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ABSTRACT  

Most Earth observation hyperspectral imagery (HSI) detection and identification algorithms depend critically upon a 
robust atmospheric compensation capability to correct for the effects of the atmosphere on the radiance signal. Most 
atmospheric compensation methods perform optimally when ancillary ground truth data are available, e.g., high fidelity 
in situ radiometric observations or atmospheric profile measurements. When ground truth is incomplete or not available, 
additional assumptions must be made to perform the compensation. Meteorological climatologies are available to 
provide climatological norms for input into the radiative transfer models; however no such climatologies exist for 
empirical methods. The success of atmospheric compensation methods such as the empirical line method suggests that 
remotely sensed HSI scenes contain comprehensive sets of atmospheric state information within the spectral data itself. 
It is argued that large collections of empirically-derived atmospheric coefficients collected over a range of climatic and 
atmospheric conditions comprise a resource that can be applied to prospective atmospheric compensation problems. This 
paper introduces a new climatological approach to atmospheric compensation in which empirically derived spectral 
information, rather than sensible atmospheric state variables, is the fundamental datum. An experimental archive of 
airborne HSI data is mined for representative atmospheric compensation coefficients, which are assembled in a scientific 
database of spectral and sensible atmospheric observations. We present the empirical techniques for extracting the 
coefficients, the modeling methods used to normalize the coefficients across varying collection and illumination 
geometries, and the resulting comparisons of adjusted coefficients. Preliminary results comparing normalized 
coefficients from representative scenes across several distinct environments are presented, along with a discussion of the 
potential benefits, shortfalls, and future work to fully develop the new technique.  
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1. INTRODUCTION  

The fundamental problem addressed in this research is atmospheric compensation in an Earth remote sensing context. 
For an imaging sensor at some altitude above the Earth’s surface, atmospheric compensation is the process of deriving 
the surface reflectance values from the at-aperture radiance images recorded by the sensor. The magnitude of the 
atmospheric effects on measured electromagnetic energy can be strongly wavelength dependent, varying across the 
absorption regions of water vapor and trace gas constituents in the atmosphere. Scattering by molecules and suspended 
aerosol particles is also wavelength dependent. Successful analysis of remotely sensed hyperspectral imagery (HSI) is 
particularly dependent upon a robust atmospheric compensation capability. Most HSI applications rely on precise 
relationships between spectral bands and virtually any quantitative HSI analysis must therefore begin with an inversion 
problem to derive the surface reflectance or emittance from the measured at-aperture radiance. Many methods have been 
developed to accomplish this inversion. Most can be categorized as either empirical or physics-based methods.  

HSI datasets contain complete sets of spectral measurements of light passing through the atmosphere at each pixel; 
therefore, information about the atmospheric transmission is present in the measured radiance signal. Empirical 
atmospheric compensation methods use this information along with some additional information about the scene to 
statistically derive the relationship between radiance and reflectance. Alternatively, the physics of radiative transfer is 
well understood and can be accurately modeled using radiative transfer algorithms. Physics-based (PB) methods use 
radiative transfer codes to estimate the atmospheric effects on transmission and determine the surface reflectivity from 
the model. Both approaches perform best when ancillary ground truth data are available – high fidelity in situ 
radiometric observations and/or atmospheric profile measurements.  
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In practice, outside of controlled experiments, detailed ground truth data are rarely available. PB methods are routinely 
applied using broad climatological atmospheric parameters as input to the models. PB methods can use the atmospheric 
transmission information contained within the radiance data to refine the parameters; for example by using band ratios to 
extract the information and convert it to conventional meteorological parameters (water vapor mixing ratios, aerosol 
concentrations, etc.). The PB models then use radiative transfer algorithms to translate the meteorological information 
back into spectral effects during the reflectance inversion. Undesirable artifacts are inevitably introduced into the data 
with each translation between domains. Empirical methods must rely on indirect methods to supply reference reflectance 
signatures, either through supervised or statistical means; no climatologies currently exist for empirical methods. 

Where well-calibrated ground truth measurements are available, the empirical line method (ELM) has been shown to 
produce reflectance retrievals that are overall equivalent or superior to those produced by other methods.1 However, the 
native spectral information about the atmosphere captured in the ELM coefficients is not compiled for use outside of the 
scene from which they were derived. These coefficients comprise an untapped resource for climatological information 
relevant to HSI atmospheric compensation. In this work we introduce a new type of atmospheric climatology, using a 
statistical approach in which empirically derived spectral information is the fundamental datum rather than sensible 
atmospheric state variables.  

2. BACKGROUND 

2.1 Empirical Line Method  

The empirical line method2 is a proven empirical method of atmospheric compensation in which the conversion factors 
to retrieve reflectance values are derived by performing a linear regression of observed at aperture radiance values 
against corresponding measured ground truth reflectance factors. The context of this model is hyperspectral Earth remote 
sensing in the visible through short wave infrared part of the spectrum. The radiance reaching the sensor )(λSL can be 

written as: 

    (1) 

where )(λdirL  is the direct path reflected radiance, )(λskyL  is the indirect sky-illumination reflected-radiance and 

)(λpathL  is the path radiance. Adjacency and multiple surface scatter effects are neglected, as are thermal emissive 

radiance contributions. The direct path term is given by: 

σ
π
λρλτλτλ cos
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where 0E  is the solar irradiance at the top of the atmosphere, )(λτ d  is the downward path transmittance, )(λτu  is the 

upward path transmittance, )(λρ is the surface reflectance factor, and σ  is the incident angle to the surface. Implicit in 

the reflectance factor term is the assumption of a Lambertian surface. In the more general case, )(λρ  would be replaced 

by the bi-directional reflectance distribution function (BRDF). The indirect reflected term is written as: 

π
λρλτλ )(

)()( ussky EL =      (3) 

where sE  is the skylight irradiance at the surface. Here it is assumed that the entire hemisphere of the sky is visible to 
the surface and again, the surface is Lambertian. 

Equation 1 can then be written as a linear relationship (dropping the wavelength dependence notation for clarity): 

bmLS += ρ                 (4) 
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where m and b are the gain and offset vectors given by: 

( )
π
τστ u

sd EEm += cos0      (5) 

pathLb = .      (6) 

In ELM, the gain and offset coefficients m and b in equation 4 are assumed constant across the image, and are therefore 
one-dimensional vectors in wavelength space. They are determined by selecting two or more groups of pixels for which 
the reflectance values are known (or assumed known) and performing a linear regression of the measured radiance 
against the ground truth reflectance. These vectors are then applied against each pixel to estimate the reflectance. 

2.2 MODTRAN 

The Moderate Resolution Transmittance (MODTRAN) radiative transfer code serves as the U.S. Air Force standard 
moderate spectral resolution radiative transport model for wavelengths extending from the visible through the thermal 
infrared region.3 MODTRAN is also used as the radiative transfer engine for many atmospheric compensation programs, 
including the commercial standard Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH).4 
MODTRAN accepts as inputs a range of remote sensing geometries and most possible illumination conditions. It has a 
rich variety of options for specifying atmospheric constituents, state variables, and scattering models. MODTRAN is 
used here to adjust ELM coefficients derived from different HSI scenes to account for differences in geometry and 
illumination conditions. 

2.3  QUAC 

The Quick Atmospheric Correction (QUAC) model of Bernstein, et al. is an unsupervised empirical atmospheric 
correction algorithm.5 QUAC assumes a linear radiative transport equation like ELM, but uses a ratio of scene-derived 
statistics to those of a reference scene to calculate the gain coefficients. The reference scene is a spectrally diverse 
collection of laboratory reflectance measurements. QUAC is commonly used in HSI analysis because it shows results 
comparable to PB models under many conditions but without the requirement for exact atmospheric and illumination 
information. It involves less calculation than PB methods and is not as dependent on the accuracy of the data’s 
radiometric calibration. QUAC is used here as the method to which the ELM derived coefficients and reflectance 
retrievals are compared. 

2.4 Hyperspectral data  

The data used in this study were collected by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) 
sensor. HYDICE is a pushbroom hyperspectral sensor with a spectral range from 0.4 to 2.5 microns. It uses a Schmidt 
prism dispersive spectrometer with a single indium antimonide (InSb) focal plane. HYDICE collects 210 spectral bands 
with a nominal bandwidth of 10 nm and 320 spatial samples.6 

HSI scenes were collected over a variety of environments representing distinct climate regimes. In each environment, 
data were collected at several altitudes ranging from 5-20 kft above ground level (AGL) and with varied illumination 
conditions. Each environment was typically collected over a 2-4 day period. Several of the environments were imaged in 
different seasons. Each scene analyzed contained four to six gray scale calibration panels ranging from 2% to 64% 
reflectance. The calibration panels were measured with a field spectrometer, averaging 5-15 spot measurements across 
the panel to provide ground truth reflectance spectra for the scenes. In most cases the panels were measured on the day 
of the collects. The panels were sized relative to the HYDICE instantaneous field of view to ensure that at least one 
image pixel would fall entirely on the calibration panel at maximum flight altitude, providing a pure pixel corresponding 
to the ground truth reference spectra.  

3. METHODOLOGY 

3.1 ELM analysis 

The spectral climatology requires harvesting ELM-derived atmospheric compensation coefficients for a wide variety of 
environments. An extensive scientific archive of HYDICE imagery was reviewed to identify the scenes containing 
calibration panels for analysis. The QUAC algorithm was run on the full scene for maximum spectral diversity and the 
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resultant gain and offset coefficients saved for later analysis. Ground truth spectra were reconstructed from available 
records, including experiment reports, field logs, and metadata. Scenes with missing ground truth or ambiguous metadata 
were rejected, unless adequate substitute data were available, e.g., the same panel measured on the prior day. 

Standard ELM techniques were used to derive gain and offset coefficients that describe the inversion from at aperture 
radiance to reflectance2. The in-scene pixels containing each calibration panel were manually identified and each pixel 
spectrum reviewed to ensure no noticeable background or edge contamination was present. The radiance spectra of the 
pixels for each panel were averaged. Low altitude (5 kft AGL) collects typically contained 25-30 pixels on each panel, 
ranging to only 1-2 pixels at the highest altitude (20 kft AGL). An ELM regression was then performed on the averaged 
panel radiance spectra against the corresponding ground truth reflectance. ELM produces vectors m and b containing the 
gain and offset coefficients for each channel and an RMSE vector r. 

In some cases, the regression performed using all calibration panels resulted in coefficients with large RMSE relative to 
the offset values. These results also produced unusual offset vectors, having strong negative values in the near- and short 
wave IR regions. In such cases, the ELM regression was repeated with one or more of the grayscale panels omitted to 
obtain coefficients with minimum RMSE. In all cases this resulted in offset coefficients that did not show strongly 
negative values. Figure 1 shows such a case. The regression using all four calibration panels resulted in large negative 
offset values and a large RMSE. Using only two panels (brightest and darkest) produced a more physical offset 
coefficient profile, albeit with smaller negative regions. 

 

Figure 1. ELM gain (solid line) and offset (dashed) coefficients with RMSE (dot-dashed), using all calibration panels (left) 
and omitting the two mid-brightness (approximately 16% and 50%) reflectance panels (right). No RMSE is computed with 
only two regression points. 

 

Figure 2 shows the resultant reflectance retrievals obtained using the two ELM cases plotted against the ground truth 
spectra. Both regressions produced very similar results. It is interesting, but perhaps not wholly unexpected, that there 
are numerous different sets of ELM gains and offsets that generate reasonable reflectance spectra. From a mathematical 
standpoint, any trade between gain and offset values in the regression that increases the goodness of fit is acceptable. To 
fit the physical model described in section 2.1, however, it is desirable to have offset coefficients that make physical 
sense for the path radiance term )(λpathL , i.e., not strongly negative. In theory, for i.i.d. observations, the regression 

should generally improve with more observation points, but that was not always the case here, whether because of non-
representative ground truth measurements, panel contamination, sensor nonlinearity, or other factors. In any case the 
coefficients used for the climatology were those having minimum RMSE, so optimal goodness of fit is assured as long 
as the majority of the dynamic range of the scene is represented in the regression, i.e., very dark and bright panels are 
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included. Good ELM results have been shown with only two observation points,7 but in almost all cases in this work, 
three or more points were used so that quantifiable error terms (RMSE) were produced.  

 

Figure 2. Reflectance retrievals from the 4-panel ELM regression (dashed line) and the 2-panel ELM regression (dot-
dashed) plotted against the ground truth panel reflectance spectra (solid). 

 

The band center wavelengths of the HYDICE sensor shift slightly from collect to collect due to prism distortion, so the 
sensor is calibrated for each flight path. To facilitate comparison, all ELM coefficients were resampled to the mean 
wavelengths and FWHM of all collects. 

3.2 Coefficient adjustment 

The ELM-derived coefficients correct for illumination and geometric factors as well as atmospheric effects. To compare 
coefficients from different collects it is therefore necessary to adjust the coefficients for variations in illumination and 
altitude of the observation. To diagnose these effects, the scenes were modeled using the MODTRAN radiative transfer 
software. MODTRAN models the atmosphere by treating it as a series of homogeneous layers characterized by their 
temperature, pressure, and molecular composition. MODTRAN models the absorption, scattering, and emission for each 
of the molecular constituents along a specified optical path, from the ultraviolet to far infrared range of the spectrum at 
up to 0.1 cm-1 resolution. MODTRAN can also provide solar illumination based on geographic position, date, and time. 
Thus the terms in equation 1 can be modeled explicitly. 

To model the HYDICE collects, a MODTRAN spectral filter function (.FLT file) was created using the HYDICE mean 
spectral response function to provide output corresponding to the radiance measured by the instrument in MODTRAN’s 
channel output file (.CHN). Two MODTRAN runs are required to obtain the terms of equation 1. First, it was run with 
the surface reflectance set to albedo=1. The terms of interest are calculated from the MODTRAN outputs: 

dirL = DIRECT_TRANSM_GRND_REFLECT    (7) 

skyL = TOTAL_TRANSM_GRND_REFLECT – DIRECT_TRANSM_GRND_REFLECT.  (8) 

The simulation was then repeated with surface reflectance set to albedo=0. This gives: 
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pathL = PATH TOTAL_SCAT_SOLAR.      (9) 

To calculate the spectral radiance of the above terms, each must be divided by an integrating factor given by: 

IF =  CHANNEL_RADIANCE/SPECTRAL_RADIANCE     (10) 

also from the .CHN file. This converts the radiance units to W/cm2·sr·µm. The terms are further multiplied by 10-6 to 
convert to µW/cm2·sr·µm and by 75 to match the scale factor applied to the HYDICE spectral data (for numerical 
storage efficiency).  

We can now calculate modeled gain and offset coefficients equivalent to those derived from ELM: 

)(* skydir LLm +=       (11) 

pathLb =*        (12) 

where the stars delineate the terms as MODTRAN modeled coefficients.  

The modeled coefficients can then be used to estimate corrections to the ELM coefficients for differing illumination and 
sensor altitude. For a set of ELM coefficients m1 and b1 derived from one image, modeled coefficients m1

* and b1
*
 are 

computed for the imaging conditions using the above procedure. To estimate the ELM coefficients under differing 
conditions, at a later time, for instance, modeled coefficients m2

* and b2
*are computed for the new conditions. Scale 

corrections are computed from the modeled coefficients: 

A21= m2
*/ m1

*        (13) 

B21= b2
*/ b1

*.       (14) 

Then the ELM coefficients at the new time are estimated as: 

m2’= A 21* m1        (15) 

b2’= B 21* b1       (16) 

where the primes delineate estimated (adjusted) ELM coefficients. 

Using this procedure it is possible to model the effects of differing illumination and geometry on ELM coefficients and 
therefore to compare coefficients derived under different imaging conditions. The accuracy of the results will decrease as 
the magnitude of the change increases, but within some bounds of variability, the method produces accurate estimates. 
The assumption implicit in this technique is that the fractional difference in the modeled coefficients accounts for the 
portion of the variability in the ELM coefficients that is due to the differing imaging conditions. The variability that is 
left is assumed to be due to differences in the atmosphere. By applying the ratios of modeled coefficients, it has the 
advantage of canceling out to first order any systematic errors in the modeled results while leveraging the model’s 
strength of computing varied illumination and geometric conditions. 

4. RESULTS 

4.1 Illumination adjustment 

To produce a database of comparable atmospheric gain and offset coefficients, the methodology described above must 
be able to correct for variations in illumination from the differing times of day, seasons, and latitudes encompassed in the 
observation set. To demonstrate the effectiveness of the adjustment with respect to illumination changes, a sequential 
series of images was analyzed. The same panels were imaged six times over a 75-minute period from the same altitude 
(5 kft AGL). Figure 3 shows the ELM coefficients from the earliest, middle, and latest observation times, with the gain 
coefficients increasing ~25% over the period in the visible region due to the increased illumination approaching local 
noon (12:46 PM). 
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Figure 3. ELM gain (left) and offset (right) coefficients derived from three sequential observations approximately 2.5 to one 
hour before local noon. 

 

The coefficient adjustment procedure was performed on the 10:14 AM coefficients to correct them for the illumination 
modeled at 11:31 AM. Figure 4 shows the adjusted coefficients plotted against the actual 11:31 AM image ELM 
coefficients (the m’ plot is difficult to distinguish from the ELM gain in the visible region). Figure 5 shows the fractional 
error in the adjusted coefficients; with the exception of the low SNR absorption regions, the gain coefficients agree to 
within 2% and the offset to within 35% over most of the wavelengths. 

It is noted from figure 4 that the directly modeled coefficients m* and b* contain large magnitude errors. The 
MODTRAN runs display a high sensitivity in the visible region to the input conditions and scattering models used. 
Figure 6 shows the variation of the modeled parameters for a number of MODTRAN input parameters – single scatter 
model, DISORT multiple scattering model with the default rural aerosol model, and DISORT with the desert aerosol 
scattering model. Despite the large variation in modeled coefficients, the adjustment procedure has the effect of 
grounding the model with initial empirically derived coefficients, and errors of 5% or less were seen in the adjusted gain 
coefficients in each of the cases shown in figure 6. The DISORT/desert aerosol model (used in the figure 4 case) had the 
lowest error; the environment was a summertime desert scene and the shape of the coefficient desert profile in figure 6 
suggests that the scattering is well modeled. 

  

Figure 4. Estimated gain (left) and offset (right) coefficients (dashed line) for a 77 minute change in illumination 
conditions, plotted against the actual derived coefficients (solid). The dot-dashed line shows the directly modeled 
coefficients (m* and b*). 
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Figure 5. Fractional errors in the adjusted gain (top) and offset (bottom) coefficients. 

 

 

Figure 6. MODTRAN modeled gain (left) and offset (right) coefficients for several aerosol scattering models: single 
scattering (SS), DISORT with default rural aerosol model and DISORT with the desert aerosol model. 

 

4.2 Altitude adjustment 

The database also includes coefficients derived from various flight levels, so the adjustment procedure should correct for 
variations in observation level. The same procedure was applied as described in section 3.2, but where the two 
observations differ in altitude in addition to time. In this example, the first scene was imaged at 12:48 PM local time 
from an altitude of 5.0 kft AGL. The second scene was imaged 26 minutes later from an altitude of 10.4 kft AGL.  
Figure 7 shows the adjusted coefficients plotted against the actual 1:14 PM image ELM coefficients; Figure 8 shows the 
fractional errors in the coefficients. The errors in the estimated gain coefficients are larger than in the illumination only 
case in section 4.1, but estimates are still generally within 3-5% of the actual ELM values. The estimated offsets are 
similarly high, ranging from 5-10% in the visible range. The offset error is largest in the visible, suggesting that the 
aerosol scattering model may not be optimal in this case. The scene was a summertime mid-latitude, continental plains 
environment.  
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Figure 7. Estimated gain (left) and offset (right) coefficients (dashed line) for a 5.4 kft altitude change and 26 minute 
change in illumination conditions, plotted against the actual derived coefficients (solid). The dot-dashed line shows the 
directly modeled coefficients (m* and b*). 

 

 

Figure 8. Fractional errors in the adjusted gain (top) and offset (bottom) coefficients. 

 

4.3 Comparison of environments 

Since the goal of the database is to identify and separate distinct climatic regimes, coefficients must be compared across 
differing seasons and geographic regions. An example of a seasonal comparison is shown in figures 9 and 10. 
Coefficients from a representative summertime desert image were adjusted to a similar wintertime desert image. The two 
images were not over the same geographic area, but were in similar climatological environments. To the extent that the 
coefficient adjustment procedure adequately corrected for the differing illumination and scene geometry conditions, the 
differences in the coefficients are due to differing atmospheric states. The fractional differences in the gain coefficients 
shown in figure 10 are significantly larger than the errors in the adjustment procedure shown in figure 8, by a factor of 5-
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10 in most regions. Figure 8 shows a representative error for the adjustment procedure, not the error from the specific 
case in figure 10. However, the relatively large difference shown in figure 10 suggests that the seasonal atmospheric 
signal is substantially larger than the error incurred in the adjustment procedure. The offset coefficients are also larger 
over many regions than the comparable errors, but to a lesser degree than the gain coefficients.  

 

Figure 9. Normalized gain (left) and offset (right) coefficients for desert environment in winter (solid line) and summer 
(dashed). 

 

Figure 10. Fractional differences between summer and winter cases for the normalized gain (top) and offset (bottom) 
coefficients. 

 

To compare many coefficients from multiple environments, we adjust each set of coefficients to a common set of 
illumination and geometric conditions. In this example the set of conditions is arbitrary but was selected to be near the 
center of the conditions of the observation set. With the coefficients adjusted to a common set of imaging conditions, 
direct intercomparison of the coefficients is possible. An example comparison is shown in figure 11. Representative 
adjusted coefficients from four different climatic environments are plotted against the mean of the four cases. The figure 
shows distinct differences in several of the environments, suggesting that separable climatological regimes are present in 
the ELM coefficient data. 
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Figure 11. Normalized gain (left) and offset (right) coefficients for representative scenes in various environments. 

 

5. CONCLUSION 

This paper presents a method for extracting atmospheric variations from ELM coefficients using radiative transfer 
modeling to correct for the effects of varying illumination and imaging geometry. The method shows good results with 
small errors in test cases against actual ELM coefficients over a limited range of conditions. Comparisons of normalized 
coefficients across climatological environments suggest that the method can be used to separate climatic regimes. In 
order to validate these suggestions, the example cases presented must be expanded to a larger set of conditions to 
characterize the limits of the adjustment procedure. With a large sample of coefficients spanning numerous observations 
of the climatic regimes, the example shown in figure 11 can be expanded to a statistical analysis that can confirm the 
viability of the method.  

Additional work is needed to fully understand the impacts of various MODTRAN modeling inputs. The method is 
resilient to absolute errors in the radiative transfer results, but the scattering models in particular can affect the 
coefficient normalization in the visible region. Sensible atmospheric observations are also available for the experimental 
collects, which can be used to aid the validation of atmospheric variability extracted from the spectral coefficients. 

Once validated, the spectral database can be expanded to incorporate a growing number of observations, leading to a true 
climatological database of spectral coefficients. The method is potentially adaptable to other empirical atmospheric 
compensation algorithms such as QUAC or automated ELM methods. This would alleviate the requirement for high 
fidelity ground truth and greatly expand the number of observations available for the climatology. 
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