigorous approach, at least for the biases and task demands within the scope of the 
ICArUS program. These defining equations may be useful in future research and practice aimed 
at uncovering and overcoming biases in intelligence analysis. 
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Similarly, Comparative Performance Assessment (CPA) required mathematical measures of 
sensemaking performance – in order to compare human and model performance to each other as 
well as to normative solutions. These mathematical measures (Burns, 2014b; Burns, Greenwald, 
& Fine, 2014; Burns, 2011) employ information-theoretic concepts, such as relative entropy, to 
quantify the overall divergence of one belief structure (e.g., human or model) from another (e.g., 
Bayesian or random). The same information-theoretic measures were used to assess the “value of 
information” – i.e., to measure how strongly some evidential data (from intelligence sources) 
should affect the beliefs of a human or model. Like the measures of cognitive biases discussed 
above for CFA, these measures of sensemaking performance may be useful in future research as 
well as practical applications – to quantify the value of information and effectiveness of 
inferences under uncertainty. 
 
Beyond ICArUS, the mathematical measures developed for CFA and CPA would likely be of 
most use to engineers who design advanced systems for “fusing” intelligence information. In 
particular, the state of the art in “high-level information fusion” is known to be lacking models 
and measures of sensemaking, as discussed by Blasch, et al. (2012). The Bayesian-mathematical 
Octaloop (Burns, 2014a) and associated information-theoretic measures of performance (Burns, 
2014b; Burns, Greenwald, & Fine, 2014; Burns, 2011) can advance this state of the art – by 
providing a formal model and measures to quantify human, machine, and combined human-
machine performance. Previously such efforts have been hampered by a lack of theories and 
models that express human sensemaking in computational terms, consistent with those used in 
the engineering of machine systems and needed for integrating human-machine performance. 
 
Also within the realm of data fusion, a notion of “layers” or “levels” appears in almost all work 
aimed at integrating systems and humans. Although obviously simplified, the ICArUS challenge 
problems are useful for understanding how levels of human sensemaking relate to layers of 
system designers. In particular, besides characterizing stages of sensemaking in the Octaloop, the 
ICArUS challenge problems also highlight causal-hierarchical levels at which information is 
processed in sensemaking, as follows: intent → tactic → action → feature → datum; where 
arrows indicate the direction of causality (i.e., from cause to effect: cause → effect). This 
hierarchy was made explicit in design of the Phase 2 challenge problem, and the Phase 2 design 
document (Burns, 2014b) provides a brief discussion of how the five levels relate to five layers 
of a well-known data fusion model (Steinberg & Bowman, 2004). 
 

2.7 Experimental Data: Uncovering Biases and Individual Differences 

 
Besides the functional software and mathematical benchmarks used for ICArUS experiments, 
MITRE has also made available the human behavioral data collected in Phase 1 (N = 103 
participants) and Phase 2 (N = 123 participants) of the program. The software/data package 
includes source code for analyzing all behavioral data, along with results of data analyses in 
numerical and graphical formats, as described in the T&E Overview document (Burns, Bonaceto, 
Fine, & Oertel, 2014). 
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These human data may be useful to engineers and researchers interested in measuring and 
modeling cognitive performance. As described in Section 2.6, the challenge problem missions 
were designed to elicit and evaluate eight different cognitive biases, each defined by a 
mathematical equation (inequality) based on information-theoretic quantities such as entropy. 
ICArUS experiments involve a diverse set of missions and biases, which offer a rich dataset to 
researchers who wish to model cognitive performance on laboratory tasks that are typical of 
geospatial intelligence. This was the purpose for which human data were collected in ICArUS 
experiments, i.e., for use by researchers building neural-computational models, and the same 
data may be useful to other researchers in future modeling efforts. 
 
Per the BAA (2010), ICArUS experiments were aimed at measuring and modeling average 
human performance across all participants in each experiment. However, some research teams 
wished to explore the potential for predicting individual human performance. This was of interest 
to ICArUS from a transition perspective, because of its potential for informing personnel 
selection in the practice of real-world intelligence. One hypothesis was that individual 
differences could be attributed to cognitive “phenotypes” and distinguished by psychometric 
instruments based on underlying neural attributes – such as the scales for Behavioral Inhibition 
System (BIS) and Behavioral Activation System (BAS) proposed by Carver and White (1994). 
Also a number of demographic variables were hypothesized to affect individual differences in 
performance, including years of experience as a practicing analyst, and level of training in 
probability and statistics.  
 
MITRE performed regression analyses (for numerical variables) and Analyses of Variance 
(ANOVAs, for categorical variables) to establish whether any of these or other independent 
variables affected dependent measures of performance in the Phase 2 experiment (N = 123). 
There were three dependent measures of interest, namely: inferencing (about hypotheses given 
evidence), decision-making (about the best course of action, given results of inferencing), and 
foraging (to obtain information for use in inferencing and decision-making). Results showed that 
none of the dozen-plus psychometric or demographic variables that were analyzed could 
significantly (p < 0.05) and substantially (R2 > 10%) predict any of the dependent measures of 
performance (inferencing, decision-making, or foraging). These results suggest that individual 
differences in sensemaking performance are very difficult to predict, and that such differences 
are not readily attributed to parameter variations in neural models. The results also support the 
approach of the ICArUS BAA (2010), which was to focus the program on measuring and 
modeling average sensemaking performance (rather than individual differences) in order to 
understand the existence and extent of cognitive biases relative to normative standards. 

2.8 Behavioral Model: Computing Human Heuristics and Biases 

 
As a final T&E product, MITRE developed a behavioral model for Computing Analytical Biases, 
dubbed CAB. This model differs from the Bayesian Octaloop (Section 2.3), which is a normative 
model of the sensemaking cycle. CAB is a cognitive model, using simple equations to compute 
human sensemaking responses and to characterize biases as deviations from Bayesian 
computations – for specific tasks/trials that were presented to participants in ICArUS 
experiments.  
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For instance, some tasks of ICArUS challenge problems presented probability distributions that 
participants were required to aggregate in order to evaluate competing hypothesis. The normative 
procedure for doing so, per the Octaloop step of Aggregate Confidence, is to compute the 
normalized product of input probabilities. As an example, if P1 = {0.80, 0.20} and P2 = {0.60, 
0.40} are provided as independent probability distributions for hypotheses {A, B}, then the 
Bayesian aggregation is P’ = {0.86, 0.14}, which is computed as a product of P1 and P2 
normalized across the two hypotheses as follows: 
 

P’(A) = (0.80 * 0.60) / [(0.80 * 0.60) + (0.20 * 0.40)] = 0.86 
 
P’(B) = (0.20 * 0.40) / [(0.80 * 0.60) + (0.20 * 0.40)] = 0.14 
 

As modeled by CAB, the cognitive heuristic for combining P1 and P2 is to average the two 
probability distributions, which produces P’ = {0.70, 0.30}. Notice that this result is conservative 
(also called “regressive”) relative to the Bayesian result P’ = {0.86, 0.14}, because P’ = {0.70, 
0.30} is closer to a maximum entropy distribution {0.50, 0.50}. 
 
This conservative bias was observed throughout ICArUS experiments (as well as other 
experiments that have been published, see Edwards, 1982), and the magnitude of bias was found 
to be well-predicted by the averaging heuristic discussed above. Thus for the cognitive task of 
aggregating two independent probability distributions (e.g., P1 and P2) regarding the same set of 
hypotheses (e.g., {A, B}), the CAB model uses a simple average instead of computing the 
Bayesian-normalized product. Similarly, CAB implements other simple equations to model other 
cognitive biases as heuristic deviations from Bayesian computations. 
 
The simple equations of the CAB model were found to be remarkably accurate in predicting 
human performance and sensemaking biases (MITRE, 2014; 2012b). In fact the CAB model was 
comparable to the best neural models developed by ICArUS performer teams in predicting 
human responses and biases, per the program metrics for CPA and CFA (discussed in Section 
2.6).  
 
Of course CAB is only a parametric model of heuristic strategies, and as such does not offer 
mechanistic insights into underlying neural-biological processes. But computational simplicity 
and behavioral accuracy combine to make CAB a useful model for predicting the magnitudes of 
analytical biases in laboratory situations as well as real-world intelligence. 
 
For example, as discussed in Section 2.3, training of a Bayesian technique dubbed HELP has 
been proposed as one way to help analysts overcome the conservative bias found throughout 
ICArUS experiments. One use of the CAB model would be to compute the expected magnitude 
of bias in practical situations, as a measure of the potential benefit to be gained by the Bayesian 
technique. In addition to the averaging heuristic discussed above, CAB also computes other 
heuristics and biases at other steps of the Octaloop. This makes the model useful for assessing 
which steps of the Octaloop, and associated heuristics/biases, would be most beneficial to 
address with new analytic techniques, training, and tools. 
 



 

 

16 

 

3 Conclusion 
This document reviewed eight products of ICArUS T&E, and discussed how each might be 
extended beyond ICArUS to practical applications and future research in the Intelligence 
Community (IC). Referring to Table 1 of Section 1 Introduction, the eight products fall into two 
categories. The first four products deal most generally with the cognitive challenges of 
sensemaking, as prescribed by geospatial intelligence doctrine (Section 2.1), described in 
analytical case studies (Section 2.2), modeled in a Bayesian-computational framework (Section 
2.3), and captured in the experimental designs of ICArUS challenge problems (Section 2.4). 
These products hold promise for use by analysts, instructors, engineers, and researchers across 
the IC. The next four products deal more specifically with software (Section 2.5), metrics 
(Section 2.6), data (Section 2.7), and insights (Section 2.8) from ICArUS experiments and 
analyses. These products would be most useful to information system engineers and researchers 
developing computational-cognitive models. 

Among the eight products, one appears especially promising for near-term transition to the IC. 
This product is the Bayesian-computational Octaloop that was developed as A Computational 
Basis for ICArUS Challenge Problem Design (Burns, 2014a). As detailed in Section 7 Transition 
of that document, and discussed in Section 2.3 of the present document, the Octaloop can be 
used as a Structured Analytic Technique (SAT) to support inferencing in accordance with 
Bayesian principles. This technique, dubbed HELP (hypotheses, evidence, likelihoods, priors, 
and posteriors), could be taught in the context of real-world case studies such as those used to 
develop the Octaloop in the first place. The technique and associated training are discussed 
further in a paper submitted to the International Conference on Naturalistic Decision Making 
(Burns, 2014c).  

With respect to future R&D, an important direction is to measure and model “creative” 
sensemaking on “open-ended” problems that more directly address the Octaloop steps of 
Discriminate Evidence, Isolate Evidence, Generate Hypotheses, and Estimate Likelihoods. 
Human performance on these aspects of sensemaking could not feasibly be measured and 
modeled within the constraints of the ICArUS program. Nevertheless, these aspects of 
sensemaking are obviously important and arguably of most importance to real-world problems of 
intelligence analysis.   
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