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ABSTRACT

Most Earth observation hyperspectral imagery (Hflection and identification algorithms dependiaalty upon a

robust atmospheric compensation capability to cbrfer the effects of the atmosphere on the radiasignal.

Atmospheric compensation methods typically perfoptimally when ancillary ground truth data are &dae, e.g., high
fidelity in situ radiometric observations or atmbspic profile measurements. When ground truth ¢®mmplete or not
available, additional assumptions must be madetfmpn the compensation. Meteorological climatoésgare available
to provide climatological norms for input into thadiative transfer models; however no such clinmafigls exist for
empirical methods.

The success of atmospheric compensation methotisasuihe empirical line method suggests that rdgneensed HSI
scenes contain comprehensive sets of atmosphat&iaformation within the spectral data itselfisltargued that large
collections of empirically-derived atmospheric daéénts collected over a range of climatic and @pheric conditions
comprise a resource that can be applied to praspetmospheric compensation problems. A previdudysintroduced
a new climatological approach to atmospheric corspéon in which empirically derived spectral infation, rather than
sensible atmospheric state variables, is the fuedéah datum. The current work expands the appraachss an
experimental archive of 127 airborne HSI dataspensing nine physical sites to represent varyingatbological
conditions. The representative atmospheric compienseaoefficients are assembled in a scientifiabase of spectral
observations and modeled data.

Improvements to the modeling methods used to stdimdathe coefficients across varying collectiorl diumination
geometries and the resulting comparisons of adjustefficients are presented. The climatologic@hbase is analyzed
to show that common spectral similarity metrics banused to separate the climatological classesdiegree of detail
commensurate with the modest size and range adfrtaging conditions comprising the study.
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1. INTRODUCTION

The fundamental problem addressed in this resésuatimospheric compensation in an Earth remotdrsgosntext. For
an imaging sensor at some altitude above the Bastirface, atmospheric compensation is the prawfedsriving the

surface reflectance values from the at-aperturamnad images recorded by the sensor. The magrufutthe atmospheric
effects on measured electromagnetic energy catrdoegdy wavelength dependent, varying across tisemgdtion regions
of water vapor and trace gas constituents in thsphere. Scattering by molecules and suspendedahgrarticles is
also wavelength dependent. Successful analysenadtely sensed hyperspectral imagery (HSI) is @ddily dependent
upon a robust atmospheric compensation capal¥ibgt HSI applications rely on precise relationshipsveen spectral
bands and virtually any quantitative HSI analysisstrtherefore begin with an inversion problem tov@ethe surface
reflectance or emittance from the measured at-ameradiance. Many methods have been developecttmnwlish this

inversion. Most can be categorized as either engiar physics-based methods.

HSI datasets contain complete sets of spectral unexaents of light passing through the atmosphereaah pixel;
therefore, information about the atmospheric tréssion is present in the measured radiance siggailpirical
atmospheric compensation methods use this infoomationg with some additional information about skene to
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statistically derive the relationship between rad@and reflectance. Alternatively, the physiceadiative transfer is well
understood and can be accurately modeled usingtiagltransfer algorithms. Physics-based (PB) nusthe radiative
transfer codes to estimate the atmospheric eftectsansmission and determine the surface refigégtiom the model.

Both approaches perform best when ancillary grdaurtt data are available — high fidelity in sitai@metric observations
and/or atmospheric profile measurements.

In practice, outside of controlled experimentsadetl ground truth data are rarely available. PBhaws are routinely
applied using broad climatological atmospheric pai@rs as input to the models. PB methods canhesatimospheric
transmission information contained within the radia data to refine the parameters; for examplesinglband ratios to
extract the information and convert it to conventibmeteorological parameters (water vapor mixiatjs, aerosol
concentrations, etc.). The PB models then use traglikansfer algorithms to translate the metedagigial information
back into spectral effects during the reflectamseision. Undesirable artifacts are inevitablyaddtrced into the data with
each translation between domains. Empirical methodst rely on indirect methods to supply refereneféectance
signatures, either through supervised or statistiegns; no climatologies currently exist for ergal methods.

Where well-calibrated ground truth measurementsaaeglable, the empirical line method (ELM) has mebkown to
produce reflectance retrievals that are overalivadgnt or superior to those produced by other wash However, the
native spectral information about the atmospheptutad in the ELM coefficients is not compiled fse outside of the
scene from which they were derived. These coefftsicomprise an untapped resource for climatoldgidarmation
relevant to HSI atmospheric compensation. In aipresvwork we introduced a new type of atmospheric climatglog
using a statistical approach in which empiricallyided spectral information is the fundamental datather than sensible
atmospheric state variables. This paper expandsntipirical techniques for extracting the coeffi¢teand correcting for
small nonlinear features, and updates the modetieiinods used to standardize the coefficients asarying collection
and illumination geometries. The resulting climatptal database is analyzed to determine the daipbgreof the
climatological classes.

2. BACKGROUND
2.1 Empirical Line Method

The empirical line methdds a proven empirical method of atmospheric corspgan in which the conversion factors to
retrieve reflectance values are derived by perfogai linear regression of observed at apertur@nadi values against
corresponding measured ground truth reflectandef&cThe context of this model is hyperspectratiiceemote sensing
in the visible through short wave infrared parttaf spectrum. The radiance reaching the sdnscan be writtehas:

Lg=mo+b (1)
wherem andb are the gain and offset vectors given by:

m = (Ey74 coso + ES)T—;; 2)

b= Lpath . (3)

E, is the solar irradiance at the top of the atmosphg, is the downward path transmittancg, is the skylight
irradiance at the surfacg, is the upward path transmittance,is the surface reflectance factor, andis the incident

angle to the surface. Each quantity is a functiowavelength. Here it is assumed that the entiraisghere of the sky is
visible to the surface and the surface is Lambertfajacency and multiple surface scatter effecésreeglected, as are
thermal emissive radiance contributions.

In ELM, the gain and offset coefficientsandb in equation 1 are assumed constant across thesjraad are therefore
one-dimensional vectors in wavelength space. Theylatermined by selecting two or more groups xélgifor which
the reflectance values are known (or assumed knamahperforming a linear regression of the meastagidnce against
the ground truth reflectance. These vectors ame dipplied against each pixel to estimate the reftee.



2.2 MODTRAN

The Moderate Resolution Transmittance (MODTRAN)iatide transfer code serves as the U.S. Air Foteadard
moderate spectral resolution radiative transportiehdor wavelengths extending from the visible tigb the thermal
infrared regior:> MODTRAN solves the radiative transfer equationsifra fundamental physics approach, using a narrow
band model of molecular and particulate absorpgwonission, and scattering, as well as surfaceatéfle and emission.
The software models the solar and lunar illumimabiased on geographic location, date, and tinsansimulate a number

of different remote sensing geometries, includimgdirborne Earth surface sensing applicationdceiat this study. The
atmosphere is modeled as stratified layers thabeamser-defined or defaulted to one of severaldstad climatological
profiles. MODTRAN is also used as the radiativesfer engine for many atmospheric compensationrprog, including

the commercial standard Fast Line-of-sight Atmosigh&nalysis of Spectral Hypercubes (FLAASH).

MODTRAN provides great flexibility for the user pecify input parameters defining the model opegathodes and
features, as well as the environmental conditidine use of MODTRAN in this study was not intendegtovide the

absolute most realistic simulation for a givenafatonditions, but rather to generate a reasonedtienate of the effects
of changing imaging geometry and illumination. lhistresearch, the parameters that were exercisesistanainly of

geometric, spatial and temporal inputs (for illuation definition), and of those describing the medeatmospheres.
MODTRAN is used here to adjust ELM coefficients ided from different HSI scenes to account for d#feces in

geometry and illumination conditions.

2.3 QUAC

The Quick Atmospheric Correction (QUAC) model ofB&tein, et al. is an unsupervised empirical atesp correction
algorithm? QUAC assumes a linear radiative transport equdilkienELM, but uses a ratio of scene-derived stiaisto
those of a reference scene to calculate the gadfficents. The reference scene is a spectrallgrdiv collection of
laboratory reflectance measurements.

QUAC has become a prevalent method for visiblehtwrtswave infrared (VNIR/SWIR) HSI atmospheric campation
among practicing HSI analysts. It is fast, needserternal ground truth or atmospheric informatigtolerant of
radiometric uncertainty, and highly robust. Everewlother methods are ultimately used, QUAC ofteveseas a baseline
for comparison. QUAC’s main deficiency is in abgelaccuracy of the reflectance returns, shown tadoeirate within
approximately 15% compared to the best FLAASH tss@best meaning highly accurate radiometric inpot
characterization of the atmosphef€UAC is included in this research because it isidely used, well-documented
approach that yields consistent relative accur@tyAC gain and offset coefficients are analogoukltiM coefficients;
however, QUAC defines the gain to bl -b) rather than equation 1, so the QUAC coefficientsavimverted for direct
comparison to ELM coefficients.

2.4 Hyperspectral data

The hyperspectal data used in this research wisctad by the HYDICE sensor between the years 59@52000 over a
range of climatic regions, backgrounds and seadeash collection was accompanied by ground trutbrimation to
characterize the scene. HYDICE was a pushbroomrhgpetral sensor with a spectral range of 0.4 Sonficrometers
(VNIR/SWIR). It used a Schmidt prism spectrometéthva single indium antimonide (InSb) focal plamtYDICE
collected 210 spectral bands with a nominal bantiwad 10 nm and 320 spatial samples. A 0.5 mrathintaneous field

of view (IFOV) produced ground sample distances@{&nging from approximately 1 m to 4 m at typioglerating
altitudes (5000 to 20,000 ft above ground level (AGespectivelyf The HYDICE sensor employed an onboard tungsten-
halogen calibration source for in-situ calibratioreasurements. Error sources have been well studiddabsolute
radiometric uncertainty is approximately 5%.

HSI scenes were collected over a variety of envirents representing distinct climate regimes. Iheawironment, data
were collected at several altitudes and with vaitlachination conditions. Each environment was tatly collected over
a 2-4 day period. Several of the environments \weaged in different seasons. Each scene analyzgdined four to six
gray scale calibration panels ranging from 2% té&o64flectance. The calibration panels were measutitfd a field
spectrometer, averaging 5-15 spot measurementssatm®panel to provide ground truth reflectaneeisp for the scenes.
In most cases the panels were measured on the fd#ne @ollects. The panels were sized relativeh® HYDICE
instantaneous field of view to ensure that at leastimage pixel would fall entirely on the calitiwa panel at maximum
flight altitude, providing a pure pixel correspongito the ground truth reference spectra. A tataled HSI images were



used in the research, 127 of which produced atnsgphompensation coefficients. Most of the remainb4 images
lacked acceptable ground truth information or matado permit full analysis.

2.5 Imaged sites

Sites included in the study were selected for ditgeiof climate, ground cover and season. The imageuded in the

research encompass 14 collections over nine geloigraipes. The sites include continental plain armlintainous terrain
as well as littoral regions. Environments rangerfroopical to mid-latitude temperate to arid coidis. Ground

elevations range from sea level to nearly 10,00Bdtkground land cover includes bare earth, opembs agricultural

vegetation, forest and urban environments. Eadeat@n event occurred over a period of two to filays, and three to
five images from each day are included in thisaese Imaging times are from 9 am to 3 pm locaktimith the majority

of the images nearer to local noon. Imaging coodgiwere mostly clear skies but occasionally inetldroken clouds or
thin high clouds.

Table 1 summarizes the characteristics of the sitebimages used in the research; Table 2 and Tabkfine the
associated climate and land cover classes. Langr otasses are based on USGS National Land Cotaeb&se (NLCD)
2001 categorizatidih The classification scheme was developed for tersensing-based land classification, specifically
the LANDSAT Thematic Mapper. In this research, gatees are assigned by manual review of the HSganain true
color and infrared false color composites compdeethe descriptions in the classification systemoTcategories are
assigned for each site. The primary category referhe immediate environment surrounding the catibn panels
(within approximately 10 pixels). The secondaryegatry describes the dominant land cover of theoredivithin
approximately 500 m).

Table 1 Summary of site characteristics. Climat land cover categories are described in the fatiguables.

Site Climate Category Elevation (ft) Land Coyer Seasons Imaged (MMM) Number of
Category (pri, sec) Images
1 H 6810 31, 51 SON 19
2 H 8498 31, 42 SON 12
3 H 9754 31, 51 SON 12
4 BW 5267 31, 51 JJA, DIF 8
5 BW 786 31 JJA, SON, DIF 24
6 Cs 62 23, 51 JJA 4
7 Cf 1025 71, 82 JIA 11
8 Dc 18 71, 41 JIA 22
9 Ar 193 71, 41 MAM 15

Table 2 USGS Land Cover Institute (LCI) land cosiass definitions.



Lacr;?ezg\r/;r Level | Class Level Il Class
23 Developed Commercial/Industrial/Transportation
31 Barren Bare Rock/Sand/Clay
41 Forest Upland Deciduous Forest
42 Forest Upland Evergreen Forest
51 Shrubland Shrubland
71 Herbaceous Upland Grasslands/Herbaceous
82 Herbaceous Planted/Cultivated |Row Crops

Table 3 Koppen-Trewartha climate classificatioregaries.

Climate Category Climate Class Type
Ar Tropical Rainy
BW Dry Arid or desert
Cf Subtropical Humid
Cs Subtropical Dry-summer maritime subalpine
Dc Temperate Continental
H Highland N/A

The modified Kdppen climatic classification systasdescribed by Trewartid®is used to characterize the climatic
zones of the sites. The Trewartha-Képpen systersiders prevailing atmospheric factors (e.g., temmjpee, humidity,
rainfall) as well as geographic and geological agpim defining the classes. This produces climaigons that are better
related to dominant flora and soil types, and thetser related to the typical atmospheric charéties than are strictly
geographic/morphological categorization systems.

3. METHODOLOGY

The central argument of this study is that empiijaderived reflectance inversion coefficients ¢csnused to characterize
the atmosphere. The mathematical model used tegept the observed radiance is described in seztigmeducing the
reflectance retrieval to the form of the empirigaln and offset coefficients. The methodology tdwethe coefficients
is presented in this section, as well as the aisagmaployed to evaluate and correct the coeffisient

ELM coefficients are specifically tied to the illimation and imaging geometry present at the timéhefimage from
which they are derived, as all the factors affertime radiative transfer are encapsulated withénciiefficients. In order
to isolate the atmospheric effects and to compaeedficients amongst different images, a methodctmant for varying
illumination and geometry is required. This methody is described in the latter part of this sattio

3.1 ELM analysis

Standard ELM techniques were used to derive gaihadfset coefficients that describe the inversioomf at aperture
radiance to reflectandeThe method is described in detail in a preliminatydy? ELM produces vectorsn and b
containing the gain and offset coefficients forlealsannel and an RMSE vectoAn example of the coefficients is shown
in Figure 1. HYDICE radiance cubes were providesidaled spectral radiance units of (1/75) * W /an2m. All radiance
guantities presented in this study are convertéthtoroflick” units (uW / cm2 smum), and all gain coefficients are scaled
such that they produce standard radiance units applied to normalized reflectance values (randiom O to 1). The
band center wavelengths of the HYDICE sensor shdghtly from collect to collect due to prism digion, so the sensor
is calibrated for each flight path. To facilitatengparison, all ELM coefficients were resampledh® mean wavelengths
averaged over all collects. The gain and offseffmients are plotted on different axes in ordemterlay them on the
same plot. These coefficients comprise the basemiational quantity used in the study.



Figure 1 (left) depicts a classic, physically ressue shape for the ELM coefficients — rising fweak in the visible region
and exponentially decaying toward the longer wavgtles — with relatively low residuals. The majorif/the images
produced ELM coefficients with similar spectragapected. A sizable number of images, however,ymed coefficients
with unexpected offset spectra. Normally when ElsMused to obtain a reflectance image, the shapealods of the
coefficients are of little consequence as longh&y foroduce an acceptable reflectance inversiontha reason the
coefficients themselves have been rarely studigtigriterature. In this application, however, vigibute the gain and
offset to a physical partitioning of radiative tsfer effects, so non-physical anomalies are impbitaaddress.

The artifacts of greatest concern are similar éséhdepicted in the right hand side of Figure & aieas of negative offset
values are completely nonphysical from the stanttpfiour imaging model, i.e., the offset represanthe path radiance.
These artifacts appear episodically; for instasegeral images might produce normal coefficiemtd,subsequent images
on the same flight using the same ground truth ywedtoefficients with the negative gain artifagisr this reason, the
artifacts are attributed to the ELM linear regreasiot fully partitioning the radiative transfertire way described by the

. ELM Cuefﬂcn.anls - cridBm012 ELM Coefiicients - cil8m33

=1 1800 15000
Gain 250
: — Offset
: : : ; h 1400
20000 |- e RMSE 200
: 10000
— C 1200
z E z - 180 -
SL . 3‘ ES ES
15000 1000 0 A | 100 @
L : E oL 5000 B!
S : S g i 5
Iy C = il 500 -
E ; ; ; coE = = S
= : H : : : : =
;’10000 - 3 0 . 3
_ > . =
T EE
= = = =
& : i & & E
_om -100
D T e —= L - o T e i -150
0.4 I ; 12 14 2 22 24 o4 0B 08 1 12 14 1B 18 2 22 24

Wavelength () Wavelength {prm)

image model, rather than some systematic errdraérahalysis.

Figure 1 Example of typical ELM coefficients. Thedtly-axis scales the gaim(in black) and the right y-axis scales the
offset and RMSE residuab @nderr, in red). Left plot (Site 4, 1998-08-25, 17:14k@pws typical behavior; right plot (Site
5, 1995-10-21, 20:20z) exhibits strongly negatiffeet values from 0.55 to 1;8m.

3.2 ELM coefficient correction

It should perhaps not be surprising that this sbxariability is observed in the offset coefficienparticularly when the
RMSE residuals are large. ELM is fitting a lineaaet of 4-6 radiance-reflectance pairs (one setvpeelength), and
scatter in the data can easily shift the interedpmn the values are so small relative to the ggammonly over an order
of magnitude smaller). In a preliminary paper os thiork, the issue was minimized by leaving onenore reflectance
panel observations out of the ELM analysis, trywagious combinations to reduce RMSE and improve dfiset
coefficientg. This was largely effective at producing more ptaisoffset coefficients, but there was no objeetmeasure
to indicate whether the regression was improveldanmed by the reduction of observation points beedhe goodness
of fit is often improved simply by reducing the nioen of data points from four to three, for example.

To understand the causes of the negative offsdfideats, it is necessary to scrutinize the wanglté-by-wavelength
linear regressions in the ELM process. This wasdnnperforming the linear regression at each vemgth in sequence,
animating the line fit against the data points, anthming up the residuals at each point. Everyestas a very dark
panel, approximately 4% reflectance, that was usefshow how well the linear fit is “anchored”’latv reflectance value
near the y-axis. It was observed that while thezeewegions of scatter-related negative offseds, fhe linear fit passing
below the dark panel observation point due to scattthe data), that was not a consistent pattetine large regions of
the spectrum where the negative values occur.Wagsborn out by the arithmetic sums of the darlepegsiduals, which
did not in general show a negative bias in the lgrolregions. The pattern that emerges is a sligh&i@nt nonlinearity
in the dark tail of the distribution, such that #iepe of the line is reduced near the y-axis.



Second and third order fits were compared, but thefull range of wavelengths either worsenedatverall fit or over-
fit the data in images containing only four panatsagreement with the body of work indicating refr relationship.
Instead, a small nonlinear term was added to emuatiof the form:

h
go+1

This term has valub atp = 0, decaying toward zero with an effective widgfined by the parametgr(Figure 2). To
constrain the parametegandh, we require that the slope be positive at0, requiring:

(4)

gs%. (5)

To express the constraints in terms of departum finearity as shown in figure, we introduce a nEwameter: such
thatg=m/ah. Then the slope gt= 0 is given by:

-m1-L
slop%—rr(l a)' (6)

soa can be used to constrain the departure of thedtopnm andh gives the departure of the intercept from

Nonlinear Function Form

Radiance (Lg)

h{ L7

a 0s 1 15 2 25 3
Reflectance (p)

Figure 2 Generalized nonlinear correction functewlid red) and base linear function (dashed blue).

The correction can be incorporated in the ELM resgjien as follows. The ELM equation with the nondineorrection is
linearized as:

LS:mp+b+h5, (7)
wheres is an estimated nonlinear term given by:

-1
5{ mp +1] | ®)

est

Herehestis an initial estimate di. The linearized form (equation 7) can then beditto the data using conventional linear
regression. The problem remains of how to deterrigdrom the data. An algorithm was developed to dateuthe
estimated intercept in four ways: 1) linear reg@sgconventional ELM); 2) second order polynonfigl3) third order
polynomial fit; and 4) using the linear regressi@iue of the slope but forcing the line to exadtitersect the lowest
reflectance/radiance pair. These four vectoroacall wavelengths) were evaluated by a set @obibg criteria to reject
sets that deviated too greatly from the ELM re§alpeak magnitude), and those that had signifioaggative values. The
estimated intercepts from the remaining method®weeraged to determites. Thea parameter controls how quickly
the nonlinear term falls to zero and was set ewgdlyi to a constant value that matched the bulthefdata well.

Equation 7 was then fitted to the data using linegression and a set of nonlinear ELM coefficiamés generated.
Because the corrections are small in all casesiagligible in the majority of cases, it is desiebb keep the improved



offset values but still form a linear fit to thetdaThe linear regression was therefore repeatddrbing the offsets to the
nonlinear values and optimizing the gain to minierize RMSE residuals. These adjusted linear cosffie were used in

the end analysis for all coefficients for consisteriThe difference in the goodness of fit due ®aljustment procedure
averaged across the entire collection is showralld4. Over all images used in the study, theineal function provided

a slightly better fit than the linear regressioheTadjusted linear regression produced larger wakichs expected, but
only 5.6% greater than the linear case on average.

Table 4 RMSE residuals for linear, nonlinear, adgisted linear regressions, averaged across aklemagths and all image
coefficients in the study.

Linear Regression Nonlinear Regression AdjusteedirRegression

RMSE @W / cn? srum) 65.50 62.18 71.13

The improved fit of the nonlinear regression sutgtsat the functional form shown in Figure 2 maceurately matches
the data than the linear form. Care was taken tomize the departure from linearity, and to confihe nonlinearity to
the low reflectance region of the relationshipitss unlikely to be a result of over-fitting witinhigher order polynomial.
Additional tests were conducted on the reflectame&gned from the adjusted linear coefficientanparing to ground
truth measurements, to validate the fact thatdiesément procedure did not adversely affect tlerefiectance retrievals.
The specific form of the nonlinear term in fact bgshysical basis. Conel develops the form asfactedf the background
spherical albedo, or the portion of incident radethat is scattered isotropicatly.

3.3 Coefficient adjustment

ELM derived coefficients correct for illuminatiomé geometric factors as well as atmospheric effécierder to compare
coefficients derived from images collected unddiedng imaging conditions, it is necessary to nipdhe coefficients
for variations in illumination and altitude of théservation. To diagnose these effects, the sae@esmodeled using the
MODTRAN radiative transfer software. MODTRAN carsalprovide solar illumination based on geograpluisiton,
date, and time. Thus the terms in equation 1 candeled explicitly.

In preliminary work, a “two stream method” was usednodel the radiative transfer terms in equafipin which two
MODTRAN simulations were run. Input parameters wdemntical except for the ground surface albeddciwivas set to
zero in one run and one in the other. This isol#tegath radiance term and allowed the other téorhe calculated using
ratios of the MODTRAN outputsThe method was not optimal for two reasons. Ththatktries to force the PB model
to provide radiative partitioning to the terms fuation 1, but the MODTRAN output fields are nohsistent with that
model and the results are therefore inexact. Seamiting the ground albedo to one across theeefigild of view is an
artificial extreme that amplifies any errors oiifanialities present in the scattering model.

Fortunately, the updated MODTRAN 5.3 software pdegi access to radiometric fields that directlyraligth the model
described in section 2.1. The derivation is fulgveloped in Appendix G of the MODTRAN 5.3 User's iiall* the
salient relationship is equation 11 from the refes

Ls =L, +—A'0 "E,O ) )
1-o0p

wherep is target (pixel) reflectanceg is the average reflectance of the surrounding o is the spherical albedo.

Ls is the sensor radiance ahelis the sensor radiance for the zero reflectanse.aandB are numerically derived
coefficients described below. (The variable nansstheen changed from the reference to be conisigttnthe model

developed in section 2.1, and the wavelength rwtditas been dropped. All variables excEpare wavelength dependent,
and radianceks andL, are integrated over the instrument spectral cHgnne

Each of the variables on the right hand side ofaiqn 9 is either an input to the simulation or t&ncalculated from
MODTRAN output data. Coefficient A is defined ag throduct of the total transmitted solar irradiaand the sensor-
to-ground direct transmittance, and B is the prodiiche total transmitted solar irradiance and skasor-to-ground
diffuse transmittance, each convolved with the dehspectral response function (SRF$pherical albedo is the fraction



of the incident irradiance that is reflected by seface in all directions, summed over all wavgten. This radiative
transfer construct can be related to the ELM mbgehriting equation 8 as:

LS =m* p+b* (10)
where:
mr=_ A (11)
1-op
b= Ly + 22 (12)
1-o0p

The star superscript is introduced to specify modeled rathereimpirical coefficients. Equation 11 can be thought of as
modifying the gain by accounting for the contributionref spherical albedo term, and equation 12 as separating the offset
into direct and diffuse parts.

Using equations 11 and 12, PB modeled gain and offset deef can be computed from the output of a single
MODTRAN run with p = 0. This approach has been shown to be superior to twthr@e-stream methotfs The
computation of the coefficients is simple as the variableseadily available in the MODTRAN output. The ability to
model the gain and offset coefficients is the key endbighis research. The PB model allows us to simulate ctmfts
under a variety of observational conditions, which can be asstndardize ELM coefficients so they can be compared
and studied together as a whole, despite being derived undergvabgervational conditions.

3.4 Coefficient standardization

One of the strengths of ELM is that the method impliciitcounts for illumination conditions, imaging geometry in
addition to correcting for the atmospheric propagation awdrglary surface interactions. However, the goal of this
research is to use the empirical coefficients to compile a lotoadtology relevant to HSI remote sensing. Therefore the
illumination and geometric factors implicit in the coeffidemust be factored out before the coefficients can be compared.

As described in the preceding section, modeled gain and offefficients can be computed for the imaging parameters
relevant to each set of empirical coefficients derived from ttegéry. The modeled coefficients can then be used to
estimate corrections to the ELM coefficients for differingrilination and sensor altitude above ground. All images are
nadir-looking, so geometry is completely described by ttiidé above ground level. For a set of ELM coefficients
andb; derived from one image, modeled coefficiemisandb;” are computed for the imaging conditions using equations
11 and 12 as described above. To estimate the ELM coefficietés differing conditions, at a later time, for instance,
modeled coefficientsn,” andb," are computed for the new conditions. Scale corrections are theputed from the
modeled coefficients:

Mai= my'/ my” (13)

Boi= b2’/ by (14)
Then the ELM coefficients at the new time are estimated as:

my'= M 21* my (15)

b2'= Bar* by (16)

where the primes delineate estimated (adjusted) ELM coefficients.

Using this procedure it is possible to model the effectdifféring illumination and geometry and to scale the ELM
coefficients accordingly. This provides an estimate of whatBELM coefficients would be under differing imaging
conditions and therefore allows comparison of coefficients acrased times and geometries. The atmospheric inputs
to the PB model are identical in the two runs, so the scaleatimm will only account for changes in the illumination and
imaging geometry. The variability that remains is assutoede due to differences in the atmosphere. This method
leverages strengths of the PB approach, e.g., calculating pileasi@ation and high fidelity atmospheric propagation,
but by applying theatios of modeled coefficients, it has the advantage of offsettigggstematic errors in the modeled
results. Any artifacts caused by artificialities in the scatjentodels are present in both model runs and, to firgrord



cancel each other out. The accuracy of the estimated coefficientiewridlase as the magnitude of the change in imaging
conditions increases, but within some bounds of variapiligy method produces accurate estimates.

4. ANALYSIS

The standardized ELM coefficients constitute the basis for theatdiogical analysis. When properly standardized to
remove the effects of illumination and scene geometry vaitiglthey are directly comparable and are analyzed as proxy
atmospheric variables (transformed through atmospheric tresiemand the ELM process into spectral space). A series
of optimizations and validations are performed to produce tw aonsistent standardization of the coefficients. Lastly,
the standardized coefficients are clustered and analyzed to deepoplse climatological classes.

4.1 Modeled coefficient optimization

In preliminary work, the coefficient standardization methas whown to be resilient to magnitude errors in the modeled
coefficients, for the reasons cited in section edrlietowever, unusual scattering behavior was noted in some
environments. MODTRAN provides tremendous flexibititytailor the environmental inputs and it is desirables® the
most realistic modeling results possible in the analysighabend, an optimization study was completed for eachosite t
determine the optimal set of input parameters to use.

The list of major radiative transport driver parameters uséke all trials is given in Table 5. Complete descriptioins
all input parameters and their use are contained in the MODTB#&s Manudf. Multiple scattering and the first-
principle, plane parallel atmosphere discrete ordinate multiplesogtalgorithm (DISORT) are required to produce the
atmospheric compensation outputs used to compute the modelfifidieots, as are the related DSAZM and DSALB
parameters. Surface reflectance is specified as Lambertian, andfdwe skin temperature is set to 1 K to eliminate
thermal emission in the computation of the reflected/scatfkresks. The full 1 cm-1 resolution band model is usetthe
final MODTRAN runs.

Table 5 List of major radiative transfer drivergaeters (common to all MODTRAN runs).

Input Field name Value Meaning

card

1 MODTRN M Use MODTRAN band model

1 ITYPE2 2 Slant path between two altitudes

1 IEMSCT 2 Spectral thermal plus solar/lunar radiance

1 IMULT 1 Multiple scattering mode

1 SURREF LAMBER Lambertian surface approximation

1 TPTEMP 1 Boundary temperature of image pixel (K)

1A DISORT t DISORT scattering algorithm is used

1A DISAZM t Azimutal depedence enabled for DISORT

1A DISALB t Sperical albedo calculated

1A LLFLTNM t Apply instrument SRF filter

1A H20AER t Aerosol properties modified per water vapor specification
1A LBMNAM f Band model data file name (defines model resolution)
1A CO2MX 390 CO2 mixing ratio

The MODTRAN input parameters defining the sensor geonaaitlyillumination conditions are populated from the image
metadata, specifically geographic location, date, time, sensodaltdaad ground elevation. Those related to atmospheric
profiles (aerosol and water vapor models), seasonal modelgrscpthodels and surface reflectance are also specified
based on the characteristics of the site and environmentniitiple scattering mode includes radiance that scatters off
of the background surface (not in pixel IFOV) and irte sensor. Experimentation with the generic MODTRAN
backgrounds showed the modeled offset coefficients to betigens these values, and best values did not always
correspond to the type of land cover in the images. RepatisenHS| scenes were analyzed to extract mean reflectance
signatures from each site; these were written to the MODTIRBddry data and used as the background reflectance
spectra. The spatial extent of the background that will cangrito the image will vary depending on altitude and
atmospheric conditions, but an average effective radius of @ pvas used. This is consistent with the background
smoothing kernel size used in FLAASH

Much more optimization was required to set the scattering rdalgtetparameters. An initial run was executed for image
at each site, using the most appropriate settings for therkeowironments. With that run as a baseline, parameters
controlling atmospheric profile, aerosol extinction modedibiiity, and wind speed were modified to find the besbéet



input parameters. At each iteration, the differences betweemdudeled and corresponding actual ELM coefficients,
averaged over all images at the site, served as the metric &hiléyitfor that site.

4.2 Modeled coefficient optimization

To validate that the coefficient standardization can adjustléoniihation variations, the method is tested against a time
series of images at a single site. The series of seven imagesollected from similar altitudes (~10,000 ft AGL) oser
90-minute period. The ELM coefficients from the first gea(10:14 Local time) ELM coefficients were adjusted to the
time of the last image (11:42L) using the method desciibedction 3.4. Figure 3 shows the ELM coefficients betoee
illumination adjustment, and Figure 4 shows the coeffisietdndardized to 11:42L. The figures show that the gain
variability from the change in illumination is almost cdetply corrected. The offset adjustment is not as complete, but
the difference between the coefficients is reduced by the standemdizatapproximately 50%.
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Figure 4 As in Figure 3 but after 1714z coefficieate adjusted to 1842z.

4.3 Geometric adjustment validation

Since all images in the study are nadir looking, the onlpnggometric variables are the sensor altitude and site elevation,
i.e., the sensor altitude referenced to ground level (AGL).vahdation method used above was repeated, but where the
two observations differ in altitude in addition to time this example, the first scene was imaged at 12:48 PM Ioeal t
from an altitude of 5.0 kft AGL. The second scene was ima@edi@utes later from an altitude of 10.4 kft AGL. Figure

5 shows the ELM coefficients before the geometric adjustmem&igunre 6 shows the coefficients standardized to 10,407
ft AGL.



The pre-adjustment gain coefficients changed little between theligervation times. This is because the altitude change
(higher altitude means greater transmission loss) and teectiange (higher sun angle means greater illumination) have
opposing influences on the gain coefficient. The standardizeditine decreases the gain for altitude change but increases
gain for the time difference. With both geometry and illuetion changing, the error is expected to be higher tharein t
illumination only case, but the size of the difference suggést the geometric correction has higher uncertainty. This
makes physical sense, because in the altitude correction, timed8 is simulating transmission path that is not present
in the ELM coefficients that are being standardized. The seaudt therefore sensitive to variability in the atmospheric
properties with altitude. The gain is corrected to within JRRAS and the offset to within 60% RMS, averaged across the
spectrum (excluding low SNR wavelengths in the broad vediteorption bands and where the offset values are near zero).
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Figure 5 Gain (left) and offset (right) ELM coeféiats for 5 and 10 kft images.

Altitude Adjustment “alidation - Gain Altitude Adjustment Validation - Offset

10407 ft AGL ABOD |-+ eebeere e
———5056 ft AGL

1600
|

10,407 ft AGL
—5 086 ft AGL

1400

1200

1000 |4t

aoa |-

BOO |-

Gain ( Radiance W/ cm? 5r
Offset { Radiance W/ cm? Sr um )

400

200

04 06 05 1 12 14 1B 18 2 22 24 04 0B 08 1 12 14 1B 18 2 22 24
Wawelength (wm) Wavelength (wm)

Figure 6 As in Figure 5 but after 5 kft coefficisrare adjusted to 10 kft altitude AGL.

4.4 Seasonal adjustment validation

The goal of the study is to identify and separate distimctatic regimes, so the coefficients must be compared across
differing seasons and geographic regions. An example of axs¢asmparison is shown in Figure 7. Coefficients from a
summertime collection of seven images were standardized toage icollected at the same site in the wintertime. To the
extent that the coefficient adjustment procedure adequately cdrfectthe differing illumination and scene geometry
conditions, the differences in the coefficients are due to miffednvironmental states. In Figure 7 the wintertime ELM



coefficients are shown (thick black line) against the colleatiostandardized summertime ELM coefficients (colored
lines).
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Figure 7 Standardized gain (left) and offset (figltefficients for the seasonal adjustment valatatThe heavy black lines

are the Dec reference ELM coefficients; the coldirees are the standardized August coefficients.

The ensemble of standardized summertime coefficients is cleaggrate from the wintertime ELM coefficient,
suggesting that the environmental variability is largpantthe variability remaining after the illumination andmetric
adjustments. This is confirmed by the fractional seasdffatehces (not shown), which are significantly larger ttren
variability among the ensemble members. RMSE for theig&f% in the inter-seasonal case versus 3% for the summer
ensemble. RMSE for the offset is 42% versus 27%. Thgamm the summertime ensemble were all collected from the
same altitude as the wintertime image, so although the fia@yovaried by up to 3.5 hours, the consistent altitudesg

this case less variability than one would expect on average ti8tilstudy suggests that the seasonal atmospheric signal
can be large enough to detect through any residual error i@standardization procedure.

4.5 Global coefficient standardization

All examples shown to this point have coefficients frams number of images standardized to correspond to tiginigna
conditions of another image to facilitate direct comparisonortfer to form classes from the global collection of
coefficients, it is necessary to standardize them all to desiederence point. The exact geospatial and temporal
coordinates of the reference point can be somewhat arbitraty, tmimimize error, the reference point was chosen to lie
near the median of the various imaging observational condittnmprising the study. Thus all coefficients are
standardized relative to the coordinates listed in Table 8.

Table 6 List of standard reference coordinatesdefficient comparison

Coordinate Reference Value
Geographic location 35° N, 95° W
Altitude 10,000 ft AGL
Date 8/15/1997

Time 17:00z

Now standardized to a set of common geometry and illuimatinditions, the coefficients can be compared to determine
variation in the atmospheric conditions under which theyeveadlected. The variation of the coefficients within each
site/collection event varies from site to site dependinthemange of imaging conditions encompassed in the collection.
Figure 8 shows a typical distribution of the standardizgid goefficients (Site 3, a high mountain location). Fegar
shows the distribution of the mean standard gain and cffedficients from all sites and imaging events. Separate means
are included in cases where the same site imaged in differentseag@ars. The tropical site (Site 9) showed a distinct
bimodal distribution, with separation in the visible wawnelih region greater than two standard deviations. There are no
apparent indicators in the ground truth or image metadatapestian observational reason for the bimodal pattern, so it
is likely caused by an environmental change during thedayeimaging timeframe. Site 9 is treated in the figure and i
the remaining analysis as two separate distributions.
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Figure 9 Means of the standard gain (left) andebffeght) coefficients for all sites and imagingeats.

4.6 Coefficient classes

The mean standard coefficient spectra in Figure 9 visually appbare some groupings, and it is desirable to determine
classes of coefficients from the data to compare to climatologfieahcteristics of the corresponding sites and images.
The groupings of coefficients are explored by clusteringctiedfficients based on band-to-band spectral magnitude, and
then by clustering based on the common spectral similaritsaniet

4.6.1 K-meansclustering

A k-means clusteringwas performed on the set of all coefficients to compare tdtehmeans. The clusters were formed

by concatenating each standard gain coefficient with its comdappoffset, the computing the k-means cluster analysis
for k=7. The number of clusters (7) was chosen as an apmtexnumber of climate classes represented in the data. Figure
10 shows the means of the gain and offset coefficient clustpeyposed against the site means from Figure 9. The plot
shows correspondence between some of the cluster means fomrttidrfull set of gain coefficients and the means of the
site-specific gains.



Clustered Gain Means vs Site Means Clustered Offset Means vs Site Means
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Figure 10 K-means clustered gain means (black) siithmeans in color (left), clustered offset meg@ight).

Figure 11 maps the cluster members to their sites’ respectippad —Trewartha climate categories; e.g., 66% of the
coefficients in cluster 1 are from the highland category, ro¥h fry/desert, etc. Overall 67% of the coefficients clustered
together with coefficients from the same category to formnmbgrity, and 77% clustered with the same or a similar
category.
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Figure 11 Aggregate Koppen —Trewartha climate categnembership of the k-means coefficient clustéreen indicates
the primary category, orange indicates a categdtty similar characteristics, and other colors imadkcdissimilar categories.

4.6.2 Spectral similarity clustering

Because k-means uses a distance metric to define the clustelsisteeng is heavily dominated by the contribution of
the gain coefficients, which are typically an order of maglgtlarger than the offset coefficients. The effects of aerosol



scattering and background adjacency will have the greatest @ffttot empirical offset coefficients, so it is preferable to
have a contributing input signal to the clustering algorithm

To better explore the contributions from and relationshigsvéen the gain and offset coefficients and the empirical
clustering of the data, the two spectral similarity metricsrareduced into the cluster analysis - Spectral Angle Mapping
(SAM)Y" and Euclidean Distance (E®)These metrics are complimentary because SAM is more sertsitsgectral
features such as depth of absorption features and relative ehdipe spectra, while ED is heavily weighted by the
magnitudes of the spectra. The overall mean of all gain asetaibefficient site means was used as the reference spectra
against which to apply the similarity metrics. SAM and ®Bre applied to each gain and offset coefficient, denoted
SAMnm, SAMy, EDm, and EDR. All binary combinations of these metrics are plotted irufédl2. The colors and symbols
represent differing sites and collection seasons. The scattesptigest which combinations of similarity metrics may b
used to separate environmental classes. TheMSDSAM, plot is selected here for cluster analysis.
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Figure 12 Similarity metrics SAM and ED for all sthard gain and offset coefficients plotted agagasth other to show
relationships. Colors/symbols represent differiibgssand collections.

Because of the vastly different scales for SAM and ED, the eaedre normalized prior to clustering. An agglomerative
hierarchical clustering scheffids used in which a dendrogram is created from closest pityxairs, which are then
consolidated pair-wise in successive iterations until the dresdluced to only two classes. A clustering criterion can then
be applied to any level of the dendrogram desired to pratiecgesired number of clusters. The distance metric used is
Euclidean Distance. Many differing objective functions can be tesddfine the clusters. The best results were obtained
using Ward’s minimum variance criterit\nwhich minimizes the variance of the points within theteluat each step.

Figure 13 shows the full set of standard coefficients mapp&ihM, vs. EDy. The upper left plot colors/symbols represent
the sites and collection groups of the source coefficients. fhiee plots show representative levels from the hierarchical
clustering from 6 to 16 clusters. In these the colors/s¥snepresent cluster membership. Note that the specific calor an
symbol combination assigned to a coefficient is arbitraribigned and does not map from one plot to another. Rather,
the groupings of color/symbol combinations are the paht®mparison. As the number of clusters increases, theclust
membership becomes more aligned to the site membership upplee left panel. The figures show that the similarity
metrics are, to a significant degree, able to separate the coeffisiesmtcordance with their source image collections.
Single clusters generally represent cohesive groupings ceefficirom the same or similar sites (i.e., groups ofesam



colored symbols in the upper left plot), particularly lzes tumber of clusters increases. Those site member coefficients
that are not grouped together in the site grouping scattesraui® of course not separable in this analysis.
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Figure 13 Full set of standard coefficients plotisdSAM vs. EDn. Upper left colors/symbols represent sites ankkctibn groups
of source coefficients. Other plots show clusterimigh increasing numbers of clusters; colors/syrabmpresent cluster
membership.

These analyses were repeated for other pairs of similarity mdtyicsapping clusters to climate category and land cover
in addition to site number, and with varying numberslo$ters. Table 7 summarizes some of these results. The overall
performance with respect to numbers of coefficients clustertdsame-site coefficients is not markedly improved by
using the spectral similarity metrics; the percentage is ~40iB60nost cases. In fact, the greatest correlation to sitesoccu
in an 11-cluster k-means trial (60% of the primary membgtiseoclusters were from the same sites). However, the use
of the expanded similarity metrics does provide greater sepgralbienvironments in some cases as noted in the Table
7, particularly in distinguishing between certain land cdypes. The results suggest that the gain coefficients are the
primary drivers for classifying the remote sensing enviremmil he offset coefficients add discrimination power in cases
where the background scattering is a large component, sulsbsassites containing dense vegetation. Despite the pains
taken to ensure the offset coefficients were as consistent ablpot® relatively high noise in the offset coefficient
signal, likely caused by transient, synoptic scale variatioagrosol content, makes it difficult to characterize irpbatl

the strongest cases.



Table 7 Summary of cluster statistics.
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4.6.3 Crossvalidation

In the preceding sections, the dataset used to form the clwsteedso used to “score” the results in terms of homogeneity
of clusters and ability to identify component climate or simbership. Without an independent test dataset, the results
are likely positive biased, because the training data are noteindept of the validation dataset. To reduce this bias, an
“n-1" cross validatiotf was performed on the data. In this technigue, one coeffisidwid out as the validation sample,
and the other n-1 coefficients are used to form the clustensams, where n is the total number of samples. Then the next
coefficient is held out and the other n-1 coefficients (idiclg the first validation sample) are used to form thetehs or
means. The process is repeated n times such that each sansglé énoe as the validation dataset and each validation
trial is independent of the data used to form the means.€Bléts are averaged across all n trials. The cross validation
was performed on the clusters resulting from k-meansetlogtfor k=3 to k=20 clusters. Site membership is usebeas t
test criterion, expanded such that multiple-season siteseatedras multiple categories (i.e., one for each season).
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Figure 14 Result of the cross validation of the é&ams clusters, from n=3 to n=20 clusters, showiagetrcentage of samples
correctly matched to site classes using the SAMiaiity metric.



Figure 14 shows the result of the cross validation. Tthediconfirms that seven is too few clusters, at leastiaxtpanded
twelve-class case. The maximum score of with respect to sitifiichtion occurs between 13 and 18 clusters, suggesting
that the number of separable classes is in that range. The vatupsmary identification and primary or similar
identification for k=11 compare well with the correspondingigalin Table 7.

5. CONCLUSION

The research shows that environmental information embeddeid thie ELM coefficients can be standardized, cataloged,
and used to form a climatological compendium in spectral sgaramon spectral similarity metrics are used to show
that the climatological classes are separable to a degree of detaiensuarate with the relatively modest size and range
of the imaging conditions comprising the study.

Largely unstudied aspects of ELM process and coefficients areedvedhe work. The small but highly leveraged trades
between gain and offset coefficients that are not significaortdioary ELM retrievals become problematic in this context
because the imaging model equates the offset coefficient withrguiimce, which should physically never be negative.
In addition to random scatter, a small nonlinear effect ospteerical albedo was discovered in the data and a model
developed to correct the coefficients to account for the effect.

Some of the imaged sites and climatological conditions weyecegrducive to the model and aligned nearly exactly with
the standardization process. Others showed considerable varitial was not explained by the model. This is not
surprising; although the body of conditions representetdrstudy data is relative large for an HSI collection, finig
compared to the universe of environmental conditions thabegresent on the Earth. Much more data will be required
to more fully characterize climatological means and variabilityerEso, the data in the study is over broad enough
conditions to demonstrate separable climatological classes.
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