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Abstract 
Phase 1 of the IARPA program ICArUS (Integrated Cognitive-neuroscience Architectures for 

Understanding Sensemaking) requires a challenge problem that poses cognitive challenges of 

geospatial sensemaking (BAA, 2010). The problem serves as a modeling challenge for 

performers and enables assessment in T&E (Test and Evaluation) per BAA guidelines. This 

document describes the Phase 1 challenge problem and outlines the T&E approach for evaluating 

models in Neural Fidelity Assessment, Cognitive Fidelity Assessment, and Comparative 

Performance Assessment.  

 

Note: This document was originally prepared and delivered to IARPA in December, 2011, to 

support ICArUS Phase 1 T&E efforts that concluded in December, 2012.
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1 Introduction 
This document was originally prepared and delivered to IARPA in December, 2011, to support 

ICArUS Phase 1 Test & Evaluation (T&E) efforts that concluded in December, 2012. Further 

background is provided in a summary document (Burns, et al., 2014) titled ICArUS: Overview of 

Test and Evaluation Materials, available at http://www.mitre.org/publications. 

 

The ICArUS Phase 1 challenge problem, dubbed AHA (Abducting Hot-spots of Activity), poses 

cognitive challenges prototypical of geospatial sensemaking. The design is informed by reviews 

of GEOINT doctrine (MITRE, 2012) and interviews with intelligence analysts in various 

agencies (MITRE, 2013). GEOINT analysis exploits geospatial data and requires inferential 

reasoning to make sense of an uncertain situation. This includes explaining and predicting 

identities and activities, based on knowledge and data about causes and effects. Sensemaking is a 

process of inferring the relative likelihoods of hypotheses, given evidence, where the hypotheses 

may refer to causes and/or effects (MITRE, 2011). 

 

In AHA, the causes are enemy groups that attack in the context of counterinsurgency (COIN) 

operations. The effects are attacks at sites in an area of interest. The problem is to infer the 

relative likelihoods of hypotheses about the groups or sites, given evidence in one of two 

different conditions. In the first condition, evidence is accumulated over time from reports of 

individual attacks. These reports are deterministic because the groups and sites of past attacks are 

assumed to be known with certainty. In the second condition, evidence about a single attack is 

provided by multiple independent sources of data presented one at a time. These data are 

accompanied by probabilistic knowledge (in the form of rules) needed to infer the relative 

likelihoods of hypotheses. The two conditions are captured in six tasks1, see Table 1. Tasks 1-3, 

which reflect the first condition, require statistical learning. Tasks 4-6, which reflect the second 

condition, require rule-based sensemaking. 

  

Consistent with Table 3 of the ICArUS Broad Agency Announcement (BAA, 2010), all tasks of 

the Phase 1 challenge problem involve spatial context frames with underlying probabilities that 

are constant in time. A spatial context frame (MITRE, 2011) includes a hypothesis H (e.g., 

enemy group) and conditional likelihoods P(e|H) of evidence given the hypothesis, for various 

geospatial features of evidence e1, e2, e3, etc. For Tasks 1-3 the subject must learn P(H) and 

P(e|H) from a cumulative statistical sample, in order to make inferences of P(H|e). For Tasks 4-6 

the evidence is from multiple independent sources, and the likelihoods P(e|H) needed for 

sensemaking are provided to the subject via probabilistic rules. These rules represent the causal 

knowledge (i.e., spatial context frames) required to infer P(H|e) from a body of evidence e = {e1, 

e2, e3,...} across a set of hypotheses H = {H1, H2, H3,...}.  

 

                                                 
1 An additional task, Task 7, is intended to serve as a bridge between Phases 1 and 2 as well as to provide a general platform for 

constructing more complex, naturalistic sensemaking tasks in future phases. Although human behavioral data will be collected 

for all seven tasks in Phase 1, Task 7 will not be used for Phase 1 evaluations. The remainder of this document pertains to Tasks 

1-6. The Task 7 description is included as Appendix A. 

 

 

http://www.mitre.org/publications
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Table 1: Summary of six tasks in the Phase 1 challenge problem. 

 
Task* 
 

 
Data 

 
Inference  

 
Decision 

 
Feedback 

 
Judgment 

1 SIGACTS % for {A, B} Pick A or B A or B  Surprise 

2 SIGACTS  

% for {A, B, C, D} 

Draw four circles 

Pick A, B, C, or D 

 

A, B, C, or D 

 

Surprise 

3 SIGACTS  

% for {A, B, C, D} 

Click four centers 

Pick A, B, C, or D 

 

A, B, C, or D 

 

Surprise 

4 SIGACT 

HUMINT 

SOCINT 

 

% at {1, 2, 3, 4) 

% at {1, 2, 3, 4) 

 

 

 

% at 1, 2, 3, and 4 

 

 

 

1, 2, 3, or 4 

 

 

 

Surprise 

5 SIGACT 

HUMINT 

IMINT 

MOVINT 

SIGINT 

SOCINT 

 

 

% for {A, B, C, D} 

% for {A, B, C, D} 

% for {A, B, C, D} 

% for {A, B, C, D} 

 

 

 

 

 

 

% for A, B, C, and D 

 

 

 

 

 

 

A, B, C, or D 

 

 

 

 

 

 

Surprise 

6 SIGACT 

HUMINT 

3 of 4: 

IMINT 

MOVINT 

SIGINT 

SOCINT 

 

 

 

% for {A, B, C, D} 

% for {A, B, C, D} 

% for {A, B, C, D} 

% for {A, B, C, D} 

 

 

Choose next INT 

 

 

 

 

% for A, B, C, and D 

 

 

 

 

 

 

 

A, B, C, or D 

 

 

 

 

 

 

 

Surprise 

*Tasks 1-3 involve statistical learning; Tasks 4-6 involve rule-based sensemaking. 

 

For all six tasks, likelihoods are conditioned only on spatial features of evidence in a scene – i.e., 

spatial context frames (for Phase 1, per BAA Table 3). None of the tasks involve temporal 

dependencies in which likelihoods are conditioned on temporal features of evidence in a 

sequence – i.e., event sequence frames (for Phase 2, per BAA Table 3). In Tasks 1-3, likelihoods 

are learned over time but the generative probabilities are constant in time, and all trials are 

independent (i.e., no temporal dependencies). In Tasks 4-6, evidence is presented in stages of a 

trial, but all evidence on a given trial is independent of time within the trial, and all trials are 

independent (i.e., no temporal dependencies). 

2 Description 
Consistent with the cognitive challenges of GEOINT sensemaking, each task of the challenge 

problem requires inference under uncertainty given geospatial data from one or more sources. 

The six tasks are described in Table 2. 
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Table 2: Description of six tasks in the Phase 1 challenge problem.  

 
Task 
 

 
Description 

 

1 

 

Learning two groups. [10 blocks of 10 trials]. Attacks by two groups (A, B) are generated (SIGACTS), 

one on each trial, by two normal distributions – each with a different base rate, center location, and 

dispersion. On the last trial of each block the subject is shown an attack location and asked to predict the 

probability of attack by each group, {A%, B%}. The subject then makes a forced choice (A or B), to 

allocate resources against the attack. At the end of the trial the subject sees ground truth (A or B) at the 

attack location and he reports surprise (on a 7-point Likert scale).  

 

 

2 

 

Learning four groups. [5 blocks of 20 trials]. Unlike Task 1, there are four different groups (A, B, C, and 

D). Also, before reporting {A%, B%, C%, D%}, the subject is required to draw four circles – each 

representing the “two-to-one boundary” for a group (i.e., attack by the group is twice as likely inside the 

circle compared to outside the circle). After reporting the probabilities {A%, B%, C%, D%} and making a 

forced choice in allocating resources against one group, the subject is shown ground truth (A, B, C, or D) at 

the attack location and he reports surprise. 

 

 

3 

 

Finding centers. [5 blocks of 20 trials]. Unlike Task 2, the task is to find group centers along roads “as the 

cow walks” (rather than "as the crow flies"). After each block of trials, the subject clicks four points A, B, 

C, and D on the roads – each representing the “center of gravity” for a group (i.e., maximum likelihood 

location for a group’s center, given the group’s attacks). The subject then reports {A%, B%, C%, D%} at 

the attack location. After reporting the probabilities and making a forced choice in allocating resources, the 

subject is shown ground truth (A, B, C, or D) at the attack location and he reports surprise. 

 

 

4 

 

Scoping attacks. [10 trials, 2 stages per trial]. Unlike Task 3, the subject is given the center (from 

HUMINT) for one group, along with four possible locations 1, 2, 3, and 4 of attack by that group. In stage 

1, the subject is required to estimate the probability of attack at each location based on a normal distance 

decay function along roads. In stage 2, the subject is given the regional boundaries for groups (SOCINT), 

along with the inside/outside region attack likelihoods from PROBS. The subject is required to aggregate 

the prior (HUMINT) and SOCINT probabilities. The subject allocates resources in percentages (not a 

forced choice) across the sites, and is shown ground truth (1, 2, 3, or 4). The subject reports surprise after 

observing ground truth. 

 

 

5 

 

Fusing layers. [10 trials, 4 stages per trial]. Unlike Task 4, the subject is given an attack location 

(SIGACT) along with group centers (HUMINT) for four groups (A, B, C, D). The subject is also given the 

probabilities of attack by each group {A%, B%, C%, D%}, based on the HUMINT distance function. The 

subject is then given four more INTS (IMINT, MOVINT, SIGINT, SOCINT), one at a time, along with the 

likelihoods (from PROBS) for features of INTS. At each stage the subject updates probabilities {A%, B%, 

C%, D%}. After the last stage the subject allocates resources in percentages {A%, B%, C%, D%} against 

the groups. At the end of the trial the subject is shown ground truth and he reports surprise. 
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Choosing layers. [10 trials, 3 stages per trial]. Much like Task 5, except the subject decides which layer of 

INT (IMINT, MOVINT, SIGINT, or SOCINT) to receive on each of three stages, after receiving the initial 

HUMINT. The criterion for each choice is to maximize the expected amount of useful information to be 

gained from the choice of an INT. 
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In all tasks, stimuli and responses are designed to minimize the role of language processing, 

visual perception, and general background knowledge known as RASKR (rich and sophisticated 

knowledge representations) – in accordance with BAA Appendix E.  

 

For statistical learning in Tasks 1-3, data are provided in the form of SIGACTS (significant 

activities) reporting the enemy group and site of each attack. The problem is to infer, for a given 

attack location, the probability that each group (i.e., each H) is responsible for the attack at that 

location – based on evidence accumulated over past attacks by the various groups at various 

sites. Tasks 1-3 avoid issues associated with human RASKRs by giving subjects (humans and 

models) the data they need in a cumulative statistical sample of past attacks. 

 

For rule-based sensemaking in Tasks 4-6, diverse sources (INTS) provide one datum at a time in 

stages of a trial. The problem is to update beliefs at each stage of the trial, based on probabilistic 

rules (PROBS). The data include HUMINT (human intelligence), IMINT (image intelligence), 

MOVINT (movement intelligence), SIGINT (signal intelligence), and SOCINT (socio-cultural, 

aka human terrain, intelligence). Tasks 4-6 avoid issues associated with human RASKRs by 

giving subjects the input they need in the form of probabilistic rules (PROBS) and deterministic 

data (INTS). 

 

All tasks provide deterministic feedback at the end of each trial, and this feedback serves to score 

a subject's performance on the trial (see Feedback below). In Tasks 1-3 the feedback also serves 

as data for statistical learning across trials of a task, thereby providing tight coupling between 

training and testing. For Tasks 4-6, sensemaking is accomplished via probabilistic rules that are 

given to subjects and are held constant across tasks and trials, as contrasted to statistical learning 

from deterministic feedback in Tasks 1-3. 

 

Table 2 provides short descriptions of Tasks 1-6. The descriptions use terms like "groups" and 

"sites" and "attacks" and "centers" in order to maintain generality, as these terms and the basic 

concepts that underlie them apply to many domains of intelligence analysis. 

  

More concretely, the design of AHA was informed by the challenges of counterinsurgency 

(COIN) intelligence and operations. In that case the groups are insurgents with differing 

resources and preferences that lead to different patterns of attack, where a pattern includes 

various spatial features that are likely or unlikely for each group. A group "center" might 

correspond to a safe house, a weapons cache, or some other type of physical resource or 

operations center. With respect to a subject's operational decision to allocate resources, the 

resources might correspond to troops that are assigned against groups or sites in offensive or 

defensive operations. However, in human experiments with AHA, the use of "loaded" 

terminology will be avoided to reduce any effects arising from human RASKRs – especially 

among subjects who may have knowledge of COIN or other domains. 

 

The responses to be reported by subjects are specified in Table 2, and the rules (PROBS) are 

summarized in Table 3 (see Specification, Section 3 below). As shown in Table 1, each task 

involves inference, decision, feedback, and judgment – which are all discussed further below. 
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2.1 Inference 

For each task of AHA, the inference is a subjective estimate of probabilities across a set of 

hypotheses. These probabilities are the primary sensemaking responses to be used in assessing 

model predictions of human performance (see Evaluation, Section 4). 

 

In Tasks 1, 2, 3, 5, and 6, the hypotheses refer to enemy groups (e.g., G = A, B, C, or D) and the 

evidence includes the location of an attack site (Z), such that the inference of P(H|e) is an 

inference of P(G|e(Z)). For Task 4, the evidence includes a known group and the hypotheses 

refer to various sites (e.g., Z = 1, 2, 3, or 4) at which the group might attack, such that the 

inference of P(H|e) is an inference of P(Z|e(G)). 

 

For each task, a trial of testing begins with deterministic data from a SIGACT report on the 

group or site of an attack. This datum along with other INTS (in Tasks 4-6) are the evidence 

from which probabilities of hypotheses are inferred on a trial – using likelihoods that are learned 

(in Tasks 1-3) or known (in Tasks 4-6). When the site Z is given by SIGACT (in Tasks 1, 2, 3, 5, 

and 6) then the task is to infer P(G|e(Z)) for all groups. When the group G is given by SIGACT 

(in Task 4) then the task is to infer P(Z|e(G)) for all sites.  

 

In Tasks 4-6, deterministic data from INTS are useful for sensemaking only in conjunction with 

probabilistic knowledge about the likelihoods of data features in light of various hypotheses. The 

challenge problem provides subjects with this knowledge in the form of probabilistic rules 

(PROBS). If these rules were not given to subjects then the likelihoods would have to be 

assumed by subjects in order to accomplish sensemaking, and subjects would need to report all 

the likelihoods that were assumed at each stage of each trial of each task in order for T&E to 

assess performance. By giving the rules in PROBS, we reduce the burden on subjects and ensure 

that all humans (and models) use the same likelihoods. This enables T&E to measure average 

sensemaking performance across human subjects, as required by the BAA. 

 

The rules are designed to reflect causal factors, typical of real-world activities that produce 

evidential effects observed in geospatial data. Some causal factors apply equally to all groups, 

such as the PROBS for HUMINT and SOCINT – both of which reflect general constraints of 

cost and risk that would apply to any group. For example, per PROBS for HUMINT, the 

probability of attack decreases with distance from the group center, and this is consistent with the 

type of cost (distance decay) function found in many real-world GEOINT applications (MITRE, 

2013). Similarly, per PROBS for SOCINT, the probability of attack by a group is highest within 

that group's region, and this is consistent with a risk function whereby a group incurs less chance 

of failure within its region of influence. Other causal factors, more specific to the attack style of 

each group, are captured in the PROBS for IMINT and MOVINT. For example, the groups vary 

in their preferences for attacking near government or military buildings, and in their preferences 

for attacking in dense or sparse traffic. 

 

Although there is no guarantee that subjects will use the causal rules of attack patterns, as given 

in PROBS, we believe it is reasonable to assume they will do so, for four reasons. First, the rules 

are numerically simple and graphically displayed in order to facilitate understanding and 

usability by subjects. Second, all stimuli are purposely limited to only those features of INTS 

that appear in rules of PROBS, thereby minimizing any effects from RASKRs that humans might 
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bring to the task. Third, without using the rules of PROBS a subject would have no basis for 

making sense of the data (INTS). Fourth, the statistics of stimuli (INTS) presented across trials 

of each task will be designed to reflect the structure of the rules (PROBS) at least approximately, 

such that a subject will have no experiential basis not to trust and use the rules. 

 

Even when all rules are given in PROBS, the sensemaking problem is still far from trivial for 

human subjects. This is because multiple INTS/PROBS must be aggregated in order to make 

inferences about the relative likelihoods of various hypotheses. 

2.2 Decision 

Each task involves one or more types of decision, in order to measure aspects of cognition that 

are not captured by the primary measure of sensemaking discussed above under Inference. These 

decisions also serve to engage human participants in experiments by giving them a clear purpose 

for sensemaking. 

 

In Task 1 the decision is a forced choice, i.e., to allocate resources against attacks by one of two 

groups. Tasks 2-3 involve a similar forced choice, but the choice is among four groups rather 

than two groups. Tasks 2-3 also require simple actions to measure parameters not made explicit 

by subjects' reports of probabilities across hypotheses. In Task 2 the action is to draw a circle 

(for each group), which measures two parameters of a 2-D spatial distribution: a center location 

and dispersion parameter (diameter). In Task 3 the action is to click the location believed to be 

the center (for each group) of a 1-D spatial distribution along a road. Tasks 4-6 involve decisions 

whereby subjects allocate resources in percent values against groups or sites, based on the 

probability distributions reported in sensemaking. These decisions are designed to test for 

Probability Matching (see Evaluation, Section 4). Task 6 also includes choices of data (INTS) in 

stages of each trial, and these decisions are designed to test for Confirmation Bias (see 

Evaluation, Section 4).  

 

Although the actions in Tasks 2-3 involve movements (draw, click) for human subjects, these 

actions are only a means for collecting data on underlying parameters associated with subjective 

probability distributions. As such the actions do not require motor function (which is out of 

scope per BAA Section 1.A.6) and performers' models should provide analogous responses.  

2.3 Feedback 

Deterministic feedback on the group or site of attack, from "ground truth", is provided at the end 

of each trial of each task.  For Tasks 1-3, this feedback (along with data from training trials 

between testing trials) provides data (SIGACTS) needed for statistical learning of likelihoods.  

 

For Tasks 4-6 there are far too few trials to acquire knowledge of likelihoods via statistical 

learning. The same is true in real-world intelligence, where most of an analyst's knowledge about 

enemy patterns of behavior is acquired through reports developed by other analysts. Thus 

probabilistic rules (PROBS) are provided as input for use across all trials of Tasks 4-6, although 

deterministic feedback on ground truth is still provided at the end of each trial in Tasks 4-6 as it 

is in Tasks 1-3. 
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Feedback on ground truth, provided at the end of each trial, offers one way to score sensemaking 

and decision-making performance on each task. For example, assume each trial of each task has 

a maximum score of 100 points, and assume that on a single trial of a task the subject assigns 

resources in percentages {40%, 30%, 20%, 10%} to groups {A, B, C, D}, respectively. If ground 

truth is "B" then the score, call it S2, would be 30 points. This score is referred to as a 

"secondary" score (and denoted S2) because it reflects elements of luck and skill – and because it 

measures decision-making performance rather than sensemaking performance directly.  

 

A "primary" score (denoted S1) that measures skill in sensemaking will also be computed. This 

score is a measure of similarity S% (see Evaluation, Section 4) between subjective and 

normative probability distributions, where S% = 100% will produce a score of S1 = 100 points 

and any other S% will produce a score of S1 = S points. The score S1 will be computed on each 

trial but will only be provided to a subject as an average over trials of a task, after all trials for 

the task have been completed. 

  

For example, assume that a subject's probabilities reported in sensemaking are {40%, 30%, 20%, 

10%}, and assume that these are equal to the normative probabilities. Also assume that the 

subject makes the normative decision and assigns 100% of resources to group A. The ground 

truth will likely not be "A" (i.e., because not-A has probability of 60%), e.g., ground truth of "B" 

would result in a score of S2 = 0 points. However, the same trial would produce a score of S1 = 

100 points. This dual scoring scheme, using S1 and S2, is designed to measure pure skill (S1) in 

sensemaking as well as the blend of luck and skill (S2) in decision-making. S2 is included 

because it is representative of the feedback typically received in real-world situations, where 

decisions are made based on probabilistic inferences (in sensemaking) and yet feedback comes in 

the form of deterministic data. That is why subjects are given feedback on S2 after every trial. S1 

is included because the focus of ICArUS is intelligence sensemaking (not operational decision-

making) and S1 is a more rigorous and relevant measure of sensemaking. 

 

With respect to S2, there is a difference regarding how resources are allocated in Tasks 1-3 

versus Tasks 4-6. In Tasks 1-3, the subject makes a forced choice among options (groups). If the 

choice matches ground truth then the subject scores S2 = 100 points on the trial, and if the choice 

does not match ground truth then the subject scores S2 = 0 points on the trial. In Tasks 4-6, the 

subject allocates resources in percentages (0-100%) across all options (groups or sites). One 

option (group or site) then appears as ground truth, and the subject's percent assigned to that 

option is the S2 point score for the trial. 

 

In sum: S1 is a score of intelligence sensemaking, provided to the subject only after all trials of a 

task are complete. This feedback on S1 (at the end of a task) is primarily to keep human subjects 

engaged in the tasks by giving credit for skill without the element of luck. S2 is a score of 

operational decision-making provided at the end of each trial. This feedback is also intended to 

keep human subjects engaged, as well as to simulate the conditions under which feedback (which 

includes an element of luck) is typically provided to analysts and operators – i.e., by an outcome 

that is observed after a decision has been made. The allocation of resources (used to score S2) is 

an all-or-nothing forced choice in Tasks 1-3, and a percent across options in Tasks 4-6. 
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Note that feedback from S1 cannot directly affect a subject's performance on any task because S1 

is provided only after all trials of a task are complete. However feedback from S2 on one trial of 

a task can affect performance on future trial(s) of that task, depending on how the subject deals 

with the feedback. This is by design, to capture effects of deterministic experiences on 

probabilistic inferences. To the extent that such effects do occur, they will likely be related to 

subjective feelings of surprise that arise from the mismatch between what is expected and what is 

experienced. Therefore the challenge problem will also obtain a subjective measure of surprise 

from human subjects, as discussed under Judgment below. 

2.4 Judgment 

After receiving ground truth, on each trial of each task, the subject will be asked to report 

surprise on a 7-point Likert scale. Although performers' models are not required to report 

surprise for any of the assessment components per BAA (see Evaluation, Section 4), a model's 

ability to predict human reports of surprise may add to the credibility of the model. 

3 Specification 
The Phase 1 challenge problem is further specified here by briefly describing how stimuli, in the 

form of SIGACTS and various INTS, will be generated for Tasks 1-6. 

 

For Tasks 1-2, the generative model is a symmetric 2-D Gaussian with different center location 

and dispersion parameter for each group. Each group will also have a different base rate at which 

the Gaussian is sampled for generating attack locations. Group center locations and dispersion 

parameters will be chosen to make the problem feasible for subjects and assessable in T&E. 

Designers' judgments on these matters will be tested in a pilot experiment with results used to 

refine stimuli for the final experiment of Phase 1. For Task 3, the Gaussian (which is the same 

for all groups) will be 1-D with distance measured along roads. The road network in Task 3 (as 

well as in Tasks 4-6) will comprise ~4 roads. Care will be taken in designing the stimuli to 

eliminate the need for fine-scale perceptual judgments of distance. 

 

For Tasks 4-6, the problem is rule-based sensemaking using data (INTS) and rules (PROBS). 

Table 3 specifies the values of PROBS for the features of all INTS, including HUMINT, IMINT, 

MOVINT, SIGINT, and SOCINT. SIGACTS are deterministic reports of the attack site and/or 

group, so there are no SIGACTS rules in PROBS.  

 

As specified in Table 3, each INT depicts a single feature that is multi-valued, either continuous 

(e.g., distance in HUMINT) or discrete (e.g., dense traffic vs. sparse traffic in MOVINT). The 

likelihoods are given numerically by PROBS for the associated INT. Note that all INTS are 

independent, such that the likelihoods for a given INT are not conditionally dependent on the 

features of any other INTS. Note also that INT features depict only spatial context such that the 

PROBS reflect spatial context frames – so there are no temporal dependencies within or between 

INTS (i.e., no event sequence frames). 
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Table 3: Probabilistic if-then rules (PROBS) for specific types of data (INTS). 

 
INTS 
 

 
PROBS 

 

HUMINT 

 

If a group attacks, then the likelihood is a Gaussian function (σ = 10 miles) of distance along road(s) 

from the group's center.  

 

 

IMINT 

 

If the attack is near a government building, then attack by A or B is four times as likely as attack by C 

or D.  

If the attack is near a military building, then attack by C or D is four times as likely as attack by A or 

B.  

 

 

MOVINT 

 

If the attack is in dense traffic, then attack by A or C is four times as likely as attack by B or D. 

If the attack is in sparse traffic, then attack by B or D is four times as likely as attack by A or C. 

 

 

SIGINT 

 

If SIGINT on a group reports chatter, then attack by that group is seven times as likely as attack by 

each other group. 

If SIGINT on a group reports silence, then attack by that group is one-third as likely as attack by each 

other group.  

 

 

SOCINT 

 

If the attack is in a group's region, then attack by that group is twice as likely as attack by each other 

group. 

 

 

 

In Table 3, the likelihoods (PROBS) are presented in one of two forms. For HUMINT, 

likelihoods are continuous and of the form P(e|H), where e is distance along a road (from a 

group's center) and H is the group center. For IMINT, MOVINT, SIGINT, and SOCINT, the 

likelihoods are discrete and presented in the normalized form of P(H|e) = P(e|H) / Σh P(e|Hh), 

where index h refers to elements in the set of hypothesized groups {Hh} = {A, B, C, D}. These 

normalized likelihoods are also depicted in bar graphs that are shown to subjects when the 

feature (e) of each INT is received on each stage of each trial. In essence, the bar graphs depict 

the probabilities of hypotheses given a datum e, {P(Hh|e)}, assuming the datum e was the only 

evidence – and assuming a uniform prior distribution. Given a datum e and associated bar graph, 

the subject's task is to combine the distribution {P(Hh|e)} with his prior distribution {P(Hh)}, 

which is also displayed in a bar graph, in order to compute and report a posterior (updated) 

distribution {P(Hh|e)}. 

 

Stimuli for Tasks 4-6 will be generated in the form of INT features for each trial. The 

experimental design will generate a reasonably diverse set of stimuli (i.e., different road 

networks, group centers, etc.) while at the same time satisfying the rules of PROBS at least 

approximately. No attempt will be made to match the PROBS exactly, because relatively small 

samples based on relatively few trials (as we have in Tasks 4-6) would not be expected to match 

PROBS exactly. However the magnitudes of likelihoods will be reflected at least approximately, 
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such that the INT stimuli will be a reasonably representative sample of the various PROBS 

likelihoods. 

 

The experimental design will include computation of normative solutions for all stages of all 

trials of all tasks. These solutions are required to ensure that all trials of all tasks are computable, 

i.e., fully-specified such that humans and models have all the information needed to compute a 

solution without further assumptions (e.g., from RASKRs). Normative solutions are also 

required to assess model predictions of human performance, as discussed further below. 

4 Evaluation 
Per the BAA, the evaluation of models will include three forms of assessment: Neural Fidelity 

Assessment (NFA), Cognitive Fidelity Assessment (CFA), and Comparative Performance 

Assessment (CPA). 

4.1 Neural Fidelity Assessment (NFA) 

Neural Fidelity Assessment (NFA) ensures that the models developed under the ICArUS 

program are grounded in neuroscience principles and consistent with the current understanding 

of neural circuits. The following is intended to amplify and supplement the guidance regarding 

this assessment that was provided in the Broad Agency Announcement (BAA, 2010). 

 

Component Model Implementation Requirements 

 

Table 4 below (reproduced from the BAA) lists the seven brain systems that ICArUS performers 

are expected to model. Additional brain systems may be incorporated, if needed, provided that 

they are deemed important for sensemaking and provided that the associated functionality (e.g. 

low-level vision) is not excluded by the BAA. 

 

Neural Fidelity 

 

An important goal of the ICArUS program is to create systems that can anticipate, prevent, or 

otherwise mitigate human error in intelligence analysis due to cognitive biases. The program’s 

neural fidelity requirements are important because cognitive biases are believed to arise from the 

brain’s underlying design features and resource limitations. Thus neural models, in comparison 

to purely functional (i.e. cognitive) models, are more likely to robustly predict human 

sensemaking strengths and weaknesses over a wide range of task parameters. 

 

The architectures developed under the ICArUS program are not intended to represent complete 

models of the human brain or to incorporate complete models of specific brain regions. Rather, 

ICArUS models should replicate neural circuits that are necessary for supporting a broad range 

of sensemaking functions in a way that remains consistent with the current (although sometimes 

incomplete) understanding of neural structure and function. 

 

Definitions 

 

The BAA defines key neural fidelity concepts as they relate to the program: 
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“Biologically plausible means that the model and its features are consistent with 

current neuroscientific understanding, even though that understanding may be 

incomplete. Biologically implausible means that the model (or some feature of the 

model) contradicts current scientific understanding of brain structure and 

function.” 

 

There are many ways to incorporate biological realism into a theory of sensemaking and various 

levels of detail at which neural circuits can be modeled. The required level of biological detail 

will depend on both the level of neuroscientific understanding of the corresponding brain system 

and on the elements needed to support the full range of sensemaking functions. 

 

 
Table 4: Required brain systems and associated functions.  

Brain system Function 

Prefrontal Cortex  
Attention, cognitive control, working memory, goal-oriented behavior, decision 

making  

Parietal Cortex  
Evidence integration, decision making, multimodal sensory representation, spatial 

reasoning and memory, estimation of value and uncertainty  

Temporal Cortex Object representation, semantic knowledge representation 

Medial Temporal Lobe, 

Hippocampus  

Recognition and recall, declarative (episodic and semantic) memory, spatial cognition, 

relational processing, temporal sequence learning  

Anterior Cingulate Cortex Error signaling, cognitive control, conflict monitoring, decision making 

Basal Ganglia / Dopaminergic 

Systems  

Reinforcement learning, reward signaling, slow statistical learning, action sequencing, 

procedural learning, decision making  

Brainstem Neuromodulatory 

Systems  
Attentional arousal, transition between exploitative and exploratory behavioral modes  

 

 

At a minimum, ICArUS models must not be biologically implausible. Models of cognitive 

processes that fail to comply with or contradict the known biology of the brain are out of scope 

and will result in a failing NFA score for the corresponding brain component. Where possible, 

component models must account for how their functions arise from their underlying neural 

circuitry. Hybrid models that combine symbolic and sub-symbolic elements are acceptable 
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provided that such elements are convincingly linked to brain structure and function and that the 

overall approach remains strongly grounded in neuroscience. Purely functional elements are 

acceptable only when there is currently no understanding of the neural mechanisms responsible 

for performing those functions.  

 

When multiple models of a brain component or function exist that are compatible with existing 

experimental data, performers are free to select the position that is most consistent with their 

overall theory of sensemaking provided that they justify their position with appropriate evidence 

and citations. If performers choose to implement simplified versions of existing models, they 

must explain how the simplified and more detailed models are functionally equivalent in terms of 

their sensemaking functions, cite published references describing the simplified equivalents, and 

justify why the removed subcomponents are unnecessary for sensemaking. 

 

Requirements 

 

According to the BAA, to exhibit neural fidelity, models of individual brain systems and their 

associated cognitive functions should: 

 

1. Have a structure that is consistent with known neuroanatomical principles for the 

corresponding brain system. 

 

2. Perform the same cognitive function(s) as the corresponding brain system. 

 

3. Follow internal dynamics that are consistent with functional neuroimaging and 

electrophysiological studies. 

 

4. Be integrated with other component models in a biologically plausible way based on 

known structural and functional connectivity found in the published neuroscience 

literature 

 

Structure 

 

Models should incorporate as much structural detail at or above the level of the neuron (e.g., 

excluding ion channels and precise dendritic morphology) as is reasonable and relevant to 

sensemaking. Component models must incorporate structures and pathways that are relevant for 

performing sensemaking tasks and predicting human performance (such as for incorporating 

cognitive biases) and, inversely, should not incorporate those that are irrelevant for these tasks.  

Structures and pathways within the models must be consistent with the known neuroanatomical 

principles for the corresponding brain systems. If an anatomical structure has major functional 

subdivisions (e.g., CA1 and CA3 in the hippocampus), then the associated component model 

should reflect this modular organization. The relative numbers of elements (i.e., neurons or 

neuron-like units) and element types found in the modeled brain areas should guide the 

characteristics of the associated component models. 
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Function 

 

Component models must perform the same cognitive sensemaking functions as the brain systems 

they model. As with structure, functions that are irrelevant for sensemaking need not be 

incorporated into the models. Despite the program’s emphasis on individual brain regions, we do 

not espouse the view (often found in popular media) that cognitive functions are neatly packaged 

in self-contained brain areas; as neuroscientists well understand, many of these functions are 

widely distributed across different regions and sometimes emerge from interactions between 

brain regions. 

   

Purely computational, or algorithmic, models that create function without regard for the 

underlying structure (i.e., “black box models”) are inconsistent with the program’s objectives.  

Performers should justify how the computational approaches used in each model are consistent 

with published evidence. 

 

Internal Dynamics 

 

ICArUS models should reflect the current understanding of how component brain areas function 

and interact over time. The models’ internal dynamics should match data from functional 

neuroimaging and electrophysiological studies that have characterized the temporal patterns of 

activity found in the brain. Concepts from control theory or dynamical systems theory may be 

helpful when describing these patterns. Where applicable, neuronal dynamics, including mean 

firing rates and/or precise spiking patterns, should be similar to those in real neurons. 

   

Integration 

 

The structural and functional networks connecting various brain regions should be represented 

faithfully in the overall architecture. Relevant neural pathways between connected areas should 

be present, and the connections between components should be consistent with physiological 

evidence. The BAA specifies the minimum number of component models that must be integrated 

at each waypoint/milestone, and all of the component models are expected to be fully integrated 

by Month 36 of the program. 

 

Assessments 

 

The BAA specifies requirements and general principles governing the Neural Fidelity 

Assessments. NFA evaluations will be qualitative in nature (pass/fail) and will be made by the 

ICArUS program manager with guidance from an independent panel of neuroscience experts 

with experience in computational neuroscience modeling, cognitive modeling, and artificial 

intelligence from government, academia, federally funded research and development centers, and 

university affiliated research centers. The panel’s formal assessments will be reviewed 

independently by 1-2 government employees with expertise in computational cognitive 

neuroscience research. 
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Table 5: Metrics for each waypoint/milestone (Phases 1 and 2). 

Month 
Required Number of 

Implemented 
Component Models 

Required Number of 
Integrated 

Component Models 

Required Number of 
Component Models 
with “Pass” Score 

for NFA 
Phase 1 

06 – June 2011 3 2  

11 – November 2011 4 3  

18 – June 2012 5 4  

23 – November 2012 5 5 3 

Phase 2 

30 – June 2013 6 6  

36 – December 2013 7 7  

42 – June 2014 7 7 5 

 

 

The Assessment Process 

 

NFA evaluation is a continuous process based primarily on information available from 

performers’ deliverables, including reports, software (code and executables), teleconferences, 

site visits and technical exchange meetings, and government/T&E team discussions. Additional 

information may be solicited from performers as needed. The NFA panel will report on 

performer progress and make recommendations to the program manager at each program 

waypoint/milestone (minimum 6-month intervals). Table 5 lists the NFA metrics associated with 

each program waypoint/milestone. During Phases 1-2, official assessments will be conducted 

only at months 23 and 42. 

 

Within approximately a week following performer deliveries, the NFA panel will provide the 

program manager with preliminary evaluations of both the fidelity and completeness of 

individual component models based on their anatomical and functional properties. Biological 

plausibility was defined previously, and completeness is defined relative to the degree to which 

models incorporate the structures and functions from their associated brain areas considered 

necessary relative to the demands of sensemaking. The NFA panel will also indicate progress on 

component model integration and comment on the neural implementations of cognitive biases. A 

few weeks after the associated PI meeting (TEM), the NFA panel will also deliver a detailed 

report that assesses the neural fidelity of each performer’s component models and integrated 

architecture. These evaluations will be qualitative (pass/fail) and will follow the requirements 

specified in the BAA as described in Table 2. At the program manager’s discretion, information 

from the NFA evaluations may be shared with performers or may be incorporated as part of 

overall feedback. 

 

Performer Guidance 

 

The burden of proof is on performers to make a clear and convincing case for how and why their 

models meet the neural fidelity requirements using sufficient evidence (with citations) from the 

peer-reviewed neuroscience literature. Performers should be explicit regarding the key 
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neurobiological features of each model, including learning algorithms and encoding schemes, the 

phenomena their models explain, and the levels at which their models represent the underlying 

anatomical structures and cognitive functions. 

 

Reports and other deliverables should be prepared so that they facilitate understanding of the 

models they describe, highlighting both the strengths and limitations of the approaches used.  

Source code should be clearly documented and commented to a reasonable extent. Making the 

relevant information (i.e., claims and support) easy to find will help ensure that performers’ 

accomplishments are represented accurately. 

 

ICArUS performers were selected in part based on their combined diversity of modeling 

approaches, and it is understood that these different approaches create specific challenges for 

satisfying neural fidelity requirements. The differences between approaches will almost 

necessarily result in dissimilarities between the overall architectures, but all delivered systems 

must satisfy the program goals of incorporating biologically plausible neural models that perform 

sensemaking tasks while remaining faithful to known neural structures, functions, internal 

dynamics, and integration. 

4.2 Cognitive Fidelity Assessment (CFA) 

CFA (as well as CPA, discussed in Section 4.3) is concerned with how well a model predicts 

behavioral data on the challenge problem.  More specifically, the goal of CFA is to assess 

whether models reproduce observed human cognitive biases. The following paragraphs describe 

quantitative measures of biases and how they are to be computed. 

  

The primary measure of sensemaking response (see Inference, Section 2.1) is a distribution of 

probabilities across a set of hypotheses, e.g., {Ph} = {A%, B%, C%, D%}. These probability 

distributions for all subjects will be used to compute an average human response at each stage (j) 

of each trial (i) of each task, Pij. Normative distributions Qij will also be computed and compared 

to Pij using measures described below, as required for assessing cognitive biases in CFA. The 

corresponding model distribution Mij, for comparison to human distribution Pij, will be provided 

by each performer at each stage of each trial of each task. 

 

An overall measure of uncertainty across a set of hypotheses, known as entropy (E), is computed 

as follows (Shannon & Weaver, 1949):  

 

 EP =  –Σh Ph * log2 Ph. 

 

A normalized measure of negative entropy or "negentropy" (N) can be expressed on a scale of 

0% to 100%, where N = 0% implies maximum uncertainty (i.e., maximum entropy) and N = 

100% implies complete certainty (i.e., zero entropy). N is computed as follows: 

 

 N = (Emax – E) / Emax 

 

where Emax = 2 for the case of four hypotheses (Tasks 2-6) and Emax = 1 for the case of two 

hypotheses (Task 1). 
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Negentropy enables comparison of how much certainty a human achieves in sensemaking to how 

much certainty he should have achieved. This in turn enables assessment of several cognitive 

biases. For example, if the distributions P and Q are such that NP > NQ then the bias might be 

characterized as a Confirmation Bias – i.e., over-weighing evidence that confirms the most likely 

hypothesis. Conversely, if NP < NQ then the bias might be characterized as the opposite of 

Confirmation Bias, known as Conservatism (Edwards, 1982), which can arise from various 

heuristics such as Anchoring and Adjustment (Tversky & Kahneman, 1974) 

 

 
Table 6: Cognitive biases in six tasks of the challenge problem. 

 
Bias1,2 

 
Task 

 

1 2 3 4 5 6 
 

Anchoring and Adjustment 

 

 

 

 

 

 

 

 

 

x 

 

 

 

 

Confirmation Bias  

 

    

 

 

 

 

x 

 

Representativeness   

 

 

x 

 

x 

 

x 

   

 

Probability Matching 

 

 

 

   

x 

 

x 

 

x 

 

Notes: 

 

1. For a given bias (row), a yes/no measure of the bias will be computed (using the corresponding metric in Table 7) on all trials 

of the tasks (columns) indicated by x. The total "yes" fraction across these trials will be used to assign a pass/fail score to a model 

in predicting the bias, i.e., "pass" = total "yes" fraction of at least 50%.  

 

2. For each bias, trials will be excluded from the assessment if the bias exhibited (on average) by human subjects is not 

significant, as measured by a t-test applied to the corresponding metric in Table 7. 

 

 

 

 

The four biases to be addressed in Phase 1, per BAA Table 3, are: Anchoring and Adjustment, 

Confirmation Bias, Representativeness, and Probability Matching. Anchoring and Adjustment, 

and Representativeness, are actually heuristics that lead to biases (Kahneman, et al., 1982), so 

CFA needs to specify the associated biases. As discussed further below, Anchoring and 

Adjustment as well as Representativeness lead to biases of Conservatism. 

 

The challenge problem is designed such that each bias is expected to be exhibited by human 

subjects in one or more of the six tasks, as shown in Table 6. The biases are discussed further 

below, including a specification of how the existence of bias will be established computationally, 

e.g., by negentropy or some other parameter – see Table 7.  
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Table 7: Computational metrics to be used in assessing cognitive biases. 

 
Bias 

 
Metric1,2 

 

 

Anchoring and Adjustment 

 

 

|ΔNM| < |ΔNQ| 

 

Confirmation Bias  

 

 

C > 0.5 

 

Representativeness  

 

 

NM < NQ 

 

Probability Matching 

  

 

RMSE(F-P) <  RMSE(F-I) 

 
Notes: 

 

1. N is negentropy. The subscripts M and Q are model and Bayesian, respectively. Refer to text for further details of notation. 

   

2. A "pass" grade for a bias will be assigned to a model that satisfies the metric inequality for that bias. A "fail" grade for a bias 

will be assigned to a model that violates the metric inequality for that bias.  

 

 

 

Anchoring and Adjustment 

 

Anchoring and Adjustment (Tversky & Kahneman, 1974) is a heuristic by which an estimate is 

made (e.g., of a probability distribution) – starting from an initial value (i.e., an anchor) and then 

making adjustments to yield the final answer. The bias arises from insufficient adjustment, such 

that the final answer is biased toward the anchor. This heuristic and bias applies to the multi-

stage inferences made by subjects in Task 5 of the challenge problem. 

 

In the case of sensemaking, which requires estimation of probability distributions across a set of 

hypotheses, the anchor at each stage is a prior distribution that is either given to a subject or 

assumed by the subject (i.e., as the posterior from the prior update). The bias can be measured by 

negentropy, because inadequate (i.e., less than Bayesian) adjustment will cause |ΔNP| < |ΔNQ|. 

Typically this bias will produce Conservatism, which is characterized as NP < NQ (see 

Representativeness below), because generally NQ increases as more data are obtained and 

aggregated in stages of Task 5. The opposite behavior, in a form of Confirmation Bias, would be 

implied by NP > NQ. Pilot testing of human subjects clearly shows Conservatism and specifically 

Anchoring and Adjustment as defined by |ΔNP| < |ΔNQ|, on most trials of Task 5, hence this bias 

(and not a Confirmation Bias) is what models are required to predict in Task 5 (see Table 6). 

 

Confirmation Bias 

 

Confirmation Bias (Nickerson, 1998; Klayman & Ha, 1987; Fischhoff & Beyth-Marom, 1983) is 

a general term that refers to seeking or interpreting evidence in ways that are partial to existing 
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beliefs. Here it is useful to distinguish between two types of Confirmation Bias: Confirmation 

Bias in Seeking Evidence; and Confirmation Bias in Weighing Evidence. 

 

The process of interpreting evidence may include a wide range of effects that depend on the 

nature of the evidence and other context of the task. For AHA, evidence is presented in the form 

of INTS with unambiguous spatial features (not likely to be re-interpreted) and accompanied by 

PROBS with unambiguous numerical values (not likely to be misinterpreted). Thus, for our case 

the interpretation of evidence is a process by which numbers about features are selectively over-

weighed or under-weighed as these numbers are aggregated. As implied by the phrase "partial to 

existing beliefs", a Confirmation Bias results from over-weighing evidence that supports the 

most likely hypothesis and under-weighing evidence that supports less likely hypotheses. 

 

Based on pilot studies (mentioned above), the dominant behavior in Task 5 is Anchoring and 

Adjustment – which reflects a Conservative Bias rather than a Confirmation Bias in Weighing 

Evidence. Therefore the BAA bias of Confirmation Bias is assessed instead as a Confirmation 

Bias in Seeking Evidence, in Task 6 (see Table 6). Confirmation Bias in Seeking Evidence is a 

bias in decision-making, not a bias in sensemaking per se. However, the two are clearly related 

because inferences made in sensemaking provide the basis for choices made in decision-making. 

Moreover, when the decisions are choices about which evidence to seek, then decision-making in 

turn becomes a basis for inferences. This interaction is important because Confirmation Bias in 

Seeking Evidence has typically been tested in a deterministic context (Wason & Johnson-Laird, 

1972) that clearly does not apply to the probabilistic nature of sensemaking. 

  

In a deterministic task, a single piece of evidence can disprove a hypothesis and no amount of 

positive evidence can ever prove a hypothesis, so in that context attempts to confirm a hypothesis 

are non-normative. However, in a probabilistic context like that of sensemaking, no single datum 

can disprove or prove a hypothesis, because the problem is one of weighing various pieces of 

evidence in order to assess the relative likelihoods of various hypotheses. In that case, the 

heuristic known as a "positive test strategy" (Klayman & Ha, 1987), which produces an apparent 

Confirmation Bias in Seeking Evidence, is actually normative or at least approximately 

normative – in the sense that it maximizes the amount of expected information to be gained from 

seeking evidence. Thus, the so-called Confirmation Bias may not be a bias at all relative to 

optimal behavior, and instead the "bias" may be one in which a subject does not seek evidence 

that is expected to confirm the most likely hypothesis. 

  

In the case of AHA, subjects seek evidence when they choose the INT type to receive next in 

stages of trials of Task 6. Each INT provides evidence about all hypotheses (A, B, C, D), not just 

the most likely hypothesis, so it is not clear how Confirmation Bias in Seeking Evidence could or 

should be measured for most INTS. However, for SIGINT a subject must choose the group on 

which to get SIGINT, and this choice of a group offers a clear way to test for a confirmatory 

strategy in the seeking of evidence.  

 

With the parameters of AHA, normative calculations of Bayesian solutions show that the 

confirmatory strategy is actually optimal and hence not a bias in the sense of deviating from 

normative standards. Indeed, a subject would be biased in not always adopting the confirmatory 

strategy, so actually there can be no Confirmation Bias. Nevertheless, because a confirmation 
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preference (aka positive test strategy) is often referred to as a Confirmation Bias, we adopt a 

definition of confirmation preference as the measure of Confirmation Bias required by the BAA. 

More specifically, we compute the fraction C of SIGINT choices for which the group G (on 

which SIGINT is requested) is the group with highest probability (as reported by the subject 

before receiving SIGINT). Pilot studies show that human subjects (on average) typically exhibit 

C ≈ 0.75. Thus the threshold C = 0.5 serves as a pass/fail test for whether a model exhibits the 

bias (see Table 7). A model with C > 0.5 in Task 6 will be scored as exhibiting Confirmation 

Bias, and a model with C ≤ 0.5 in Task 6 will be scored as not exhibiting Confirmation Bias. 

 

Representativeness 

 

In Representativeness (Tversky & Kahneman, 1974), a subject judges the probability that an 

object or event "x" belongs to a class "X" (or is generated by a cause "X") by the degree to which 

x is similar to X, based on some focal feature(s) typical (i.e., representative) of X. Like 

Anchoring and Adjustment, Representativeness is a general heuristic that can lead to various 

biases. One such bias in our case of geospatial sensemaking is “Regression to the Mean” – 

discussed in the original paper on heuristics and biases by Tversky & Kahneman (1974). 

Typically this bias resulting from Representativeness involves misconceptions of regression to 

the mean, for individual values within a distribution of values. However, in our case human 

subjects are reporting probability values across a probability distribution, and the measured 

behavior can be characterized as exhibiting regression to the mean. Presumably this is because 

human subjects consider regressed (flatter) probability distributions to be more representative 

than the actual distributions. 

 

The resulting regression is a Conservative Bias, measured by NP < NQ, because the regressed 

probability distribution is flatter than the Bayesian probability distribution. Pilot studies show 

that on average human subjects exhibit this bias, as measured by NP < NQ, on Tasks 1, 2, and 3. 

Thus, these are tasks for which Representativeness will be assessed (see Table 6). 

 

Probability Matching 

 

Probability Matching is a tendency to select options at frequencies that are proportional to 

associated probabilities. This is a bias, relative to normative behavior, because expected utility is 

maximized by always (at 100% frequency) choosing the option with highest probability 

(assuming utility is the same for all outcomes, as it is in AHA where the consequences of attacks 

do not vary by group or by site). 

 

Like Confirmation Bias in Seeking Evidence, Probability Matching involves a bias in decision-

making rather than a bias in inferences (which provide the basis for decision-making). Also like 

Confirmation Bias in Seeking Evidence, Probability Matching is a reasonable (if not rational) 

behavior when one considers the ecological context in which decisions are typically made – 

especially the fact that likelihoods might change with time (Burns & Demaree, 2009). But unlike 

a confirmation preference in seeking evidence, Probability Matching is a non-normative behavior 

for tasks of the Phase 1 challenge problem where likelihoods are held constant in spatial context 

frames. 
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Probability Matching is often measured in simple experiments involving forced choices. 

However this requires that two conditions be met. First, there must be a large sample of choices 

by each subject, i.e., so that the frequencies of choices can be computed and compared to the 

subjects’ probabilities reported in sensemaking. Second, the probabilities reported in 

sensemaking must be held constant (at least approximately) over the trials on which the 

frequency of choices is computed. Neither of these conditions is satisfied in the tasks posed by 

AHA. Thus Tasks 1-3, which involve forced choices, will not be used to assess Probability 

Matching. 

 

Instead, Tasks 4-6 were designed to address Probability Matching in another context, involving 

allocation of resources in percentages against groups or sites. This provides a more direct 

measure of Probability Matching by avoiding the need to measure the frequency of repeated 

forced choices. Probability Matching will produce a Proportional Decision Bias, where the 

decision-maker's percentages in allocating resources tend to match the probabilities from 

sensemaking (reported immediately before making the decision). In contrast, a theoretically 

normative (non-biased) decision-maker would always allocate 100% of his resources against the 

group or site reported as having the highest probability of attack. 

 

To measure Probability Matching in Tasks 4-6, the average human allocation of resources across 

groups F = {A%, B%, C%, D%} will be compared (on each trial) to two other distributions. One 

distribution is given by the average human probabilities P = {A%, B%, C%, D%). The other 

distribution is I = {100%, 0%, 0%, 0%}, where 100% is assigned to the group (A, B, C, D) with 

highest probability. The comparison will be quantified by a Root Mean Square Error (RMSE) on 

each trial, for both RMSE(F-P) and RMSE(F-I). Probability Matching produces RMSE(F-P) < 

RMSE(F-I), and this is indeed observed on Tasks 4-6 of pilot studies. Therefore, the equation 

RMSE(F-P) < RMSE(F-I) will be used in pass/fail fashion to assess whether a model predicts 

Probability Matching on trials of Tasks 4-6. 

4.3 Comparative Performance Assessment (CPA) 

CPA will assess a model's success in matching human performance, per the BAA Table 4 metric 

of a 50% success rate. This requires definition of a relative success rate (RSR), which in turn is 

based on further measures described below. 

 

A standard measure for comparing two probability distributions, like those of P (human) and M 

(model), is known as the Kullback-Leibler Divergence (KLD, Kullback & Leibler, 1951), 

discussed further in Appendix C. Consistent with the information-theoretic measure of entropy 

discussed above, KPM measures the amount of information (in bits) by which the two 

distributions differ, computed as follows:  

 

 KPM = EPM – EP = –Σh Ph * log2 Mh + Σh Ph * log2 Ph 

 

where EPM is the cross-entropy of P and M, and EP is the entropy of P. Notice that KPM = 0 when 

the distributions P and M are the same, and KPM increases as M diverges from P.  

 

KLD is a measure of divergence or “error”, whereas the BAA requires a measure of “success”. 

Also KLD ranges from zero (perfect match) to infinity (worst mismatch), whereas the BAA 
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requires a measure of % success. To address these issues, we define a measure of similarity that 

ranges from 0% for the worst mismatch (when KLD is infinite) to 100% for a perfect match 

(when KLD is zero). This measure of similarity (S) is computed from K as follows: 

 

 S = 100% * 2–K. 

 

As the divergence K ranges from zero to infinity, the similarity S ranges from 100% to 0%. Thus 

SPM is useful for computing the success of a model M in matching human data P. However, S is 

an absolute measure (typically more than 50%, even for a poor match, because K is typically less 

than 1), so this measure of success must be further scaled relative to some standard for 

comparison to the BAA metric of 50%. 

 

A common standard for assessing relative performance is a null model, which in our case would 

be a uniform distribution R = {0.25, 0.25, 0.25, 0.25}. This distribution has maximum entropy 

(minimum negentropy), and implies "random" (non-thinking) performance in sensemaking. Thus 

SPR will be computed and used as the lower bound on SPM in computing a relative success rate 

(RSR) as follows: 

 

 RSR = max[0, (SPM – SPR) / (100% – SPR)] * 100%. 

 

A model's RSR will be zero if SPM is equal to or less than SPR, because in that case a null model 

R would provide the same or better prediction of the human data P as the candidate model M. 

The RSR for a model M will increase as SPM increases, up to a maximum RSR of 100% when 

SPM = 100%. For example, if a candidate model M matches the data P with a similarity score of 

SPM = 80%, and the null model R matches P with a similarity score of SPR = 60%, then the RSR 

for model M would be 50%.      

 

RSR will be computed at each stage of each trial of Tasks 1-5, which are the tasks on which all 

subjects receive the same stimuli. The average RSR across all trials of each task will be used to 

compute the performance of a model on the task. These task-average values of RSR on Tasks 1-5 

will then be weighed, along with a metric for Task 6 (discussed below), in computing an overall 

score for CPA. RSR will not be computed for Task 6, because each subject receives different 

stimuli on each stage of each trial as the subject chooses INTS to receive (after receiving the 

initial INT from HUMINT). Instead a different metric is required to assess model predictions of 

human choices in Task 6. For this purpose the assessment will use a Relative Match Rate 

(RMR), as follows:  

 

After receiving HUMINT at the start of each trial in Task 6, the subject's first choice is among 

four INTS (IMINT, MOVINT, SIGINT, or SOCINT). The next choice is among three remaining 

INTS, and the last choice is among two remaining INTS. Thus there are 4*3*2 = 24 possible 

sequences of choices that might be made by a subject on a given trial. For each trial, the fraction 

(%) of subjects that choose each of the 24 sequences will be computed. The sequence with 

maximum % will define a benchmark F(t, smax) for each trial (t), where smax refers to the 

sequence with maximum F for trial t. On the same trial, a model will predict a sequence smod, and 

the % value of F(t, smod) for this sequence will be computed from the human data. In words, F(t, 

smod) is the % of humans that chose the same sequence as the model chose, on a given trial t. 
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The Relative Match Rate (RMR) for INT choices on a trial (t) of Task 6 is then defined as 

follows: 

 

 RMR(t) = F(t, smod) / F(t, smax). 

 

For example, assume a model predicts a sequence smod on a trial of Task 6. Assume also that 

20% of human subjects chose the same sequence, but a different sequence was the most 

commonly chosen by human subjects, e.g., by 40% of subjects. In that case F(t, smod) = 20% and 

F(t, smax) = 40%, so RMR(t) = 20 / 40 = 50%. 

 

Finally, task-average scores for RSR on Tasks 1-5 will be combined with RMR on Task 6 using 

the following weighting factors: 

 

Task 1 RSR:    0.05 

Task 2 RSR:    0.10 

Task 3 RSR:    0.15 

Task 4 RSR:    0.15 

Task 5 RSR:    0.40 

Task 6 RMR:  0.15 

------------------------- 

Total CPA:     1.00 

 

 

The average score for each task will be a simple average of all trials for that task. The above 

weights will then be applied to the task-average scores, with the following rationale for the 

weights: First, with six tasks being assessed in CPA, and each task addressing one or more of the 

sensemaking processes in BAA Table 1, a first cut would assign weight of 1/6 ≈ 0.15 to each 

task. This is appropriate for Task 4 RSR and Task 3 RSR (and for Task 6 RMR, discussed 

above). However, Task 2 and Task 1 are basically the same task, except that Task 2 involves four 

hypotheses rather than two hypotheses in Task 1. Therefore, Task 2 RSR will be assigned a 

weight of 0.10 and Task 1 RSR will be assigned a weight of 0.05, such that together the two 

weights sum to 0.15. The remaining weight of 0.40 will be assigned to Task 5 RSR. This is 

appropriate because Task 5 is of special importance, for three reasons, as follows: 

  

First, Task 5 poses cognitive challenges of “all source” GEOINT most consistent with the 

notional challenge problem described in BAA Appendix E. Second, Task 5 tests humans and 

models on 40 responses (10 trials with 4 stages per trial), which is twice that of Task 4, four 

times that of Task 1, and eight times that of Task 2 or Task 3. Finally, the Task 5 challenge of 

multi-stage belief updating plays a key role in the Task 6 process of “acquire addition 

information” (i.e., acquiring information based on current beliefs, in order to update those 

beliefs). However, the nature of Task 6 precludes a robust measure of average performance in 

belief updating, because different subjects receive different stimuli based on the layer selections 

that they make. For all these reasons, Task 5 is considered especially important and will receive 

weight of 0.40 as described above.  
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Example calculations for RSR and RMR are provided in Appendix B. Further notes on KLD are 

provided in Appendix C. 

4.4 Average Performance 

For both CFA and CPA, a model is required to predict average human performance as discussed 

above. The model may do so by producing one "run", i.e., generating responses on each stage of 

each trial of each task, using fixed values for all model parameters. A model may instead 

produce multiple runs and compute the average of these runs, where values of model parameters 

vary between runs. But in that case the total number of runs (r) should be less than or equal to the 

total number of human subjects (n) that are tested to obtain average human responses, r ≤ n. And, 

in either case, values for all model parameters must be fixed within each run for all stages of all 

trials of all tasks. 

 

For both CFA and CPA, the assessment of each task includes only trials that are deemed to be 

significant. For CPA, significance is established by a chi squared test that compares the average 

human probability distribution (on each trial) to the null (uniform) distribution. Any trials of 

Tasks 1-5 that show no significant difference (measured by chi squared p > 0.05) will be 

excluded from the assessment (CPA) of neural models against human data. 

  

For CFA, significance refers to the existence of a significant bias in human data relative to the 

normative standard. In this case, significance is established by a t-test that compares human 

response to the standard (normative) response as defined by the metrics in Table 7. For each bias, 

the assessment (CFA) only includes tasks for which significant bias is exhibited by human 

subjects on the majority of trials in the task. These tasks are noted in Table 6. For each bias in 

each task, specific trials are excluded if the bias is not significant (measured by t-test p > 0.05).  

 

For those trials of a task that are significant, CFA will compute the fraction of trials on which a 

model predicts the bias – in accordance with the metrics of Table 7. Consistent with the 50% 

passing threshold for CPA, a model must predict the bias on ≥ 50% of the significant trials 

(across all tasks to which the bias applies) in order to receive a passing score for that bias on 

CFA. Consistent with BAA Table 4, a model must receive a passing score on at least two of the 

four biases in order to pass CFA for Phase 1. 
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Appendix A Task 7 
 

A.1 Overview 

 

The purpose of Task 7 is to investigate the phenomenon of self-initiated sensemaking. In Task 7, 

participants will decide if and when to seek additional data as well as which data (INT) to seek.  

In other words, participants will have the opportunity to exploit a particular hypothesis/frame for 

multiple consecutive trials up until the point when surprising feedback (prediction error) prompts 

them to explore alternative hypotheses/frames – that is, to begin the sensemaking process. As 

such, Task 7 embraces the notion of sensemaking as a state of heightened cognitive control 

relative to baseline. 

 

To support self-initiated sensemaking, Task 7 differs from Tasks 1-6 in a few important ways. 

First, Task 7 employs a "wave-like" attack structure in which a particular group attacks for a 

variable number of contiguous trials before being replaced by a different group, which itself 

attacks for a variable number of contiguous trials, and so on. The participant is not told which 

group is attacking, but must infer the group from the observable data (SIGACTS) combined with 

other available data layers. The ability to infer the correct group (sensemaking) is necessary in 

order for the participant to succeed on the primary task of predicting the location of the next 

attack.   

 

Another departure from Tasks 1-6 is that the underlying map (including scene objects such as 

roads and buildings) does not change from trial to trial. Preserving the scene setting across trials 

provides a fixed reference against which participants can compare the location of the current 

attack datum to previous attack data, thereby developing a cumulative picture of the evolving 

attack pattern. 

 

A.2 Description 

 

Self-initiated sensemaking. [15 trials].  Task 7 combines elements of Tasks 4 and 6 within a task 

structure that allows for self-initiated sensemaking. 

 

Participants will be given four possible attack sites (1-4). As in Task 4, the primary task is to 

predict in which of several locations an attack will occur and to allocate resources to each 

location {@1%, @2%, @3%, @4%} – based on a normal distance decay function (HUMINT) 

and SOCINT – at the end of each trial. But unlike Task 4, to do so participants will have to have 

the right frame {P(A), P(B), P(C), P(D)}, i.e., an estimate of the group probability distribution. 

 

To help, participants will be provided with a new rule: 

 

If a group attacked in the previous trial, then they are 85% likely to attack again in the 

current trial. 
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A.3 Feedback 

 

Deterministic feedback will be provided at the end of each trial (the location of each attack, 

represented by a dot in the SIGACT layer); the attacker (group) will be revealed once per wave, 

pseudo-randomly 1-4 trials before the end of a wave. The last 5 attack locations will persist on 

the screen. Based on that feedback, participants can decide if and when to seek additional 

information (IMINT, MOVINT, and SIGINT are available). Additional layer(s) can be 

"purchased" at the discretion of a participant (but are limited in number). Each layer will cost an 

associated number of credits (e.g., IMINT = 1; MOVINT = 1; SIGINT = 2). 

 

Participants will start the task with 10 credits, and can earn additional credits through correctly 

predicting the location of attack. The number of earned credits will be calculated as follows: 

Assume that participants can earn a maximum of 1 credit in each trial. Now assume that on a 

single trial the participant assigns resources {40%, 30%, 20%, 10%} to locations {1, 2, 3, 4}, 

respectively. If the ground truth is location "2," then the participant would receive 0.3 credits 

(S2/100; see Section 2.3 for a description of S2 feedback). 

 

The basic flow of the task is as follows: 

 

1. At the beginning of each trial, participants will be asked to report the probability of 

attack by each group {P(A), P(B), P(C), P(D)} (similar to Tasks 5-6). Initial probabilities 

will be provided, based on HUMINT, in the first trial; participants will report changes 

only when desired. 

 

2. Data (INTS) are presented, and participants are asked to estimate the probability of 

attack at each location {P(1), P(2), P(3), P(4)} (similar to Task 4). 

 

3. Participants are asked to allocate troops to each location (% at 1, 2, 3, 4). 

 

4. Participants are immediately shown where the attack took place (1-4). The attacker (A-

D) will also be reported on pseudo-randomly chosen trials, once per wave. 

 

5. Participants are given an opportunity to forage for additional information (INTS), 

limited only by the available number of credits. 

 

6. The next trial begins. 

 

A.4 Specification 

 

As in Tasks 4-6, Task 7 involves rule-based sensemaking using data (INTS) and rules (PROBS). 

Table 3 in the main document specifies the rules for all INTS, including HUMINT, IMINT, 

MOVINT, SIGINT, and SOCINT. See Section 3 of the main document for additional details. 
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Appendix B RSR and RMR Calculation Example 
 

B.1 RSR Example 

 

For a trial with four hypotheses, assume the average human probabilities (in percent format) are 

P (human) = [A: 22.54, B: 58.12, C: 6.43, D: 12.91], and that a model reports probabilities M 

(model) = [A: 25.16, B: 53.52, C: 0.15, D: 21.17]. We first apply a floor of 1% to any human or 

model probabilities that are below 1%. We then re-normalize the remaining values by adjusting 

each proportionally such that the resulting probabilities sum to 100%. In this case, the model has 

reported 0.15% for Group C, so we raise the probability of Group C to 1% and adjust the 

remaining values to obtain the following: 

 

 M =  

 

 [A: 25.16 - (0.85 * (25.16 / (25.16 + 53.52 + 21.17))), 

 B: 53.52 - (0.85 * (53.52 / (25.16 + 53.52 + 21.17))), 

 C: 0.15 + 0.85,  

 D: 21.17 - (0.85 * (21.17 / (25.16 + 53.52 + 21.17)))] 

 

 = [A: 24.95, B: 53.06, C: 1.00, D: 20.99]. 

 

We next compute SPM, which is the similarity of the model (M) to the human data (P), as SPM = 

100% * 2-KPM. Here KPM is the Kullback-Leibler Divergence (K) computed as follows: KPM = -Σh 

Ph * log2 Mh + Σh Ph * log2 Ph, where h is an index (h = 1-4) denoting elements in the P and M 

distributions. Note that probabilities should be in decimal and not percent format when 

computing K (e.g., 22.54% would be 0.2254). Thus we obtain:  

 

 SPM = 100% * 2-0.1254 = 91.6726%. 

 

We next compute SPR, the similarity of a uniform distribution R = [A: 25, B:25, C:25, D:25] to 

the data (P), as SPR = 100% * 2-KPR, where KPR = -Σh Ph * log2 Rh + Σh Ph * log2 Ph. This yields:  

 

 SPR = 100% * 2-0.4246 = 74.5023%. 

 

Finally, we compute RSR = 100% * (SPM – SPR) / (100% – SPR), yielding: 

 

 RSR = 100% * (91.6726 - 74.5023) / (100 - 74.5023) = 67.34%. 
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B.2 RMR Example 

 

For a trial in Task 6, assume that the most frequently selected sequence by humans was “IMINT-

MOVINT-SIGINT”, and that this sequence was selected at a frequency of 23% by humans. If a 

model also selects “IMINT-MOVINT-SIGINT”, then RMR for the trial would be computed as: 

 

 RMR = 100% * 23/23 = 100%. 

 

Suppose instead that a model selected the sequence “IMINT-MOVINT-SOCINT”, and that this 

sequence was selected at a frequency of 12% by humans. In that case, RMR would be computed 

as: 

 

 RMR = 100% * 12/23 = 52.17%. 
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Appendix C Notes on KLD 
 

KLD, used to compute S and RSR, is known to be asymmetric and nonlinear – and these features 

are both appropriate and advantageous for T&E. Distance metrics (linear and symmetric), such 

as Root Mean Squared Error (RMSE), might be defined based on the mathematics of geometry, 

but for ICArUS we are concerned with the mathematics of probability, and especially 

information theory. Consistent with information theory, KLD is computed as the sum over h (an 

index of probabilities in a discrete distribution) of Ph * log2 (Ph/Mh), and both factors in this 

product are needed for properly comparing probability distributions between P and M.  

 

First consider the factor log2 (Ph/Mh). This nonlinear (log odds) term is an information-theoretic 

measure of “wow” (how much surprise, see Itti & Baldi, 2009) when a datum Ph is expected and 

the model Mh is reported. Notice that the wow factor is based on a ratio of Ph to Mh, which is a 

proportional measure rather than a linear difference. This scale-independent feature of KLD is a 

well-known advantage over scale-dependent metrics like RMSE or other distance measures. As a 

consequence, in KLD a given linear difference between Ph and Mh reflects a larger divergence at 

low probabilities, compared to the same linear difference at high probabilities. For example, 

when Ph/Mh = 0.20/0.10 then Mh is “off” (diverges from Ph) by a large proportion of Ph, whereas 

when Ph/Mh = 0.90/0.80 then Mh is “off” (diverges from Ph) by a small proportion of Ph, even 

though the linear difference between Ph and Mh is the same in each case. 

 

Also in KLD, the factor Ph serves to weigh each wow in the sum, such that wows associated with 

high Ph are weighed more than wows associated with low Ph. That is, a high Ph in a distribution 

is more important than a low Ph in the same distribution, because hypothetical events with high 

Ph are more likely to occur than hypothetical events with low Ph. Therefore, each product Ph * 

log2 (Ph/Mh) is a product of weight * wow, or importance * divergence, and the advantage of 

KLD lies in capturing the combination. 

  

Because of KLD’s scale-independence (discussed above), this metric is particularly sensitive to 

very low values of probabilities. Therefore, our assessment of RSR (based on KLD) will impose 

a “floor” that limits all human probabilities (averaged over subjects) and all model probabilities 

to a minimum value of 1%. Any value less than 1% will be changed to 1% and the remaining 

probabilities in the distribution will be adjusted accordingly such that all values are in the range 

1-99%. This ensures that the data or models do not introduce artificial effects on KLD 

calculations at very low probabilities.  
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Appendix D Abbreviations 
 

  

AHA 

BAA 

CFA 

COIN 

CPA 

GEOINT 

HUMINT 

IARPA 

ICArUS 

IMINT 

INTS 

KLD 

MOVINT 

NFA 

PROBS 

RASKR 

RMR 

RMSE 

RSR 

SIGACTS 

SIGINT 

SOCINT 

T&E 

 

Abducting Hot-spots of Activity 

Broad Agency Announcement 

Cognitive Fidelity Assessment 

Counterinsurgency 

Comparative Performance Assessment 

Geospatial Intelligence 

Human Intelligence 

Intelligence Advanced Research Projects Activity 

Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking 

Image Intelligence 

Intelligence Sources 

Kullback-Leibler Divergence 

Movement Intelligence 

Neural Fidelity Assessment 

Rule-based (if-then) Probabilities 

Rich and Sophisticated Knowledge Representation 

Relative Match Rate 

Root Mean Square Error 

Relative Success Rate 

Significant Activities Reports 

Signal Intelligence 

Socio-cultural Intelligence   

Test and Evaluation   

 


