
The views, opinions and/or findings

contained in this report are those of The

MITRE Corporation and should not be

construed as an official government position,

policy, or decision, unless designated by

other documentation.

Approved for Public Release; Distribution

Unlimited. Public Release Case Number 19-

3213

©2020 The MITRE Corporation.

All rights reserved.

Bedford, MA

Enterprise Mission Tailored
OAuth 2.0 Profile

Beth Abramowitz
Kelley Burgin
Tommy Farinelli
Neil McNab
Michael Peck
Mark Russell
Roger Westman

February 2020

This page intentionally left blank.

ii

Table of Contents

1 Introduction 1...

1.1 Requirements Notation and Convention 1..

1.2 Terminology 1..

1.3 Conformance 2...

1.4 Environment Overview 2..

1.5 Use Cases 3...

...

...

1.5.1 User Authorization Delegation to a Web Application 3

1.5.2 User Authorization Delegation to a Native Application 5

1.5.3 User Authorization Delegation to a Browser-Embedded Client 7.................................

..1.5.4 Token Exchange by Protected Resources 7

1.6 Global Requirements 8...

2 Client Profiles 9..

2.1 Client Types 9...

2.1.1 Confidential Client 9..

2.1.2 Public Client 9..

2.2 Connection to the Authorization Server 9..

2.2.1 Discovery 10...

2.2.2. Requests to the Authorization Endpoint 10..

2.2.3. Requests to the Token Endpoint 11..

2.2.4 Client Registration 12..

2.2.4.1 Redirect URI 12..

2.2.4.2 Client Keys 12..

2.3 Connection to the Protected Resource 13...

2.3.1 Requests to the Protected Resource 13..

3 Authorization Server Profile 13..

3.1 Connections with Clients 13...

3.1.1 Grant Types 14...

3.1.2 Client Authentication 14...

3.1.3 User Approval of the Client's Authorization 14...

3.1.4 Discovery 16...

3.1.5 PKCE 17...

3.1.6 Redirect URIs 18..

3.2 JWT Access Tokens 19..

iii

3.3 Refresh Tokens 20..

3.4 Connections with Protected Resources 21..

3.4.1 Introspection 21..

3.5 Response to Authorization Requests 21...

3.6 Token Lifetimes 22...

3.7 Scopes 22..

3.8 Protecting Resources 22...

3.9 Viewing and Revoking Client Accesses and Tokens 22..

3.10 Audit 23..

4 Protected Resource Profile 23..

4.1 Connections from Clients 23..

4.2 Connections to Authorization Servers 24...

5 Security Rationale for Profile Requirements 24...

6 Security Considerations 27...

7 Normative Reference 28...

8 Informative Reference 29...

Acronyms 31...

List of Figures
Figure 1 Example Web Application OAuth Protocol Flow 4..

Figure 2 Example Web Application OAuth Protocol Flow using Profile Requirements (Not

Exhaustive) 5..

Figure 3 Example Native Application OAuth Protocol Flow 7...

iv

1 Introduction

This document profiles the OAuth 2.0 web authorization framework [RFC6749] for use in the

context of securing web-facing application programming interfaces (APIs), particularly

Representational State Transfer (RESTful) APIs. The OAuth 2.0 specifications accommodate a

wide range of implementations with varying security and usability considerations, across

different types of software clients. The OAuth 2.0 client, authorization server, and protected

resource profiles defined in this document serve two purposes:

1. Define a mandatory baseline set of security controls, while maintaining reasonable ease

of implementation and functionality.

2. Define objective requirements for use of features that provide stronger security properties

but are not yet widely available in OAuth implementations.

This OAuth profile is derived from the International Government Assurance Profile (iGov) for

OAuth 2.0 [OpenID-iGov] produced by the OpenID Foundation and has been tailored for use in

enterprise environments, as further described in section 1.4. This profile incorporates many

recommendations found in the IETF Internet-Draft “OAuth 2.0 Security Best Current Practice”

[Lodderstedt].

Readers are expected to be familiar with [RFC6749]. All requirements in that specification

apply; this profile document levies additional requirements for the enterprise environment.

Section 5 of this document provides detailed security rationale for the profiling decisions made.

1.1 Requirements Notation and Convention

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in RFC 2119.

All uses of JSON Web Signature (JWS) and JSON Web Encryption (JWE) data structures in this

specification utilize the JWS Compact Serialization or the JWE Compact Serialization; the JWS

JSON Serialization and the JWE JSON Serialization are not used.

1.2 Terminology

This specification uses the terms "Access Token", "Authorization Code", "Authorization

Endpoint", "Authorization Grant", "Authorization Server", "Client", "Client Authentication",

"Client Identifier", "Client Secret", "Grant Type", "Protected Resource", "Redirection URI",

"Refresh Token", "Resource Owner", "Resource Server", "Response Type", and "Token

Endpoint" defined by OAuth 2.0 , the terms "Claim Name", "Claim Value", and "JSON Web

Token (JWT)" defined by JSON Web Token (JWT) [RFC7519], and the terms defined by

OpenID Connect Core 1.0 [OIDC-Core].

1

1.3 Conformance

This specification defines requirements for the following components:

• OAuth 2.0 clients.

• OAuth 2.0 authorization servers.

• OAuth 2.0 protected resources.

The requirements include details of interaction between these components:

• Client to authorization server.

• Client to protected resource.

• Protected resource to authorization server.

When a profile-compliant component is interacting with other profile-compliant components, in

any valid combination, all components MUST implement the requirements as stated in this

specification. All interaction with non-profile components is outside the scope of this

specification.

A profile-compliant OAuth 2.0 client MUST support and utilize certain features as described in

section 2 of this specification.

A profile-compliant OAuth 2.0 authorization server MUST support and utilize certain features as

described in section 3 of this specification.

A profile-compliant OAuth 2.0 protected resource MUST support and utilize certain features as

described in section 4 of this specification.

1.4 Environment Overview

This profile is intended for use in enterprise environments, not consumer-facing environments. In

enterprise environments, users do not "own" their data, the enterprise does. However, the user

may have some level of responsibility for ensuring that unauthorized entities do not access data

that the user has permission to access. In general, users need to be strongly identified in

enterprise environments and not be able to act anonymously when accessing data.

The enterprise is assumed to have a deployed Public Key Infrastructure (PKI). The PKI issues

each end user a certificate attesting to the user's identity. The PKI also issues non-person entity

(NPE) certificates to clients, protected resources, and authorization servers. As discussed later,

the PKI can be leveraged to provide greater assurance than is present in current typical non-

enterprise OAuth deployments.

Users typically have authorization attributes associated with them by the enterprise representing

what types of data the user is permitted to access or what operations the user is allowed to

perform. Clients similarly may have authorization attributes associated with them. However, the

specific details of these attributes are out of scope for this profile. Future profiles may attempt to

2

standardize common attributes seen in enterprise environments. In some cases, it may make

sense to include these attributes (or the intersection of the user’s attributes and client’s attributes

when applicable) in OAuth access tokens issued by the authorization server. In other cases, it

may make sense to omit these attributes from access tokens, in which case protected resources

could present the user’s identity and client’s identity (as asserted in the access token) to a

separate enterprise authorization server to obtain attributes or access control decisions.

1.5 Use Cases

This profile is oriented around two primary use cases: user authorization delegation to a web

application, and user authorization delegation to a native application.

This profile is not intended to describe user authentication to a web application / server. OpenID

Connect, which builds upon OAuth, is intended for that use case. OpenID Connect is profiled in

a separate document.

This use case section is non-normative and is intended to provide examples to set the stage for

the rest of the profile document.

1.5.1 User Authorization Delegation to a Web Application

In this use case, a web application requires the ability to access a protected resource on behalf of

a user, making use of some subset of the user's privileges. A web application is a capability

provided by a web server running on a separate endpoint system than the user.

In a naïve approach, the web application could simply be given the ability to impersonate any

user to the protected resource solely by authenticating itself and providing the user's identity.

However, this approach does not prove to the protected resource that the user was actually

involved in the transaction. Another naïve approach would be for the user to provide

authentication credentials (e.g. username/password or PKI private key) to the web application.

However, this approach provides the web application with full, unfettered ability to act as if it is

the user with any resource.

OAuth enables a safer, limited approach for delegating user authorization to a web application to

act on behalf of the user. With OAuth (when used in compliance with this profile), the web

application constructs an authorization request and redirects the user's web browser to an

authorization server. The user authenticates to the authorization server (or the user's web browser

makes use of an existing, authenticated session), and the authorization server redirects the user

back to the web application with a one-time-use authorization code. The web application

provides the one-time-use authorization code to the authorization server and receives an access

token that it then uses to access the protected resource on the user's behalf. The access token is

issued based on authentication to the authorization server of both the web application and the

user. The access token can be limited to only allow a subset of the user's privileges, although the

details of how to represent authorization attributes within access tokens are out of scope of this

profile. The access token can be limited to only be valid at a particular protected resource.

3

In OAuth terminology, the user is known as a “resource owner,” and the web application is

known as a “client.” Since web applications have the ability to securely store credentials with

which to authenticate themselves to the authorization server, they are known in the OAuth

specification as “confidential clients.”

Figure 1 illustrates this use case:

Figure 1 Example Web Application OAuth Protocol Flow

Figure 2 provides a high-level view of this use case including a non-exhaustive overview of this

profile’s requirements and recommendations:

4

Figure 2 Example Web Application OAuth Protocol Flow using Profile Requirements (Not

Exhaustive)

1.5.2 User Authorization Delegation to a Native Application

In this use case, a native application running on the user's endpoint system requires the ability to

access a protected resource on behalf of a user, making use of some subset of the user's

privileges. For example, an email client may need the ability to access a user's mailbox on an

email server.

In a naïve approach, the native application could simply be given the user's authentication

credentials (e.g. username/password or private key). However, this approach requires the native

application to store those credentials, and if stolen, provides an attacker with full, unfettered

ability to act as if he or she is the user with any resource. In the case of a username/password, it

also unnecessarily exposes the protected resource to the user's credentials. In addition, this

approach limits the flexibility to introduce new authentication methods or perform adaptive

authentication (e.g. based on dynamic risk decisions), as those methods would need to be

supported by all native applications and all protected resources. For example, TLS client

certificate authentication is widely used in some enterprise environments but requiring every app

developer to implement client certificate authentication within each app is not feasible.

OAuth enables a safer, limited approach for delegating user authorization to a native application

to act on behalf of the user. With OAuth, using the protocol options described in this profile, the

native application constructs an authorization request and redirects the user's web browser to an

authorization server. The user authenticates to the authorization server through the web browser

(or the user's web browser makes use of an existing, authenticated session). Any authentication

5

method supported by both the web browser and the authorization server can be used, without

specific support needed in the application. The authorization server redirects the user back to the

native application with a one-time-use authorization code. The native application provides the

one-time-use authorization code to the authorization server and receives an access token that it

then uses to access the protected resource on the user's behalf. The access token can be limited to

only allow a subset of the user's access, and the access token can be limited to only be valid at a

particular protected resource. For example, an access token issued to an email client could be

valid only for accessing the email server, not other enterprise servers.

In OAuth terminology, the user is known as a “resource owner,” and the native application is

known as a “client.” Unlike web applications, native applications typically do not have the

ability to securely store credentials with which to authenticate the application itself to the

authorization server. The access token is generally issued by the authorization server based on

just the user's authentication, not the native application's authentication (the native application

provides a client ID, but it typically can be easily captured and spoofed). Applications that do not

possess secure credentials with which to authenticate themselves to the authorization server are

known in the OAuth specification as “public clients.”

In some cases, rather than use a separate web browser, the native application embeds its own

web browser. This approach eliminates the complexity of redirecting the authorization response

(containing the one-time-use authorization code) from the web browser back to the native

application. However, this approach is generally not appropriate, as it directly exposes the native

application to the user's credentials. It may also limit the types of authentication methods that can

be used, as the native application may not have functionality for as wide a range of

authentication methods as a dedicated web browser.

6

Figure 3 Example Native Application OAuth Protocol Flow

1.5.3 User Authorization Delegation to a Browser-Embedded Client□

In this use case, a client application running entirely within the user's web browser requires the

ability to access a protected resource on behalf of a user. These applications are typically written

in JavaScript and are often referred to as "Single-Page Applications" (SPAs).

At this time, this use case is out of scope for this profile. The IETF Internet-Draft OAuth 2.0 for

Browser-Based Apps [Parecki] provides potentially useful details and guidance for this use case,

but an examination of its feasibility and security properties would first be necessary.

1.5.4 Token Exchange by Protected Resources

Token exchange is currently out of scope for this profile but will likely be addressed in a future

version or additional document. This section provides an initial description of the token

exchange use case.

A protected resource (PR1) may need to call a second protected resource (PR2) on behalf of the

user in order to satisfy a query received from a client. In some deployments, PR1 could simply

use the access token that it received from the client to access PR2. However, this profile requires

the access token be sender-constrained and/or audience-constrained, so that would not work.

Instead, PR1 must request a new access token from the authorization server that is valid for PR1

7

to use at PR2 to act on behalf of the user. If PR2 needs to access third resource, PR3, then PR2

must request a new access token, and so on. The IETF Internet-Draft “OAuth 2.0 Token

Exchange” [Jones] describes a potential approach for satisfying this need that may be addressed

in a future document.

If the protected resources are operated by different organizations, each of which relies on

different authorization servers, then the situation is more complex, but can likely still be

addressed.

1.6 Global Requirements

This section contains requirements that apply to all of the components described in this profile.

All network connections must use TLS 1.2 or above. Each originator of a TLS connection (the

entity acting as a TLS client) must verify the destination's (the entity acting as a TLS server)

certificate in accordance with [RFC6125]. Each originator MUST have a capability to limit the

certification authorities (CAs) trusted for verifying the destination's PKI certificate. The

capability may be provided by the originator itself or by the originator’s underlying platform

(e.g. operating system on which it is running).

8

2 Client Profiles
This section profiles the expected OAuth behavior of clients.

2.1 Client Types

This section, and overall profile, distinguishes between two types of clients: confidential clients

and public clients.

2.1.1 Confidential Client

The term “confidential client” applies to clients that act on behalf of a particular user and require

delegation of that user’s authority to access protected resources. Furthermore, these clients are

capable of interacting with a web browser application to facilitate the user's interaction with the

authorization server. Confidential clients use their own credentials to authenticate themselves to

the authorization server, so both the client and the user are authenticated by the authorization

server as part of an authorization request.

Typically, confidential clients are front-end web server applications, running on a separate

endpoint than the user, as described in Section 1.5.1.

Confidential clients MUST possess their own asymmetric key pair used for authentication to the

authorization server. Confidential clients MUST support mutually authenticated TLS (as

described in draft-ietf-oauth-mtls) [Campbell] using an X.509v3 certificate [RFC5280] for the

client's public key.

2.1.2 Public Client

The term “public client” applies to clients that act on behalf of a particular user and require

delegation of that user's authority to access the protected resource. Furthermore, these clients are

capable of interacting with a web browser application to facilitate the user's interaction with the

authorization endpoint of the authorization server.

Unlike confidential clients, public clients do not use their own credentials to authenticate

themselves to the authorization server. Instead, only a client ID (which often can be easily

captured) is used. Public clients are typically native applications running on the user's endpoint

device, often leading to many identical instances of a piece of software operating in different

environments and running simultaneously for different end users. With public clients, generally

only the user, not the client, is authenticated by the authorization server as part of an

authorization request.

2.2 Connection to the Authorization Server

Confidential and public clients MUST support the OAuth authorization code grant. Confidential

clients MAY support the OAuth client credentials grant. Other grant types MUST NOT be used.

OAuth authorization servers provide both an authorization endpoint and a token endpoint. This

section profiles connections to these two endpoints from clients. Both the authorization endpoint

9

and token endpoint are used with the authorization code grant. Only the token endpoint is used

with the client credentials grant.

OAuth confidential and public clients do not connect directly to the authorization endpoint.

Rather, as described by the OAuth authorization code flow in [RFC6749], the client performs its

request by redirecting the user's web browser to the authorization endpoint with appropriate

parameters. The user authenticates to the authorization endpoint, and the user's web browser is

redirected back to a URI hosted by the client, from which the client obtains an authorization

code. The client then presents the authorization code to the authorization server's token endpoint

to obtain an access token.

2.2.1 Discovery

Confidential and public clients MAY use the OAuth 2.0 Authorization Server Metadata standard

[RFC8414] to retrieve configuration information from the authorization server, including

supported options, endpoint URIs, and public keys.

Alternatively, confidential and public clients MAY configure some or all of this information in

an out-of-band manner.

2.2.2 Requests to the Authorization Endpoint

Confidential and public clients making a request to the authorization endpoint MUST use an

unpredictable value for the state parameter with at least 128 bits of entropy. Confidential and

public clients MUST validate the value of the state parameter upon return to the redirect URI and

MUST ensure that the state value is securely tied to the user’s current session (e.g. by relating

the state value to a session identifier issued by the client to the browser).

Confidential and public clients MUST include their full redirect URI in the authorization request.

If a confidential or public client provides more than one redirect URI, then it MUST securely tie

the authorization request's redirect URI value to the user's current session and ensure that the

authorization response is received at the same redirect URI. The client MUST reject the

authorization response if it is received at a different URI.

Public clients MUST, and confidential clients SHOULD, in compliance with [RFC7636] using

the S256 code challenge method, include the code_challenge parameter and

code_challenge_method (set to "S256") in the authorization request. The PKCE code_verifier

value MUST contain at least 128 bits of entropy, and it MUST be securely tied to the user's

current session (e.g., by relating the code_verifier value to a session identifier issued by the client

software to the browser), such that in the client's follow-up request to the token endpoint, the

client only presents the code_verifier to the token endpoint that is associated with the same user

session.

Confidential and public clients may need to interact with more than one protected resource. If

those protected resources are operated by different entities, this may introduce the need for

confidential and public clients to interact with more than one authorization server (authorization

servers operated by different entities, not a multi-homed approach where a logical authorization

10

server may have multiple physical instantiations for failover purposes). However, confidential

and public clients MUST associate only one logical authorization server with each protected

resource. Confidential and public clients MUST use a unique redirect URI for each logical

authorization server.

The following is a sample, non-normative response from a client to the end user’s browser for

the purpose of redirecting the end user to the authorization server's authorization endpoint to

perform an authorization request:

HTTP/1.2 302 Found
Cache-Control: no-cache
Connection: close
Content-Type: text/plain; charset=UTF-8
Date: Wed, 07 Jan 2015 20:24:15 GMT
Location: https://as.example.com/authorize?client_id=55f9f559-
2496-49d4-b6c3-351a58
6b7484&state=cd567ed4d958042f721a7cdca557c30d&response_type=code
&scope=example_resource&redirect_uri=https%3A%2F%2Fclient%2Eexam
ple%2Ecom%2Fcb
Status: 302 Found

This causes the browser to send the following (non-normative) request to the authorization

endpoint:

GET /authorize?client_id=55f9f559-2496-49d4-b6c3-
351a586b7484&state=cd567ed4d958042f721a7cdca557c30d&response_typ
e=code&scope=example_resource&redirect_uri=
https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: as.example.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:31.0)
Gecko/20100101 Firefox/31.0 Iceweasel/31.2.0
Accept:text/html,application/xhtml+xml,application/xml;q=0.9,*/*
;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://ehr-va.example.com/portal/signin
Cookie: JSESSIONID=706D5B3A7B3AB3FCE8C6AA7201B8B9CF
Connection: keep-alive

2.2.3 Requests to the Token Endpoint

Confidential and public clients connect directly to the token endpoint to retrieve access tokens

(and optionally refresh tokens). When the authorization code grant is used, confidential and

public clients provide the authorization code they receive as described in the previous section.

When the client credentials grant is used, confidential clients do not provide an authorization

code (as stated in [RFC6749], public clients cannot use the client credentials grant).

11

Confidential clients MUST support authentication to the authorization server's token endpoint

using mutually authenticated TLS. Public clients MAY support use of mutually authenticated

TLS to the authorization server’s token endpoint. In the case of public clients, mutually

authenticated TLS is not used to authenticate the client to the authorization server, it is used to

enable cryptographically binding the access token issued by the authorization server to a private

key held by the public client.

Mutually authenticated TLS connections by confidential clients MUST comply with IETF

Internet-Draft draft-ietf-oauth-mtls-12 or newer ("OAuth 2.0 Mutual TLS Client Authentication

and Certificate Bound Access Tokens") [Campbell]. The self-signed certificate option described

in Section 2.2 "Self-Signed Certificate Mutual TLS OAuth Client Authentication Method"

MUST NOT be used. Rather, the Section 2.1 "PKI Mutual TLS OAuth Client Authentication

Method" MUST be used, where the subject distinguished name (DN) of the client's certificate is

registered with the authorization server.

Mutually authenticated TLS connections by public clients, if used, MUST comply with Section 4

of draft-ietf-oauth-mtls-12 or newer.

2.2.4 Client Registration

All clients MUST register with the authorization server.

Client registration MUST be completed by out-of-band configuration; dynamic registration is not

supported by this profile.

2.2.4.1 Redirect URI

Clients using the authorization code grant type MUST register their full redirect URIs.

Clients MUST NOT forward values passed back to their redirect URIs to other arbitrary or user-

provided URIs (a practice known as an "open redirector”).

Android provides a feature called Android App Links [AppLinks], and Apple iOS provides a

similar feature called Universal Links [UniversalLinks]. These features provide the ability to

enforce a strong binding between a HTTPS URI and a specific mobile app installed on the

Android or Apple device. Clients running on the user’s endpoint device SHOULD use

[AppLinks], [UniversalLinks], or a similar capability enforced by the endpoint device platform

to protect their redirect URIs.

2.2.4.2 Client Keys

Confidential clients using mutually authenticated TLS MUST register their certificate's subject

DN with the authorization server.

12

2.3 Connection to the Protected Resource

2.3.1 Requests to the Protected Resource

Clients SHOULD send access tokens to the protected resource in the Authorization header as

defined by [RFC6750]. Clients MAY send access tokens using the form-parameter method

[RFC6750]. Clients MUST NOT send access tokens using the query-parameter method

[RFC6750]. A future version of this profile may remove the form-parameter method option.

Clients SHOULD support mutually authenticated TLS to the protected resource as specified in

section 3 "Mutual TLS Client Certificate Bound Access Tokens" of draft-ietf-oauth-mtls-12

[Campbell] or newer. Mutually authenticated TLS will be mandated in a future profile, as it

provides strongly desired security properties (further security rationale is provided in section 5)

but is not yet widely implemented.

A non-normative example of an OAuth-protected call to a protected resource endpoint, sending

the token in the Authorization header, follows:

GET /example_resource HTTP/1.1
Authorization: Bearer
eyJhbGciOiJSUzI1NiJ9.eyJleHAiOjE0MTg3MDI0MTIsImF1ZCI6WyJjMWJjOD
RlNC00N2VlLTRiNjQtYmI1Mi01Y2RhNmM4MWY3ODgiXSwiaXNzIjoiaHR0cHM6XC
9cL2lkcC1wLmV4YW1wbGU
uY29tXC8iLCJqdGkiOiJkM2Y3YjQ4Zi1iYzgxLTQwZWMtYTE0MC05NzRhZjc0YzR
kZTMiLCJpYXQiOjE0MTg2
OTg4MTJ9.iHMz_tzZ90_b0QZS-
AXtQtvclZ7M4uDAs1WxCFxpgBfBanolW37X8h1ECrUJexbXMD6rrj_uuWEq
PD738oWRo0rOnoKJAgbF1GhXPAYnN5pZRygWSD1a6RcmN85SxUig0H0e7drmdmRk
PQgbl2wMhu-6h2Oqw-ize
4dKmykN9UX_2drXrooSxpRZqFVYX8PkCvCCBuFy2O-
HPRov_SwtJMk5qjUWMyn2I4Nu2s-R20aCA-7T5dunr0
iWCkLQnVnaXMfA22RlRiU87nl21zappYb1 EHF9ePyq3Q353cDUY7vje8m2kKXYT
gc_bUAYuW-W3SMSw5UlKa
HtSZ6PQICoA
Accept: text/plain, application/json, application/*+json, */*
Host: resourceserver.example.com
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.2.3 (java 1.5)

3 Authorization Server Profile

This section details the expected behavior of OAuth Authorization Servers.

3.1 Connections with Clients

13

3.1.1 Grant Types

The authorization server MUST support the authorization code grant type as described in Section

2 and MAY support the client credentials grant type. The implicit grant type and resource owner

password credentials grant types MUST NOT be allowed, and requests attempting to use those

grant types MUST be rejected. The authorization server MUST limit each registered client

(identified by a client ID) to a single grant type only, since at runtime, a single piece of software

will be functioning in only one of the modes described in Section 2. Clients that have multiple

modes of operation MUST have a separate client ID for each mode.

Authorization codes issued by the authorization server MUST contain a minimum of 128 bits of

entropy and MUST NOT be accepted by the authorization server more than 60 seconds after

issuance. The authorization server MUST tie each issued authorization code to a specific client

(identified by client ID) and not accept an authorization code if redeemed by a different client.

The authorization server MUST NOT accept an authorization code again after it has been

redeemed. In a multihomed environment where one logical authorization server is represented by

multiple physical instantiations, situations may occur where an authorization code is

inadvertently accepted more than once. If this occurs, it MUST be noted in an audit log, any

refresh token issued based on the authorization code MUST be revoked, and any access token

issued based on the authorization code SHOULD be revoked.

3.1.2 Client Authentication

The authorization server MUST enforce client authentication for confidential clients.

The authorization server MUST support TLS client certificate authentication of confidential

clients as specified in draft-ietf-oauth-mtls-12 [Campbell] or newer. The self-signed certificate

option described in section 2.2 "Self-Signed Certificate Mutual TLS OAuth Client

Authentication Method" MUST NOT be used. Rather, the section 2.1 "PKI Mutual TLS OAuth

Client Authentication Method" MUST be used, where the subject distinguished name (DN) of

the client's certificate is registered with the authorization server.

The authorization server MAY support mutually authenticated TLS connections from public

clients as specified in draft-ietf-oauth-mtls-12 [Campbell] or newer. In the case of public clients,

mutually authenticated TLS is not used to authenticate the client to the authorization server, it is

used to enable cryptographically binding the access token issued by the authorization server to a

private key held by the public client. This requirement is only a MAY because it complicates the

TLS configuration of the authorization server, as it would need to be able to validate certificates

presented by confidential clients while ignoring validation of certificates presented by public

clients. This requirement may be changed to a SHOULD or MUST in a future release of this

profile after further lab investigation.

3.1.3 User Approval of the Client's Authorization

The authorization server MUST support the following mechanism for users to authenticate

themselves to the authorization server:

• TLS client certificate authentication

14

The authorization server SHOULD support the following mechanisms for users to authenticate

themselves to the authorization server:

•□ RSA SecurID

•□ FIDO 2.0 / W3C Web Authentication

•□ Username and password

•□ Federated authentication to a user’s home organization using OpenID Connect (described

below as identity brokering)

The authorization server MAY support other user authentication mechanisms. The authorization

server MAY also support the ability to authenticate (and assess security properties of) the user’s

endpoint device in addition to the user. Such support may be detailed further in a future profile.

The authorization server MUST provide the ability for an administrator to configure which user

authentication mechanisms are acceptable.

This profile limits each protected resource to only trusting one authorization server. Since users

from multiple organizations may need to access a protected resource, authorization servers

typically need to be prepared to authenticate users from those multiple organizations. Several

options exist for performing this authentication. If TLS client certificate authentication is used,

the authorization server could be configured to trust those organizations’ certification authorities

(CAs). However, this approach is less practical for authentication methods such as RSA SecurID

and username/password. It may also be impractical for FIDO, as it would require the user’s

FIDO authenticator to be registered with each individual authorization server.

Another approach to authenticate users from other organizations is to perform identity brokering.

With identity brokering, the authorization server associated with the protected resource acts as an

OpenID Connect Relying Party (RP), delegating authentication to an OpenID Connect Identity

Provider (IdP) operated by the user’s home organization. The user authenticates to their home

Identity Provider, and that IdP asserts to the authorization server that the authentication

successfully occurred. If needed, the protected resource’s authorization server can obtain

attributes about the user from the user’s IdP or through some other mechanism. If implemented,

identity brokering MUST be performed in accordance with the Enterprise OpenID Connect

Profile.

In non-enterprise environments, it is typically desired that the authorization server present the

user with the client's authorization request and require the user to explicitly approve the request.

However, in this profile, the authorization server MUST provide the ability to disable such

functionality. This profile is intended for enterprise environments where individual users do not

"own" data. Additionally, this profile requires clients to be approved by the enterprise as part of

the client registration process, which provides protection from malicious clients.

If the end user is prompted with an interactive approval page, the authorization server MUST

indicate to the user:

•□ A human readable name of the client

•□ What kind of access the client is requesting (including scope, target resource, etc.)

15

3.1.4 Discovery

The authorization server MUST provide an OAuth authorization server metadata endpoint as

specified by [RFC8414]. The endpoint MAY be shared with an OpenID Connect discovery

endpoint. The endpoint’s response MUST contain at least the following fields and MAY contain

additional fields:

issuer The fully qualified issuer URL of the server

authorization_endpoint The fully qualified URL of the server's authorization endpoint

defined by OAuth 2.0

token_endpoint The fully qualified URL of the server's token endpoint defined by

OAuth 2.0

jwks_uri The fully qualified URI of the server's public key in JWK Set format

introspection_endpoint The fully qualified URL of the server's introspection endpoint

defined by OAuth Token Introspection

revocation_endpoint (only included if a revocation endpoint exists) The fully qualified

URL of the server's revocation endpoint defined by OAuth 2.0 Token

Revocation

Note that if the authorization server is also an OpenID Connect Provider, its discovery endpoint

must additionally meet the requirements listed in the Enterprise OpenID Connect Profile.

The following non-normative example shows the JSON document found at an authorization

server metadata endpoint for an authorization server:

{
"token_endpoint": "https://as.example.com/token",
 "token_endpoint_auth_methods_supported": [

 "tls_client_auth"1
],
 "jwks_uri": "https://as.example.com/jwk",
 "authorization_endpoint": "https://as.example.com/authorize",
 "introspection_endpoint": "https://as.example.com/introspect",
 "service_documentation": "https://as.example.com/about",
 "response_types_supported": [

 "code" □
], □
 "revocation_endpoint": "https://as.example.com/revoke", □
 "grant_types_supported": [□
 "authorization_code",
 "client_credentials",□

], □
 "scopes_supported": [□
 "profile", "openid", "email", "address", "phone",

"offline_access"

1 Note: The “tls_client_auth” authentication method name has not yet been finalized by the IETF.

16

], □
 "op_tos_uri": "https://as.example.com/about", □
 "issuer": "https://as.example.com/", □
 "op_policy_uri": "https://as.example.com/about" □

}

It is RECOMMENDED that authorization servers provide cache information through HTTP

headers and make the cache valid for at least one week.

The authorization server MUST provide its public key (used by the authorization server to sign

tokens) in JWK Set format. The key MUST contain the following fields:

kid The key ID of the key pair used to sign this token

kty The key type

alg The default algorithm used for this key

The authorization server MUST provide an RS256 key with a modulus of at least 2048 bits. The

authorization server MAY provide additional keys using the following algorithms: RS384,

RS512, ES256, ES384, ES512, PS256, PS384, PS512.

The following is a non-normative example of a 2048-bit RSA public key:

{
"keys": [

{
"alg": "RS256",
 "e": "AQAB",

 "n": "o80vbR0ZfMhjZWfqwPUGNkcIeUcweFyzB2S2T-
hje83IOVct8gVg9FxvHPK1R
eEW3-p7-A8GNcLAuFP_8jPhiL6LyJC3F10aV9KPQFF-
w6Eq6VtpEgYSfzvFegNiPtpMWd7C43
EDwjQ-GrXMVCLrBYxZC-
P1ShyxVBOzeR_5MTC0JGiDTecr_2YT6o_3aE2SIJu4iNPgGh9Mnyx
dBo0Uf0TmrqEIabquXA1-
V8iUihwfI8qjf3EujkYi7gXXelIo4_gipQYNjr4DBNlE0__RI0kD
U-27mb6esswnP2WgHZQPsk779fTcNDBIcYgyLujlcUATEqfCaPDNp00J6AbY6w",

 "kty": "RSA",
 "kid": "rsa1"

 }

] }

3.1.5 PKCE

An authorization server MUST support the Proof Key for Code Exchange (PKCE) extension

[RFC7636] to the authorization code flow, including support for the S256 code challenge

17□

method. The authorization server MUST NOT allow clients to use the plain code challenge

method.

The authorization server MUST require use of PKCE by public clients, rejecting requests to the

authorization endpoint from public clients that do not contain a code_challenge. The

authorization server MUST be capable of allowing PKCE to be used by confidential clients, and

MUST be configurable to require PKCE to be used by either all or specifically designated

confidential clients.

The authorization server MUST ensure that if the request to the authorization endpoint contained

a code_challenge, then the corresponding request to the token endpoint MUST contain the

appropriate code_verifier.

3.1.6 Redirect URIs

The authorization server MUST compare the client's registered redirect URIs with the redirect

URI presented during an authorization request using an exact string match and MUST reject

requests with invalid or missing redirect URIs.

The authorization server MUST ensure that each redirect URI is one of the following:

•□ An HTTPS URI referring to a website with Transport Layer Security (TLS) protection or

an app installed on the user’s endpoint using [AppLinks], [UniversalLinks], or similar

capability

•□ Hosted on the user's endpoint without involving remote network connectivity (e.g.,

http://localhost/), however an HTTPS URI protected using [AppLinks], [UniversalLinks],

or similar capability is preferred when possible

•□ Hosted on a client-specific non-remote-protocol URI scheme (e.g., myapp://), however an

HTTPS URI protected using [AppLinks], [UniversalLinks], or similar capability is

preferred when possible

18

http://www.localhost/.com

3.2 Token Issuance Policy

The authorization server MUST be capable of enforcing an authorization policy that must be met

in order for tokens to be issued. This policy MUST be customizable by the administrator. This

profile does not enforce specific requirements upon capabilities of the authorization policy, but

we recommend at least the following attributes be considered:

• Attributes associated with the user’s account, such as:

o Personnel type (e.g. employee vs. contractor)

o Citizenship

• The user’s method(s) of authenticating to the authorization server

• The protected resource being accessed

• Security posture and other properties of the user’s endpoint device

• IP address from which the user’s endpoint device is connecting

3.3 JWT Access Tokens

The base OAuth specification does not dictate a specific format for access tokens. To facilitate

interoperability with protected resources, this profile requires that authorization servers issue

cryptographically signed access tokens in the JSON Web Token (JWT) format. The information

carried in the JWT is intended to allow a protected resource to verify the authenticity and parse

the contents of the token without additional network calls. If the protected resource is not capable

of performing these operations, it can make use of token introspection [RFC7662] to request

information about the token's authenticity and contents.

An IETF Internet-Draft “OAuth Access Token JWT Profile” [Bertocci], first published after we

began work on our profile, proposes a standard access token format. We may revisit this section

as the IETF Internet-Draft matures.

The authorization server MUST be capable of including the following claims in issued tokens:

iss The issuer URL of the server that issued the token.

client_id The client id of the client to whom this token was issued.

exp The expiration time (integer number of seconds since from 1970-01-01T00:00:00Z

UTC), after which the token MUST be considered invalid.

jti A unique JWT Token ID value with at least 128 bits of entropy. This value MUST

NOT be re-used in another token.

sub The identifier of the end-user that authorized this client, or in the case of the client

credentials grant, the client id of a client acting on its own behalf.

aud The audience of the token, an array containing the identifier(s) of protected

resource(s) for which the token is valid, if this information is known. The aud claim

may contain multiple values if the token is valid for multiple protected resources.

cnf Capability required for requests from confidential clients, optional for requests

from public clients. Specified by section 3 of draft-ietf-oauth-mtls (and by section 4

for public clients). Hash of the client’s PKI certificate that was presented using TLS

mutual authentication between the client and authorization server. This field binds

19

the access token to the client's certificate, enabling the protected resource to ensure

that only the authorized client can present the access token (over a mutually

authenticated TLS connection).

The following claims MUST be included in issued tokens: iss, client_id, exp, sub. One or both of

aud and cnf MUST be included.

The authorization server SHOULD be capable of including additional fields in issued tokens,

including the following:

nbf Not before timestamp

iat Issue timestamp

amr The user’s authentication method to the AS when the user authorized issuance of

this access token.

auth_time Timestamp of when the user authenticated to the AS in order to authorize issuance

of this access token.

The access tokens MUST be signed with JWS. The authorization server MUST support the

RS256 signature method for tokens. It MAY support the following additional asymmetric

signing methods defined in the IANA JSON Web Signatures and Encryption Algorithms

registry: RS384, RS512, ES256, ES384, ES512, PS256, PS384, PS512. The JWS header MUST

contain the following field:

kid The key ID of the key pair used to sign this token

The authorization server MAY encrypt access tokens using JWE. Encrypted access tokens

MUST be encrypted using the public key of the protected resource.

3.4 Refresh Tokens

The authorization server MUST require confidential clients to authenticate in order to redeem a

refresh token and MUST ensure that the refresh token was issued to the authenticated client.

The authorization server SHOULD provide the capability to bind refresh tokens issued to public

clients to a certificate belonging to the client as described in draft-ietf-oauth-mtls Section 4

[Campbell].

The authorization server SHOULD provide the capability to invalidate a refresh token after it is

redeemed with the authorization server, preventing the refresh token from being redeemed again.

Mandates on the specific format of the refresh token are out of scope of this profile, as the

refresh token is for the internal use of the authorization server, which both generates and

consumes the token.

The authorization server MAY sign refresh tokens using JWS and MAY encrypt refresh tokens

using JWE. Encrypted refresh tokens MUST be encrypted either using the authorization server's

public key or symmetrically encrypted using a secret key held by the authorization server.
20

3.5 Connections with Protected Resources

3.4.1 Introspection

The authorization server MUST provide a token introspection endpoint. Token introspection

[RFC7662] allows a protected resource to query the authorization server for metadata about a

token.

The server responds to an introspection request with a JSON object representing the token

containing the following fields as defined in the token introspection specification:

active Boolean value indicating whether or not this token is currently active at this

authorization server. Tokens that have been revoked, have expired, or were

not issued by this authorization server are considered non-active.

scope Space-separated list of OAuth 2.0 scope values represented as a single string.

exp Timestamp of when this token expires (integer number of seconds since from

1970-01- 01T00:00:00Z UTC)

sub An opaque string that uniquely identifies the user who authorized this token at

this authorization server (if applicable).

client_id An opaque string that uniquely identifies the OAuth 2.0 client that requested

this token

The server MAY include additional fields in its token introspection response.

The authorization server MUST require mutual TLS authentication for the introspection

endpoint.

A protected resource MAY cache the response from the introspection endpoint for a period of

time no greater than half the lifetime of the token. A protected resource MUST NOT accept a

token that is not active according to the response from the introspection endpoint.

3.6 Response to Authorization Requests

The following data will be sent as an Authorization Response to the Authorization Code Flow as

described above. The authorization response is sent via HTTP redirect to the redirect URI

specified in the request.

The following fields MUST be included in the response:

state The value of the state parameter passed in the authorization request. This value

MUST match exactly.

code The authorization code, a random string issued by the AS to be used in the request

to the token endpoint.

21

3.7 Token Lifetimes

This profile provides RECOMMENDED lifetimes for different types of tokens issued to

different types of clients. Specific applications MAY issue tokens with different lifetimes. Any

active token MAY be revoked at any time.

For clients using the authorization code grant type, access tokens MUST have a valid lifetime no

greater than one hour, and refresh tokens (if issued) SHOULD have a valid lifetime no greater

than twenty-four hours.

3.8 Scopes

Scopes define individual pieces of authority that can be requested by clients, granted by users,

and enforced by protected resources. Specific scope values will be highly dependent on the

specific types of resources being protected in a given interface. OpenID Connect, for example,

defines scope values to enable access to different attributes of user profiles.

Authorization servers SHOULD define and document default scope values that will be used if an

authorization request does not specify a requested set of scopes.

To facilitate general use across a wide variety of protected resources, authorization servers

SHOULD allow for the use of arbitrary scope values at runtime, such as allowing clients or

protected resources to use arbitrary scope strings upon registration.

3.9 Protected Resources

Protected resources grant access to clients if they present a valid access token with appropriate

authorization claims (e.g. the token's scope claim and potentially other claims conveying detailed

authorization information). Access tokens are not required to contain scopes or other claims

conveying detailed authorization information. If they do not, the access token asserts the identity

of the user (the token's sub claim) and the client (the token's client_id claim), and the protected

resource can make use of applicable enterprise authorization services to determine the allowed

access.

Protected resources trust the authorization server to authenticate the end user appropriately for

the importance, risk, and value level of the protected resource and requested scopes. The

authorization server MAY assert different scopes and authorization claims in the access token

depending on the method used to authenticate the user.

Authorization servers MAY allow a refresh token issued for multiple scopes to be used to obtain

an access token for just a subset of those scopes.

3.10 Viewing and Revoking Client Accesses and Tokens

The authorization server MUST provide an interface for end users to view a list of clients that

have been granted access to resources on the user's behalf, and for end users to revoke this

access. Revocation MUST revoke any currently valid refresh tokens issued to the client to access

22

resources on the user's behalf, SHOULD revoke applicable currently valid access tokens, and

MUST prevent the client from obtaining new tokens without the authorization server receiving a

new authorization request via the user.

Note that revocation of access tokens may not have an immediate impact, as protected resources

may not always check the revocation status of access tokens. However, this profile limits access

tokens to a lifetime of 60 minutes, and revocation of the corresponding refresh token will prevent

the client from obtaining a new access token upon the access token's expiration.

The authorization server SHOULD provide an [RFC7009]-compliant interface for clients to

request token revocation.

The authorization server MUST automatically revoke refresh tokens and SHOULD revoke

access tokens under the following conditions:

1. User's account has been locked or deleted.

2. User's account credentials under which the tokens were issued have been reported lost or

compromised (e.g. password, private key, hardware token, etc.).

3.11 Audit

The authorization server MUST record at least the following activities in an audit log:

1. Issuance of refresh tokens and access tokens to clients.

2. Attempted or successful use of an authorization code more than once.

4 Protected Resource Profile
This section describes the expected behavior of OAuth protected resources (also known as

resource servers). The connections with both clients and authorization servers are detailed below.

4.1 Connections from Clients

A protected resource MUST be capable of receiving access tokens passed in the authorization

header as described in [RFC6750]. A protected resource MAY also be capable of receiving

access tokens passed in the form parameter. A protected resource MUST NOT accept access

tokens passed using the query parameter method. A future version of this profile may prohibit

using the form parameter.

Protected resources MUST define and document which scopes are required for access to the

resource.

Protected resources MUST verify and interpret access tokens using either JWT, token

introspection [RFC7662], or a combination of the two.

The protected resource MUST check the aud (audience) claim, if it exists in the token, to ensure

that it includes the protected resource's identifier. The protected resource's identifier is the full

subject distinguished name (DN) in the protected resource's certificate. The protected resource

23

MUST ensure that the rights associated with the token are sufficient to grant access to the

resource. The protected resource should enforce whatever authorization policy is appropriate for

the resource and not depend solely on OAuth.

Each protected resource MUST be limited to only trust tokens from one logical authorization

server. A logical authorization server may include multiple physical instantiations of an

authorization server for failover purposes operated by a single organization.

Protected resources SHOULD support mutual TLS client certificate bound access tokens as

specified in draft-ietf-oauth-mtls (revision 12 or newer) section 3. This support may be mandated

in a future version of this profile.

4.2 Connections to Authorization Servers

Protected resources MAY use the OAuth 2.0 Authorization Server Metadata standard [RFC8414]

to retrieve configuration information from the authorization server, including supported options,

endpoint URIs, and public keys.

Alternatively, protected resources MAY configure some or all of this information in an out-of-

band manner.

Protected resources MAY use the OAuth 2.0 Token Introspection protocol [RFC7662] to

connect to the authorization server to retrieve information about an access token presented by a

client.

5 Security Rationale for Profile Requirements
This section is intended to provide rationale behind this profile's requirements to help the reader

understand why certain decisions were made.

This profile requires that clients be registered with authorization servers in an out-of-band

manner, rather than allowing dynamic registration of clients. Clients must have some level of

trust placed in them, as they are given the capability to access resources on behalf of the user.

Phishing attacks have been demonstrated in environments that allow open registration of OAuth

clients. For example, in a past incident, an attacker registered a fake "Google Docs" application

with Google, and tricked users into granting the application access to their Google-hosted

resources [Reddit]. Additionally, unlike in typical consumer-facing environments, this profile

(since it is for enterprise use) does not require users to explicitly consent to granting clients

access to their resources, making it even more critical that clients be trusted.

This profile requires use of TLS 1.2 or above for all OAuth interactions, as [RFC6749] does not

explicitly require that all interactions be protected with TLS. For example, the initial interaction

between the user's web browser and an OAuth client could occur over plaintext HTTP, and Fett

et al. (section 3.2 of [Fett]) describe how this property could be leveraged to carry out an

authorization server mix-up attack.

24

This profile requires that all TLS connections validate the TLS server's certificate in accordance

with [RFC6125] to prevent successful man-in-the-middle attacks. OAuth has many security

dependencies on proper authentication of the TLS server, including:

•□ Retrieval of discovery information, including authorization server endpoint URIs, and the

public keys used to verify the signature on tokens issued by authorization servers

•□ Authenticating the user to the authorization server, particularly if replayable methods

such as username/password are used

•□ Communicating the one-time-use authorization code from the authorization server to the

user's web browser, and again from the user's web browser to the client

•□ Authenticating the client to the authorization server, if the client_secret method is used

•□ Communicating the access token (and refresh token if applicable) from the authorization

server to client

•□ Communicating the access token from the client to protected resources

•□ Communicating the refresh token (if applicable) from the client to the authorization

server

This profile provides some degree of resilience in case server certificate validation is not

sufficient. For example, an attacker may thwart server certificate validation by illegitimately

obtaining a valid certificate from a trusted Certification Authority (CA) [Birge-Lee], somehow

injecting new trusted Certificate Authority (CA) certificates into endpoints [Goodin], or

exploiting unforeseen vulnerabilities in certificate validation routines. Resilience is provided by

requiring that clients and protected resources have the capability of limiting the trusted CAs for

connections to the authorization server. Additionally, mutually authenticated TLS connections

are required by this profile for many network connections. In a mutually authenticated TLS

connection, an attacker could potentially still impersonate the TLS server to the TLS client as

described above, but would likely be unable to impersonate the TLS client to the TLS server.

This profile requires use of OAuth's authorization code grant, prohibiting use of the implicit

grant and resource owner password credentials grant. The client credentials grant may be used as

needed for the client's internal operations; it does not provide delegated authorization of a user's

access.

The implicit grant is prohibited because it directly exposes the user's web browser to the access

token, which may not be ideal, rather than communicating the access token directly from the

authorization server to the client. The implicit grant also may provide more opportunity for an

attacker to inject unexpected access tokens into the client (e.g. as stated in draft-parecki-oauth-

browser-based-apps section 7.8).

The resource owner password credentials grant is prohibited because it directly and

unnecessarily exposes the client to the user's password, and because it is not compatible with

other authentication methods or with multi-factor authentication (e.g. as stated in draft-parecki-

oauth-browser-based-apps section 5).

This profile requires use of the state parameter by clients and authorization servers. The state

parameter provides protection from cross-site request forgery (CSRF) attacks. For example, an

attacker may perform a request with an authorization endpoint using the attacker's own

credentials, obtain a one-time use authorization code, and then perform a CSRF attack to trick a

25

victim user into injecting the attacker's authorization code into the victim's session with the

client, improperly associating the victim's session with the attacker's resources. Proper use of the

state parameter prevents this attack.

This profile describes use of Mutual TLS Client Certificate Bound Access Tokens as specified

by section 3 of draft-ietf-oauth-mtls-12 [Campbell], mandating its support on authorization

servers, and recommending support by confidential clients and protected resources. This

approach cryptographically binds the access token to the client that obtained it, requiring the

client to authenticate to protected resources using mutually authenticated TLS in order for the

protected resource to accept the access token. This approach prevents stolen access tokens (e.g.

from the client's storage or from an insufficiently protected network connection) from being used

without access to the client's private key. This approach (along with the token's "aud" field) also

prevents a protected resource from replaying an access token that a client presented to it into

another protected resource.

This profile requires that exact string comparisons be used for redirect URIs. Wildcards are not

permitted. Wildcards have led to security issues in the past, for example by allowing attackers to

modify redirect_uri values to point to open redirector web pages running on the same domain as

the intended redirect_uri. Open redirectors could be abused to redirect the authorization code to

an attacker.

This profile requires clients to include their full redirect URI in the authorization request and to

check that the redirect URI matches in the authorization response. This profile also requires a

unique redirect URI for each authorization server with which the client interacts. Additionally,

this profile requires that clients associate each resource server with only one authorization server,

and that each resource server only trusts one authorization server. These requirements provide

protection from authorization server mix-up attacks. For example, section 3.2 of [Fett] describes

an attack where the attacker interferes with the protocol flow to cause confusion about which

authorization server the client is interacting with, tricking the client into sending its one-time-use

authorization code to the wrong authorization server. Section IV-A of [Fett-2019] describes an

attack dependent on a client trusting multiple authorization servers for a particular resource. In

this attack, an attacker-controlled authorization server responds to a client’s access token request

with an access token from a different authorization server, potentially allowing the attacker to

bypass the protections of certificate bound access tokens by tricking the legitimate client into

performing operations on the attacker’s behalf.

This profile requires use of PKCE by public clients and strongly recommends its use by

confidential clients. PKCE protects the one-time-use authorization code from use in certain cases

if it is intercepted by an attacker. PKCE was originally intended just for public clients, since

public clients have no ability to authenticate themselves to the authorization server, and

depending on implementation details it may be possible to intercept the one-time-use

authorization code on some client platforms (e.g. while being passed from the platform's web

browser to the client). PKCE, however, provides security benefits to confidential clients as well.

PKCE provides additional resilience from CSRF attacks if the client fails to properly check the

state value. It also protects from the attack described by [Sakimura] in which an attacker injects a

stolen authorization code into its own session with an OAuth client, attempting to associate the

attacker's session with a victim's resources.

26

This profile prefers confidential clients authenticate themselves to authorization servers using

TLS mutual authentication with a client certificate as described in IETF Internet-Draft draft-ietf-

oauth-mtls. Traditionally, a shared secret (called a "client_secret" in RFC6749) is used.

However, the shared secret approach is not ideal. If an attacker captures the shared secret (e.g.

from the client's storage or by intercepting network communication between the client and

authorization server), an attacker could impersonate the client in future sessions simply by using

the shared secret. The shared secret is likely to be irregularly or never changed. In enterprise

environments envisioned by this profile, confidential clients (typically front-end web servers)

already possess and use non-person-entity (NPE) PKI certificates. These NPE PKI certificates

and the associated private keys are ideal to use to authenticate clients to the authorization server

rather than using a shared secret. TLS mutual authentication also provides resilience against

man-in-the-middle attacks, as even if an attacker can impersonate the server to the client, an

attacker would additionally have to impersonate the client to the server (rather than just pass

through an intercepted client_secret value).

Another asymmetric authentication method called "private_key_jwt" is defined by the OpenID

Connect Core specification for authentication of the OAuth client to the authorization server.

This profile does not allow its use. private_key_jwt has the advantage over client_secret that the

private key is not exposed over the network to an attacker. However, it is not as secure as TLS

mutual authentication. With private_key_jwt, the client signs an assertion using its private key

and attaches the assertion to its request. The assertion is not tied to the content of the client's

request, so the client's request is not resilient against man-in-the-middle attacks if the attacker is

able to impersonate the server to the client. The assertion could potentially be replayed if the

authorization server does not store previously seen "jti" values until the assertion's expiration (a

nonce placed in the assertion to prevent replay). Additionally, private_key_jwt uses JSON Web

Keys (JWKs) rather than X.509 certificates, so this may require the client to generate and

manage another key pair, including ensuring that the authorization server has the client's public

key.

Access token injection, described in section 3.6 of [Lodderstedt], is a potential open issue if

adversaries can thwart server certificate validation and perform a man-in-the-middle attack on

the connection between the client and authorization server. OAuth does not provide a mechanism

for clients to determine that the access token received from an authorization server is the

expected token, rather it depends on the security of the HTTPS connection between the two

entities. A man-in-the-middle could potentially replace an access token sent between

authorization server and client with a different access token. The OpenID Foundation’s

Financial-grade API Part 2 [OpenID-FAPI2] provides a mechanism to use an OpenID Connect

ID token to bind each received access token to a client authorization request. A future version of

this profile may adopt that mechanism. If this threat is a concern, it can be addressed by having

the client request and verify an ID token in accordance with the Enterprise OpenID Connect

Profile.

6 Security Considerations

All transactions MUST be protected in transit by TLS as described in BCP195.

27

All clients MUST conform to applicable recommendations found in the Security Considerations

sections of [RFC6749] and those found in the OAuth 2.0 Threat Model and Security

Considerations document.

7 Normative Reference
[AppLinks] □ Google. “Handling Android App Links”,

<https://developer.android.com/training/app-links>.

[OIDC-Core] OpenID Foundation. "OpenID Connect Core 1.0 incorporating errata set 1”,

November 2014, <https://openid.net/specs/openid-connect-core-1_0.html>

[RFC2119] □Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,

RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-

editor.org/info/rfc2119>.

[RFC5280] □Cooper, D., et al. “Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile”, RFC 5280, DOI 10.17487/RFC5280,

May 2008, <http://www.rfc-editor.org/info/rfc5280>.

[RFC6125] □Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using

X.509(PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC

6125, DOI 10.17487/RFC6125, March 2011, <http://www.rfc-

editor.org/info/rfc6125>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI

10.17487/RFC6749, October 2012, <http://www.rfc-editor.org/info/rfc6749>.

[RFC6750] □Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token

Usage", RFC 6750,DOI 10.17487/RFC6750, October 2012,

<http://www.rfc-editor.org/info/rfc6750>.

[RFC6819] □Lodderstedt, T., Ed., McGloin, M., and P. Hunt, “OAuth 2.0 Threat Model and

Security Considerations”, RFC 6819, DOI 10.17487/RFC6819, January 2013,

<http://www.rfc-editor.org/info/rfc6819>.

[RFC7009] □Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "Oauth 2.0 Token Revocation",

RFC 7009, DOI 10.17487/RFC7009, August 2013, <http://www.rfc-

editor.org/info/rfc7009>.

[RFC7519] □Jones, M., Bradley, J., and N. Sakimura, “JSON Web Token (JWT)”, RFC 7519,

DOI 10.17487/RFC7519, May 2015, http://www.rfc-editor.org/info/rfc7519.

28

http://www.rfc-editor.org/info/rfc7519
http://www.rfc-editor.org/info/rfc7009
http://www.rfc-editor.org/info/rfc6819
http://www.rfc-editor.org/info/rfc6750
http://www.rfc-editor.org/info/rfc6749
http://www.rfc-editor.org/info/rfc6125
http://www.rfc-editor.org/info/rfc5280
http://www.rfc-editor.org/info/rfc2119
https://openid.net/specs/openid-connect-core-1_0.html
https://developer.android.com/training/app-links
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc6125
http://www.rfc-editor.org/info/rfc7009

[RFC7523] □Jones, M., Campbell, B., and C. Mortimore, “JSON Web Token (JWT) Profile for

OAuth 2.0 Client Authentication and Authorization Grants”, RFC7523, DOI

10.17487/RFC7523, May 2015, <http://www.rfc-editor.org/info/rfc7523>.

[RFC7636] □Sakimura, N., Ed., “Proof Key for Code Exchange by OAuth Public Clients”, RFC

7636, DOI 10.17487/RFC7636, September 2015, <http://www.rfc-

editor.org/info/rfc7636>.

[RFC7662] □Richer, J., Ed., “OAuth 2.0 Token Introspection”, RFC 7662, DOI

10.17487/RFC7662, October 2015, <http://www.rfc-editor.org/info/rfc7662>.

[RFC8414] □Jones, M., Sakimura, N., and J. Bradley, “OAuth 2.0 Authorization Server

Metadata”, RFC 8414, DOI 10.17487/RFC8414, June 2018, <http://www.rfc-

editor.org/info/rfc8414>.

[Campbell] □Campbell, B., Bradley,J., Sakimura, N., and T. Lodderstedt, “OAuth 2.0 Mutual

TLS Client Authentication and Certificate Bound Access Tokens”, August 2019

(Work in Progress), <https://tools.ietf.org/html/draft-ietf-oauth-mtls>.

[Lodderstedt] Lodderstedt, T., Bradley, J., Labunets, A., and D. Frett, “OAuth 2.0 Security Best

Current Practice”, July 2019, <https://tools.ietf.org/html/draft-ietf-oauth-security-

topicss>.

[Parecki] Parecki, A., and D. Waite, “OAuth 2.0 for Browser-Based Apps”, December 2018,

<https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps-02>.

[UniversalLinks] Apple, “Universal Links for Developers”,

<https://developer.apple.com/ios/universal-links/>.

8 Informative Reference

[Bertocci] V. Bertocci, “JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens.”,

April 2019 (Work in Progress), < https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt-00

>

[Birge-Lee] H. Birge-Lee, et al. "Bamboozling Certificate Authorities with BGP." USENIX

Security Symposium 2018.

https://www.usenix.org/conference/usenixsecurity18/presentation/birge-lee

[Fett] □ D. Fett, et al. "A Comprehensive Formal Security Analysis of OAuth 2.0." ACM

CCS 2016. https://arxiv.org/pdf/1601.01229.pdf

[Fett-2019] □D. Fett, et al. “An Extensive Formal Security Analysis of the OpenID Financial-

grade API.” 40th IEEE Symposium on Security and Privacy (2019).

https://arxiv.org/pdf/1901.11520.pdf

29

https://arxiv.org/pdf/1901.11520.pdf
https://arxiv.org/pdf/1601.01229.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/birge-lee
https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt-00
https://developer.apple.com/ios/universal-links/
https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps-02
https://tools.ietf.org/html/draft-ietf-oauth-security-topicss
https://tools.ietf.org/html/draft-ietf-oauth-mtls
http://www.rfc-editor.org/info/rfc8414
http://www.rfc-editor.org/info/rfc7662
http://www.rfc-editor.org/info/rfc7636
http://www.rfc-editor.org/info/rfc7523
http://www.rfc-editor.org/info/rfc7636
http://www.rfc-editor.org/info/rfc8414
https://tools.ietf.org/html/draft-ietf-oauth-security-topicss

[Goodin] D. Goodin, ArsTechnica. "Sennheiser discloses monumental blunder that cripples □
HTTPS on PCs and Macs." https://arstechnica.com/information-

technology/2018/11/sennheiser-discloses-monumental-blunder-that-cripples-

https-on-pcs-and-macs/

[OpenID-iGov] J. Richer, et al. "International Government Assurance Profile (iGov) for OAuth

2.0 – draft 01.” https://openid.bitbucket.io/iGov/openid-igov-oauth2-id1.html

[Jones] M. Jones, et al. “OAuth 2.0 Token Exchange.” October 2018 (Work in Progress),

<https://tools.ietf.org/html/draft-ietf-oauth-token-exchange>

[OpenID-FAPI2] N. Sakimura, et al. “Financial-grade API – Part 2: Read and Write API

Security Profile”, October 2018, <https://openid.net/specs/openid-financial-api-part-

2.html>

[Reddit] Reddit. "New Google Docs phishing scam, almost undetectable."

https://www.reddit.com/r/google/comments/692cr4/new_google_docs_phishing_scam_almost_u

ndetectable/

[RFC8471] A. Popov, et al. ”The Token Binding Protocol Version 1.0”, RFC8471, October

2018, <https://tools.ietf.org/html/rfc8471>

[Sakimura] N. Sakimura. "OAuth Profile should mandate RFC7636 (PKCE) for code flow."

https://bitbucket.org/openid/fapi/issues/11/oauth-profile-should-mandate-rfc7636-pkce

30

https://bitbucket.org/openid/fapi/issues/11/oauth-profile-should-mandate-rfc7636-pkce
https://tools.ietf.org/html/rfc8471
https://www.reddit.com/r/google/comments/692cr4/new_google_docs_phishing_scam_almost_u
https://openid.net/specs/openid-financial-api-part
https://tools.ietf.org/html/draft-ietf-oauth-token-exchange
https://openid.bitbucket.io/iGov/openid-igov-oauth2-id1.html
https://arstechnica.com/information-technology/2018/11/sennheiser-discloses-monumental-blunder-that-cripples-https-on-pcs-and-macs/
https://arstechnica.com/information-technology/2018/11/sennheiser-discloses-monumental-blunder-that-cripples-https-on-pcs-and-macs/
https://arstechnica.com/information-technology/2018/11/sennheiser-discloses-monumental-blunder-that-cripples-https-on-pcs-and-macs/

Acronyms

acr authentication context class reference

amr authentication methods reference

API Application programming interface

CA Certificate authority

CSRF cross-site request forgery

DN Distinguished Name

HTTPS Hypertext Transfer Protocol - Secure

iGov International Government Assurance Profile

JSON JavaScript Object Notation

JWA JSON Web Algorithms

JWE JSON Web Encryption

JWK JSON Web Keys

JWS JSON Web Signature

JWT JSON Web Token

NPE Non-person entity

OIDC OpenID Connect

PKCE Proof Key for Code Exchange

PoP Proof-of-Possession

SAML Security Assertion Markup Language

URL Uniform Resource Locator

vot Vector of Trust

vtr Vectors of Trust Request

31

	Enterprise Mission Tailored OAuth 2.0 Profile
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Requirements Notation and Convention
	1.2 Terminology
	1.3 Conformance
	1.4 Environment Overview
	1.5 Use Cases
	1.5.1 User Authorization Delegation to a Web Application
	1.5.2 User Authorization Delegation to a Native Application
	1.5.3 User Authorization Delegation to a Browser-Embedded Client.
	1.5.4 Token Exchange by Protected Resources

	1.6 Global Requirements

	2 Client Profiles
	2.1 Client Types
	2.1.1 Confidential Client
	2.1.2 Public Client

	2.2 Connection to the Authorization Server
	2.2.1 Discovery
	2.2.2 Requests to the Authorization Endpoint
	2.2.3 Requests to the Token Endpoint
	2.2.4 Client Registration
	2.2.4.1 Redirect URI
	2.2.4.2 Client Keys

	2.3 Connection to the Protected Resource
	2.3.1 Requests to the Protected Resource

	3 Authorization Server Profile
	3.1 Connections with Clients
	3.1.1 Grant Types
	3.1.2 Client Authentication
	3.1.3 User Approval of the Client's Authorization
	3.1.4 Discovery
	3.1.5 PKCE
	3.1.6 Redirect URIs

	3.2 Token Issuance Policy
	3.3 JWT Access Tokens
	3.4 Refresh Tokens
	3.5 Connections with Protected Resources
	3.4.1 Introspection

	3.6 Response to Authorization Requests
	3.7 Token Lifetimes
	3.8 Scopes
	3.9 Protected Resources
	3.10 Viewing and Revoking Client Accesses and Tokens
	3.11 Audit

	4 Protected Resource Profile
	4.1 Connections from Clients
	4.2 Connections to Authorization Servers

	5 Security Rationale for Profile Requirements
	6 Security Considerations
	7 Normative Reference
	8 Informative Reference
	Acronyms

