

Copyright © 1997-2014. The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

Sample Secure Code Review Report

1. The Code Review Process
A Secure Code Review is a specialized task with the goal of identifying types of
weaknesses that exist within a given code base. The task involves both manual and
automated review of the underlying source code and identifies specific issues that may be
representative of broader classes of weakness inherent in the code. A Secure Code
Review does not attempt to identify every issue in the code, but instead attempts to
identify types of risk within the code such that mitigation strategies can be devised.

During the actual review, members of a review team review the application code for
security problems and categorize the findings based on the weakness categories (e.g.,
authentication, authorization, etc.). Each finding is assigned a risk rating of High,
Medium, Low, or Informational. These findings and the broader weakness classes that
they represent are presented in this final report that the development team can use as the
foundation for improving the overall quality of the code base.

It should be noted that while the review process will be as thorough as possible in finding
and reporting security weaknesses, it is not guaranteed to always find every possible
weakness. If no issues are found, the review does not implicitly certify that the
application is 100-percent “hack proof.”

A Secure Code Review is not a silver bullet, but instead is a strong part of an overall risk
mitigation program to protect an application.

2. Review Summary
The secure code review of the Example App application was completed on October 17,
2013 by a review team consisting of [redacted name] and [redacted name]. The review
was performed on code obtained from [redacted name] via email attachment on October
11, 2013, and bundled under the file named example_app_v2.tar.gz.

A meeting between the review team, [redacted name] and [redacted name] was held on
October 7, 2013, at which time information about the code structure was presented along
with high level overviews of how things like authentication, data validation, and logging
were implemented in the code. This information was used by the review team to
formulate a plan for the impending review.

The actual review involved a manual investigation of the Java code. Specific source files
were not assigned to individual members; rather, each member of the review team
attempted to review the entire application. Each reviewer recorded their specific findings
within a spreadsheet and assigned risk levels as they felt appropriate. At the end of the
review, the team looked across the individual spreadsheets to compare common findings
and to perform group reviews of the uncommon findings. The specific findings are

Sample Secure Code Review Report 2

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

presented in the next section.

3. Finding Summary
This section provides a summary of the findings resulting from this review.

For this application, three high level issues were found related to the areas of
authentication and data validation. One of the high level issues resulting from unvalidated
attacker input being sent to the JSON parse() function could result in arbitrary commands
being executed. Mitigating actions should be considered. Some other medium and low
issues have also been found. Details are given below.

The figures below graphically outline the review team's findings by both category and
risk level.

Sample Secure Code Review Report 3

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

The figure below shows the findings related to the CWE Top 25 list. Details related to the
specific CWE IDs can be found in the next section. It should be noted that the exact CWE
number may not be found in the next section as a child CWE may have been used to
report a finding. This child CWE is still counted as an instance of a parent that is in the
Top 25.

http://www.sans.org/top25-software-errors/

Sample Secure Code Review Report 4

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

4. Finding Details
This section provides details about the specific weaknesses that were found during
the review. These details are designed to provide the developers with proof that the
stated weaknesses exist as well as to provide examples that the developers can use
to find and fix similar areas of the code. As mentioned before, the Secure Code
Review does not claim to find every issue; as such the development team should use
the information in these findings as an opportunity to improve the entire code base.
Just fixing the specific examples identified below will most likely not remove the
higher level risks from the application.

Each finding is given a qualitative risk rating assigned by the reviewers at the time
of the review. The general guidelines used when assigning risk levels are as follows:

• High - Serious impact to the application security, generally unmitigated,
large-scale issues, such as an attack that is currently exploitable from the
Internet.

• Medium - Notable impact to the application security, or somewhat mitigated
high risks (e.g., being available only to the user's Intranet).

• Low - Potential impact to the application security, or heavily mitigated high
risk (e.g., being in dead code or after an abort call).

• Informational – Does not directly make the code less secure, but bad coding
practice.

The risk ratings should be considered risks to the application itself. In other words,
the risk that the application behavior could be subverted in an unintended way
could lead to a possible compromise. This information should then be used by the
appropriate teams (developers/management/Information Security) in conjunction
with the additional 'big picture' information that they have, to make the appropriate
risk mitigation decisions.

4.1 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval
Injection')
Category: Data Validation
Weakness: CWE-95 -- The software receives input from an upstream component, but it
does not neutralize, or incorrectly neutralizes, code syntax before using the input in a
dynamic evaluation call (e.g., "eval").

Source File Line
Number Description Risk

src\main\java\o
rg\mitre\examp
le.java

117

On line 117, unvalidated input is passed into
the Json parse() function. Due to the use of
eval() in the implementation of parse(), this
leaves the application subject to command
injection attacks. The JsonParser

High

Sample Secure Code Review Report 5

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

documentation reads: "Evaluates a trusted
JSON string and returns its JSONValue
representation. CAUTION! For efficiency, this
method is implemented using the JavaScript
eval() function, which can execute arbitrary
script. DO NOT pass an untrusted string into
this method." Some amount of data validation
should be performed on the input in an effort
to determine if it can be trusted.

4.2 Authentication Bypass Issues
Category: Authentication
Weakness: CWE-592 -- The software does not properly perform authentication, allowing
authentication to be bypassed through various methods.

Source File Line
Number Description Risk

src\main\java\o
rg\mitre\client.
java

2110-
2114

The block of code on line 2110-2114 of
HttpClientFetchService.java seems to allow an
automatic fall back to a non-OAuth request.
The review team was not able to fully explore
this; however, it looks suspicious and
potentially is a security concern. This code
should probably be revisited before the final
release.

High

4.3 Cleartext Transmission of Sensitive Information
Category: Encryption
Weakness: CWE-319 -- The software transmits sensitive or security-critical data in
cleartext in a communication channel that can be sniffed by unauthorized actors.

Source File Line
Number Description Risk

src\main\weba
pp\WEB-
INF\spring\app
Servlet\securit
y-cont ext.xml

65

The credentials are retrieved from the OAuth2
server specified in this file and is not done
using https. If the token returned is
compromised, an attacker could masquerade as
the user and gain access to the data.

High

4.4 Insufficient Logging
Category: Logging
Weakness: CWE-778 -- When a security-critical event occurs, the software either does
not record the event or omits important details about the event when logging it.

Sample Secure Code Review Report 6

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

If security critical information is not recorded, there will be no trail for forensic analysis
and discovering the cause of problems or the source of attacks may become more difficult
or impossible to identify.

Sample Secure Code Review Report 7

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

Source File Line
Number Description Risk

src\main\java\o
rg\mitrefetch.ja
va

1310-
1314

If the OAuth request fails and the application
falls back to a non-OAuth request, then a log
entry should probably be done noting this.

Medium

src\main\java\o
rg\mitre\fetch.j
ava

941
A log entry was supplied in the previous catch
block; one should probably be supplied here as
well.

Medium

4.5 Improper Input Validation
Category: Data Validation
Weakness: CWE-20 -- The product does not validate or incorrectly validates input that
can affect the control flow or data flow of a program.

When software does not validate input properly, an attacker is able to craft the input in a
form that is not expected by the rest of the application. This will lead to parts of the
system receiving unintended input, which may result in altered control flow, arbitrary
control of a resource, or arbitrary code execution.

Source File Line
Number Description Risk

src\main\java\o
rg\mitre\aggreg
ator.java

294

The userid that is obtained from the request
string is never validated. Although this doesn't
appear to be harmful in its current use, it is still
advisable to perform some amount of
rudimentary validation on the input. Data
validation is the easiest way to prevent most
security issues from occurring.

Medium

4.6 Missing Authentication for Critical Function
Category: Authorization
Weakness: CWE-306 -- The software does not perform any authentication for
functionality that requires a provable user identity or consumes a significant amount of
resources.

Source File Line
Number Description Risk

N/A N/A

The application allows anyone to make a
request for consolidated contact information
related to a given employee ID. It is
understood that this is the current choice of the
design team; however this issue should be

Low

Sample Secure Code Review Report 8

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

addressed if the application is ever used in a
more open environment where not everyone
that could make a request should have access
to the contact information.

4.7 Exposure of System Data to an Unauthorized Control Sphere
Category: Error Handling
Weakness: CWE-497 -- Exposing system data or debugging information helps an
adversary learn about the system and form an attack plan.

Source File Line
Number Description Risk

src\main\java\o
rg\mitre\client.
java

170, 173

The error messages generated on lines 170 and
173 contain stacktraces. If these are sent back
to the user, they could provide an attacker with
valuable information about the underlying
system. Stacktraces should be reserved for a
log and kept out of error messages that are sent
back to the user.

Low

4.8 Suspicious Comment
Category: Other Risk
Weakness: CWE-546 -- The code contains comments that suggest the presence of bugs,
incomplete functionality, or weaknesses.

Many suspicious comments, such as BUG, HACK, FIXME, LATER, LATER2, TODO,
in the code indicate missing security functionality and checking. Others indicate code
problems that programmers should fix, such as hard-coded variables, error handling, not
using stored procedures, and performance issues.

Source File Line
Number Description Risk

src\main\java\o
rg\mitre\servic
e.java

159

The comment on line 159 contains a "TODO,"
which implies that more work needs to be
done. However, this does not appear to be the
case. As written, the comment could lead to a
future maintainer of the code attempting to fix
something incorrectly. Either the details of the
comment should be improved or consideration
should be given to removing it.

Info

src\main\java\o
rg\mitre\auth.ja
va

117, 124
Two comments in this file (lines 117 and 124)
call out TODO items. These items should be
addressed before the code is released -

Info

Sample Secure Code Review Report 9

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

especially the one on line 124 that implies
improper handling of the secret. Note that we
could not determine why the secret comment
was there.

src\main\java\o
rg\mitre\fetch.j
ava

1580

The comment on line 1580 implies an
incomplete implementation that could lead to a
compromise. "FIXME: HACK AND A
HALF" This should be addressed before the
code is released.

Info

4.9 Copyright and Confidentiality Statements
Category: Other Risk
Weakness: N/A - copyright --

Clear copyright should be asserted by whoever will be the appropriate party to own
copyright on this application.

Source File Line
Number Description Risk

N/A N/A Clear copyright is missing. It should be part of
the header for each code file. Info

Sample Secure Code Review Report 10

Copyright © 1997-2014, The MITRE Corporation. All rights reserved. Approved for Public Release. Case Number 14-0084.
Distribution Unlimited.

Appendix A References
Christey, S. (2010). 2010 CWE/SANS Top 25 Most Dangerous Programming Errors.
Retrieved from http://cwe.mitre.org

	1. The Code Review Process
	2. Review Summary
	3. Finding Summary
	4. Finding Details
	4.1 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
	4.2 Authentication Bypass Issues
	4.3 Cleartext Transmission of Sensitive Information
	4.4 Insufficient Logging
	4.5 Improper Input Validation
	4.6 Missing Authentication for Critical Function
	4.7 Exposure of System Data to an Unauthorized Control Sphere
	4.8 Suspicious Comment
	4.9 Copyright and Confidentiality Statements

	Appendix A References

