
1

The Impact of XML on Databases and Data Sharing

Len Seligman and Arnon Rosenthal
The MITRE Corporation

{seligman, arnie}@mitre.org

Abstract
XML (eXtensible Markup Language) has received a great deal of attention as the likely successor

to HTML for expressing much of the content of the Web. However, XML also has the potential to
benefit databases and data sharing by providing a common format in which to express data structure
and content. By describing the broad challenges presented by data access and (especially) data
interoperability, we highlight both the potential contributions of XML technologies to databases and
data sharing, and the problems that remain to be solved. In some areas, XML promises to provide
significant and revolutionary improvements, such as by increasing the availability of database outputs
across diverse types of systems, and by extending data management to include semi-structured data.
While some of the benefits of XML are already becoming apparent, others will require years of
development of new database technologies and associated standards.

Key words – XML, Internet data management, Web databases, semi-structured data,
interoperability, database management systems, middleware

Background: The HTML Data-Sharing Dilemma

The World Wide Web has been a great boon to businesses needing to share data across
distributed, heterogeneous hardware and software environments. Rather than looking for data from a
single controlled location, businesses increasingly use a single browser interface to access data from
sources around the world.

However, there is a problem with the current Web model of diverse data access. At present, both
the Web and most intranets use HTML (HyperText Markup Language) as the predominant format for
publishing information. HTML is an easy-to-understand language for presenting and displaying data,
and this ease of use was fundamental to its rapid spread as the basis of the Web. Unfortunately, as a
universal way to represent information from diverse sources, HTML suffers from several serious
shortcomings, including:

• Presentation (not content) orientation. HTML uses presentation-oriented mark-up tags
(e.g., “<H2>” for a second level heading) that tell a browser how the to display data to
human users. HTML gives no information about the meaning of the data (e.g., “this is a
warranty description for a retail product”). Because HTML focuses on the computer-to-
human interface, it has limited value as a data format for computer-to-computer applications
such as transferring information between databases.

• Tight coupling of content and presentation. In HTML, presentation-oriented tags are
intermingled with data content. Because content and presentation are tightly coupled,
HTML does not effectively support alternate presentations of the same underlying content
(e.g., for different audiences or media).

• No extensibility. HTML has a fixed set of markup tags. There is no support for creating
new, application-specific tags (e.g., Patient_ID for medical applications) that help
applications communicate about the data content.

• No data validation capabilities. HTML does not help applications validate data as it is
entered or imported.

2

While HTML was instrumental in creating a new perception in businesses that data can and
should come from many diverse sources, it is poorly suited for building systems in which applications
(not users) interpret the data. Because of these limitations, it is cumbersome to build and maintain a
complex data access application (e.g., a comparison-shopping agent) based on HTML documents. Such
HTML-based applications require brittle, handcrafted code to “screen scrape” information from web
pages (e.g., “find the third column and second row of the fourth HTML table in this page; that’s
usually the price”). The need for such convoluted techniques is especially frustrating given that much
information on the Web is derived from structured databases. The structural information contained in
those databases would vastly simplify the extraction of data by applications, but most of it is thrown
away when the information is published in HTML on the Web.

Enter XML

To address the limitations of HTML for representing Web content, the same World Wide Web
Consortium (W3C) (see www.w3.org) that is responsible for HTML standards chose in the late 1990s
to develop a new standard that would eliminate these shortcomings. The goal was to create a language
that was similar to HTML in format, but more extensible and capable of clearly separating content and
presentation. The result of this effort was called XML, or eXtensible Markup Language. The W3C
defined XML as a simplified subset of an earlier document-structuring language called SGML, or
Standardized Generalized Markup Language. SGML had been used to create some large information
collections such as encyclopedias and multi-volume case law books, but its complexity had discouraged
widespread adoption.

As a standard, XML eliminates many of the data representation problems that plague HTML.
The advantages of XML include:

§ Independence of content and presentation. XML addresses content only. With XML,
the presentation of data is handled separately with either Cascading Style Sheets (CSS) or the
Extensible Stylesheet Language (XSL), both of which are also W3C standards.

§ Extensibility. XML allows the creation of an indefinitely large number of new data labels or
tags. This means that with XML, information publishers are free to invent their own tags as
needed for their particular applications, or to work together with other organizations to
define shared sets of tags that promote interoperability.

§ Validation. XML documents can be associated with a Document Type Description (DTD),
which defines a structure for conforming applications. This allows applications that import
data to validate that data for conformation to the DTD.

Although it is a young standard, XML is already having a significant impact in intranets and on
the Web. Businesses like XML, because it eliminates many of the costly and fragile workarounds
needed to represent rapidly changing data in HTML. Developers of new applications appreciate the
extensibility of XML, which makes it easy to adapt to new uses, and communities that must share
common data (e.g., the chemical industry) like XML for its ability to support well-defined, common
data representations. As a consequence of widespread acceptance, there is a vibrant XML marketplace
providing inexpensive tools for preparing, validating, and parsing XML data. It is likely that XML will
continue to have strong support over the next decade in terms of tools, standards, and users.

As a result of fixing the known problems with HTML, XML offers several benefits:
• Support for multiple views of the same content for different user groups and media. As the

chairman of Adobe said in his keynote at XML ’98, “To date we have had a separate
workflow for each output format…We are switching to XML because it will allow us to have
a single workflow with multi output.”

3

• Selective (field-sensitive) query over the Internet and intranets. For example, one could
search for documents with an Author field that contains “Kissinger”, and the search would
not return documents that merely mention Kissinger unless it was within an Author tag.1

• The semantic structure of web information becomes more visible. There will be less need for
brittle screen-scraping parsers.

• A standard infrastructure for data and document interchange. This includes freely available
parsers that can validate conformance with a DTD.

Several related standards will greatly increase the utility of XML for data sharing and
management. These include:2

• eXtensible Stylesheet Language. XSL allows one to specify rules that indicate how to
transform an XML document. This transformation could be to a presentation format (e.g.,
HTML or PDF), or to an alternate representation of the content (e.g., an XML document
with a different DTD). As a result, one can manage content independently of its presentation
and use different XSL stylesheets to produce alternate views of that content.

• Document Object Model (DOM). Brackets and backslashes are uninteresting. The XML
standard gives enough information to drive a parser, but does not specify the form of the
parser’s output, either as a data structure or in terms of operations. We hope (and predict) that
most XML-related work will be expressed in terms of tree and graph abstractions that hide
these details. In particular, DOM provides a tree-based application programming interface to
XML. The DOM API provides methods for traversing the tree, such as getParentNode(),
getChildNodes(), etc.

• XML Query Language. The W3C has formed a query language working group whose goal is
to provide flexible query facilities to extract data from collections of XML documents as well
as non-XML data viewed as XML via a mapping mechanism.

• XML Schema. XML DTDs were intended originally for document management and provide
inadequate support for modeling data. To address this, the W3C XML Schema working group is
adding data types, relationships, and constraints.

To sum up, XML and related technologies offer an excellent combination of benefits and
simplicity. XML has quickly achieved wide vendor acceptance, in browsers, document preparation
tools, and as a database input/output format, and XML based products are already emerging. We now
consider the likely impact of XML on database management systems.

XML and Databases

XML and database technology are more complementary than competitive. By revealing

structure in non-tabular data, XML enables that structure to be exploited by database technologies.
Conversely, database techniques can improve the integrity and semantic integration of sets of XML
resources. This synergy has been recognized by W3C working groups, which are adapting database ideas
to provide XML schema and query technologies.

 Below, first we look at how XML impacts information systems built around relational databases.
Then we examine prospects for applying database technology to semi-structured data, including XML.

XML for Well Structured Data

1 Note that this capability depends on agreements (at least within a particular community) on the meaning of

certain widely used tags (e.g., Author).
2 For current information on these standards and the tools that support them, we refer the reader to

http://w3.org/xml and http://www.xmlinfo.com.

4

 Today’s dominant database management systems (DBMS) are broad, mature products that will be
hard to displace, and are likely to dominate management of critical enterprise data, even in newer
areas such as electronic commerce.

 The database world today emphasizes high-integrity, read-write processing of regularly structured
data. Table definitions or object types model the external world (e.g., Customer, Account) rather than
information artifacts (e.g., Document, Title). The regularity of relational tables (all rows in a table
conform to a structure that is known in advance) makes interfaces simpler and more static. Modern
databases provide efficient update and retrieval of huge amounts of data, highly tuned transaction
processing, recovery, indexes, integrity, and triggers. They also support complex queries with good
performance and explicit semantics (as opposed to less formal “relevance” criteria). Even load and
dump utilities are optimized for performance. For the data that supports critical but routine processing,
these requirements will continue.

 For applications involving regularly structured data, XML tools will not replace such DBMSs.
There is simply too much functionality to implement rapidly, and migration would be too traumatic.
Also, the need for efficiency argues against a verbose format like XML for internal storage. XML data
can be stored directly in relational systems (e.g., by encoding its graph), but relational operators are
insufficient for the manipulations users want. Still, XML is rapidly gaining a role for even highly
structured data—as an interface format.

Whenever required (e.g., to publish the information on the Web, or send it over the wire for e-
commerce), XML versions of appropriate views of the data can be created. Sometimes, these will be
created on the fly, in response to user queries, while for other applications (especially where the data is
nonvolatile or users don’t need completely current information) the XML may be created in advance
(e.g., daily). Already, major vendors (e.g., Oracle and IBM) have released tools for creating XML
extracts of databases, and these tools will become more powerful. Import utilities are also being
customized to accept XML. An advantage of XML output is that it includes its own schema
information. For anyone who understands the tags used, the information is self-describing.

A second advantage is that XML can naturally represent structures that are more complex than
flat tuples. XML offers a way to serialize objects (verbosely), e.g., for e-commerce artifacts.

XML for Document and Other Semi-structured Data

 Relational DBMSs hold a small fraction of the world’s data, for several good reasons. They tend
to require professional administration. They require data to be tabular (i.e., flat) and to conform to a
prespecified schema, which promotes integrity but discourages rapid development and change.
Frequently their purchase prices are high. For document data, semi-structured data models (including
but not limited to XML) offer promise of addressing all but the first objection. But for now, they lack
the features needed for robust systems.

 As semi-structured data becomes more widely shared, and is processed more automatically,
organizations will need data management capabilities (e.g., powerful queries, integrity, updates, and
versioning) over this data. Object-oriented database vendors have begun addressing this need by
offering XML data managers layered on top of their tools.3 Relational systems are also moving in this
direction.

The long-term direction for database support of XML and other structured media, though, may
be best seen in the database research community. Many researchers are improving the ability to
interface with semi-structured data. Some have developed “wrappers” that mine data with implicit
structure and make the structure explicit and machine-readable (e.g., [1, 9]). Other projects (e.g.,
[10]) are investigating the use of graph-structured data models (including XML) as a common
representation for heterogeneous information sources, including both structured and semi-structured
sources.

3 E.g., Poet <http://www.poet.com> and eXcelon <http://www.exceloncorp.com>. In fact, the latter company

(formerly Object Design) has redefined its identity to focus on XML data management rather than object databases.

5

 Finally, several groups are developing prototype DBMSs for semi-structured data, with new query
languages and optimization techniques [4, 6, 8]. These researchers have converged on the use of
graph-structured data models (especially XML), in which all data is represented in labeled directed
graphs. DBMSs for semi-structured data are intended to handle data from, e.g., ordinary documents,
web sites, and biochemical structures. In these arenas, it is often infeasible to impose any schema (even
an object schema) in advance. Data may be irregular, or the structure may evolve rapidly, lack an
explicit machine-processable description, or be unknown to the user. Even when the structure is
known, it is frequently seen as hierarchical, and it is advantageous to have operations that understand
the hierarchy.

 Compared with an ordinary relational or object database, semi-structured databases offer several
capabilities:

• Hierarchical model. Some data is most naturally modeled as a hierarchy. For this data,
hierarchical languages simplify data manipulation. (However, if the hierarchy is different from
the way your application views the world, it can be very awkward to work with.)

• Tag and path operations: Conventional database languages allow manipulation of element
values, but not element names. Semi-structured databases provide operators that test tag names
(e.g., “find all documents that have a ReferenceList or Bibliography element”). They also
include operators that manipulate paths. For example, one can have path expressions with
wild-cards, to ask for a Subject element at any depth within a Book element.

• Irregular structure. The contents of a node need not conform to a type description, i.e., the
node need not have a predetermined attribute list. Relational systems could model this by
having missing attributes as nulls. However, SQL is awkward with null values, and current
storage structures can have excessive overhead.

• Structure that varies, or is not known in advance. For example, documents differ in their
structure, especially if assembled from multiple sources. The structure may also change, e.g.,
when figures are added. For web resources, even those with rigid structure, that structure might
not be explicitly recorded on-line. This is a major challenge, in terms of providing a user
interface, and efficient processing.

• Sequence. Unlike tables, document sections are ordered, so sequence must be represented. In
query processing—especially joins and updates—sequence introduces significant complexity.

These features have been demonstrated in research prototypes and are likely to appear in commercial
products in the next few years. It is unclear how the market will be split among the three approaches:
(1) layered over an object database, (2) layered over a relational database, or (3) directly over some
new data manager.

XML and Data Sharing

Some industry observers have heralded XML as the solution to data sharing problems. For
example, Jon Bosak [3] indicates that XML (together with XSL) will bring “complete interoperability
of both content and style across applications and platforms.” In reality, data sharing will continue to
be a significant challenge. XML technologies will make a positive impact, but they give only partial or
indirect help for many of the toughest issues.

This section examines the likely impact of XML on data sharing. First, we list six functional
tasks that data sharing must accomplish, regardless of architecture and formalism. We then use this list
of data sharing functions as a framework for answering the questions: Where can XML help? What
portion remains unsolved?

Generic Tasks for Data Sharing
Users want seamless access to all relevant information about the real world objects in their

domain. The literature provides several general architectures including the following [5]:

6

• Multi-databases. Applications work directly with source databases, and each application does
its own reconciliation.

• Data warehouses. Administrators define a “global” schema for the data to be shared. They
provide the derivation logic to reconcile data and pump it into one system; often the
warehouse is read-only, and updates are made directly on the source systems.

• Data marts. This is like data warehousing, except that customized views of the global
warehouse called “data marts” are maintained for particular communities.

• Federated databases. This can be thought of as a virtual data warehousei.e., the global
schema is not populated. The source systems retain the physical data, and a middleware layer
translates all requests to run against the source systems.

Regardless of which distributed architecture is chosen, someone (standard-setter, application
programmer, or warehouse builder) must reconcile the differences between data sources and the
consumer’s view of that data, in order for data to be shared. Applications need to be insulated from
several forms of diversity, in order to make their requests. (We assume the insulation mechanisms also
provide an interface for programmers to look under the hood.) Data reconciliation must overcome
challenges at multiple levels.

1. Distribution. Many protocols are available, and they may be hidden within middleware products.
Options include CORBA, DCOM, and HTTP.

2. Heterogeneous data structures and language (i.e., heterogeneous DBMSs). Standards like ODBC
and middleware products increasingly handle this difficulty. However, advanced features (e.g.,
triggers) may not be visible at the middleware tier, and there may be an efficiency loss.

3. Heterogeneous attribute representations and semantics. Integrators often must reconcile different
representations of the same concept. For example, one system might measure Altitude in meters
from the earth’s surface while another measures it in miles from the center of the Earth. In the
future, interfaces may be defined in terms of abstract attributes with self-description, e.g.,
Altitude(datatype=integer, units=miles). Such descriptions enable mediators to shield users from
these representational details [13].

Differences in semantics (i.e., meaning) are more challenging than representation heterogeneity.
For example, two personnel systems include an Employee.Compensation attribute. One might be
gross salary plus annual bonus, while the other is net salary (after taxes) without bonuses, but
including the value of insurance premiums paid by the employer. Semantic differences can
sometimes be resolved through transformations (e.g., rederiving gross salary). However, often no
automated transformation is possible, and the integrator must simply indicate whether he can use a
particular attribute for a particular purpose.

4. Heterogeneous schemas. The same information elements can be assembled into many different
structures. Various application communities are therefore attempting to define standard interface
schemas, e.g., as Unified Modeling Language models, SQL tables, or XML DTDs. Such standards
reduce the number of external interfaces that a system must support. Sometimes they are also
suitable for use internal to an application; however, one should not force an application’s
functions to use an unnatural schema just to avoid occasional translation when passing data outside.

As the previous problems become better solved, researchers are turning to the next two types of
reconciliation. The treatments are generally application dependent; the tool developer’s task is to
make it easy for administrators to specify the desired policies. System designers should allow the
reconciliation rules to be flexible, modular, and displayable to domain experts who are not
programmers.

7

5. Object identification. This type of reconciliation determines if two objects (usually from different
data sources) refer to the same object in the real world. For example, if CriminalRecords has (John
Public, armed robber, born 1/1/70) and MotorVehicleRegistry has (John Public Sr., license plate
“JP-1”, born 9/9/69), should a police automobile-check view consider the tuples to refer to the
same person and return (John Public Sr, armed robber)?

6. Data value reconciliation: Once object identification has been performed, the different sources
may disagree about particular facts. Suppose three sources report John Public Sr. to be respectively:
180, 187, and 0 centimeters. What value or values should be returned to the application?

Where Can XML Help?

Given the reference model of the previous section, we now consider where XML can help
improve data sharing.

Distribution (level 1). XML provides some assistance with distribution by supporting mechanisms
for remote function invocation across the web. For example, Simple Object Access Method (SOAP)
uses XML and HTTP as a method invocation mechanism.4 SOAP mandates a small number of HTTP
headers that facilitate firewall/proxy filtering and specifies an XML vocabulary for representing
method parameters, return values, and exceptions.

In addition to mechanisms for sending method invocations and results across the distributed
networks, data sharing requires functions that do the actual work of creating, sending, and reading
interchange files. For example, players must know the syntax and exact semantics for “Send.” (For
database-oriented data sharing, one may use submittal protocols like ODBC.) XML does not provide
these functions, but presumably they will be provided by middleware vendors, often layered on top of
XML-based invocation mechanisms such as SOAP.

Heterogeneous data structures and language (level 2). XML provides a neutral syntax for
describing graph-structured data as nested, tagged elements with links. Since one can transform diverse
data structures into such graphs, XML offers a way to represent heterogeneous data structures. Adding
DOM (and perhaps a query language) provides the needed operations for accessing these data
structures.

Microsoft’s ODBC and OLE/DB make available analogous functionality for accessing flat and
nested data sources (plus a model for describing servers’ search capabilities). Among relational
databases, ODBC, OLE/DB, and native interfaces seem to offer extra power and fairly low cost.
(OLE/DB seems relevant mostly when the target is on a Microsoft platform).

XML will shine in other settings. When a source or recipient sees the world hierarchically (e.g.,
for formatted messages), XML technologies can help in restructuring the information between
relational and hierarchical formalisms (once one understands the mappings needed for levels 3 and 4).
For example, the U.S. military and its coalition partners are beginning to transition their Message
Text Format (MTF) to an XML-based infrastructure. XML’s strong base of tools (freeware and COTS)
gives great flexibility. and has greatly reduced development costs. In another example, our research
group found XML to provide a useful common data model for integrating two semistructured text data
sources, Periscope and the CIA’s unclassified World Factbook [9].5

 Heterogeneous attribute representations and semantics (level 3).
 One approach to this challenge is to develop standards within a community of interest. Past

standardization efforts have often suffered from a lack of tools for informing stakeholders about

4 http://search.ietf.org/internet-drafts/draft-box-http-soap-01.txt
5 http://www.periscope.usni.com/demo/demoinfo.html and http://www.odci.gov/cia/publications/factbook

8

relevant standardized concepts. XML and the web-based infrastructure on which it is built provide
opportunities for addressing this concern.

Sometimes a source and receiver will agree on the semantics of a concept (e.g., Altitude) but not
on its representation. A natural solution is for the source and recipient to describe representation
details explicitly, e.g., “<Altitude>500<LengthUnit>miles</LengthUnit></Altitude>”, showing their
assumptions as subsidiary elements. One would then want standards to make this subsidiary information
sharable, e.g., what is “LengthUnit”. But there is still considerable work that the standards do not
support. The extra elements should typically be virtual, derived from profiles of sources rather than
included with each value; also mediation is necessary to compare and insert appropriate translations
[13]. Neither of these tasks is directly supported in the standard.

XML contributes toward making the above descriptions more manageable (compared with
ordinary relational DBMSs). It provides an easy way to attach subsidiary elements, a good means of
disambiguating names provided by different authorities (i.e., XML Name Spaces), and most important,
the ubiquity and toolsets that attract interest from domain communities.

Heterogeneous schemas (level 4). XML DTDs defined by various communities provide a neutral
model for describing their data structures. Communities developing standard DTDs include electronic
commerce, healthcare, and data warehousing vendors. Such DTDs will reduce diversity of interfaces
and ease data sharing. One effort of interest is BizTalk, an XML repository effort being spearheaded
by Microsoft (but supported by numerous companies) that facilitates interoperability by mapping
among XML elements and models.

The model standardization problem is not intrinsically simpler in XML, compared to object
systems. However, XML’s likely ubiquity and cheap tools have sparked enthusiasm for defining
standards in many communities. Organizations will need to map their schemas (and non-DBMS data)
to the standards; this market may spur creation of a new generation of DTD (i.e., schema) integration
tools.

 In the developer community, there is increasing awareness that schema diversity will be a serious
problem even if XML DTDs are widely used [7]. [11] raises this issue for e-commerce, and describes a
model with roughly the same layers as ours. However, rather than one standard schema at each layer,
we expect several to be viable. (Communities’ interests overlap, and within the overlap, each
community will follow its own path.) The schemas will also be incomplete, so one will need an easy
way to supplement them, to meet a pair of organizations’ particular needs.

 Hence there will be a great need to create mappings between schemas. SQL is a reasonable choice
to express those mappings, especially since it now supports user-defined functions. It will be some time
before XML query processors become strong enough to handle such mappings.

Object identification (level 5). Improvements in identifying data elements (at level 3) can
remove one source of misidentification of objects (e.g., in a Payment, is the date in US or European
format?). Also, XML makes it easy to attach uncertainty estimates (as subsidiary elements) to any
output (if the recipient is prepared to interpret them).

Data value reconciliation (level 6). Many strategies for data value reconciliation depend on
having metadata (e.g., timestamp, source-quality) attached to the data . XML helps in attaching such
annotations. XML also makes it easy to return a set of alternative elements for an uncertain value
(again assuming the recipient is prepared to use such output).

To sum up, XML and related tools provide considerable help with data interoperability,
especially at levels 1 - 4. However, a key issue is not resolved by XML: how to best record the
intersystem mappings. First, analysts need tools to help them identify candidate relationships across
systems. Second, mappings should be specified declaratively and not in procedural code about which
optimizers and other automated tools cannot reason. SQL is an example of such a declarative language
and it is hoped that the upcoming XML Query Language will be also. Finally, we need tools (such as

9

BizTalk) to record intersystem relationships and mappings to any community standard DTDs or
schemas, and to make them available for reuse [12].

Another issue is that XML-based interoperability often means using XML as a message syntax
for bulk transfers among systems. However, bulk transfer is a weak form of interoperability that
supports one kind of request: “Generate the standard message, please”. There is no built-in support for
ad hoc query, update, or a subscription to be notified of specific changes. These capabilities are offered
by commercial relational databases, but it will be some time until XML tools offer similar features.

 Conclusion

As with any hot new technology, XML has generated exaggerated claims. In reality, XML does

not come close to eliminating the need for database management systems or solving large
organizations’ data sharing problems. Nevertheless, XML is an important technology with significant
benefits in three areas:

• as an input/output format (particularly in web environments)

• for managing and sharing semi-structured data that is difficult to describe with a prespecified
schema, and

• as a ubiquitous and inexpensive infrastructure for exchanging self-describing messages.
In addition, the enthusiasm surrounding XML is motivating some communities to agree on standards
where previously they could not. Also, the Web makes it easy to share information about community
standards, thereby dramatically increasing their impact.

To realize XML’s full potential, further progress is needed. We need better tools, particularly for
managing semi-structured data, for reconciling heterogeneous attributes and schemas, and for
performing object identification and data value reconciliation. Researchers and vendors have made
significant strides, but much more remains to be done.

Acknowledgments

The authors thank Terry Bollinger and Frank Manola for their helpful comments and Roger
Costello for assistance with an earlier version of this paper. Any remaining problems are the
responsibility of the authors.

References

[1] B. Adelberg, “NoDoSE: A Tool for Semi-automatically Extracting Structured and
Semistructured Data from Text Documents,” SIGMOD International Conference on
Management of Data, 1998.

[2] J. Blakeley. “Data Access for the Masses through OLE DB,” SIGMOD International
Conference on Management of Data, 1996, http://www.microsoft.com/data/oledb.

[3] J. Bosak, “Media-independent Publishing: Four Myths about XML,” IEEE Computer, October
1998.

[4] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, “A Query Language and Optimization
Techniques for Unstructured Data,” SIGMOD International Conference on Management of
Data, 1996.

[5] A. Elmagarmid, M. Rusinkiewicz, A. Sheth, Management of Heterogeneous and Autonomous
Database Systems, San Francisco: Morgan Kaufmann Publishers, 1999.

[6] M. Fernandez, D. Florescu, J. Kang, A. Levy, D. Suciu, “Catching the Boat with Strudel:
Experiences with a Web-site Management System,” SIGMOD International Conference on
Management of Data, 1998.

10

[7] A. Gonsalves, L. Pender, “Schema Fragmentation Takes a Bite out of XML”, in PC Week
Online, May 3, 1999. http://www.zdnet.com/pcweek/stories/news/0,4153,401355,00.html.

[8] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom, “Lore: A Database
Management System for Semistructured Data,” SIGMOD Record, 26(3), September 1997.

[9] D. Mattox, L. Seligman, K. Smith, “Rapper: A Wrapper Generator with Linguistic
Knowledge,” Workshop on Web Information and Data Management, Kansas City, 1999.

[10] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object Fusion in Mediator Systems,”
International Conference on Very Large Databases, September, 1996.

[11] L. Paul, “Are XML Standards Too Much of a Good Thing” , in PC Week Online, Apr 12, 1999,
http://www.zdnet.com/pcweek/stories/news/0,4153,398134,00.html.

[12] A. Rosenthal, E. Sciore, S. Renner, “Toward Integrated Metadata for the Department of
Defense”, IEEE Metadata Workshop, Silver Spring, MD, 1997. At
http://computer.org/conferen/proceed/meta97/papers/arosenthal/arosenthal.html.

[13] E. Sciore, M. Siegel, A. Rosenthal, “Using Semantic Values to Facilitate Interoperability among
Heterogeneous Information Systems”, ACM Transactions on Database Systems, June 1994.

Biographical Sketches

Len Seligman is a Principal Scientist in MITRE’s Intelligent Information Management and
Exploitation group in Reston, Virginia. His experience includes developing, researching, and managing
advanced information systems. He has a Ph.D. from George Mason University and is an Associate
Editor of SIGMOD Record, the quarterly bulletin of the ACM Special Interest Group on the
Management of Data. Dr. Seligman’s interests include heterogeneous databases, semi-structured data,
and large-scale information dissemination.

Arnon Rosenthal is a Principal Scientist at The MITRE Corporation in Bedford, Massachusetts. He
has worked in recent years on data administration, interoperability, distributed object management,
migration of legacy systems, and database security. He is Vice Chair for “System Administration, Ease
of Use & Database Design” for the International Conference for Data Engineering. 2000. At
Computer Corporation of America (Xerox AIT), ETH Zurich, and earlier, his interests included query
processing, database design, active databases, and discrete algorithms. He holds a Ph.D. from the
University of California, Berkeley.

