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ABSTRACT  

Most Earth observation hyperspectral imagery (HSI) detection and identification algorithms depend critically upon a 
robust atmospheric compensation capability to correct for the effects of the atmosphere on the radiance signal. 
Atmospheric compensation methods typically perform optimally when ancillary ground truth data are available, e.g., high 
fidelity in situ radiometric observations or atmospheric profile measurements. When ground truth is incomplete or not 
available, additional assumptions must be made to perform the compensation. Meteorological climatologies are available 
to provide climatological norms for input into the radiative transfer models; however no such climatologies exist for 
empirical methods.  

The success of atmospheric compensation methods such as the empirical line method suggests that remotely sensed HSI 
scenes contain comprehensive sets of atmospheric state information within the spectral data itself. It is argued that large 
collections of empirically-derived atmospheric coefficients collected over a range of climatic and atmospheric conditions 
comprise a resource that can be applied to prospective atmospheric compensation problems. A previous study introduced 
a new climatological approach to atmospheric compensation in which empirically derived spectral information, rather than 
sensible atmospheric state variables, is the fundamental datum. The current work expands the approach across an 
experimental archive of 127 airborne HSI datasets spanning nine physical sites to represent varying climatological 
conditions. The representative atmospheric compensation coefficients are assembled in a scientific database of spectral 
observations and modeled data.  

Improvements to the modeling methods used to standardize the coefficients across varying collection and illumination 
geometries and the resulting comparisons of adjusted coefficients are presented. The climatological database is analyzed 
to show that common spectral similarity metrics can be used to separate the climatological classes to a degree of detail 
commensurate with the modest size and range of the imaging conditions comprising the study.   
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1. INTRODUCTION  

The fundamental problem addressed in this research is atmospheric compensation in an Earth remote sensing context. For 
an imaging sensor at some altitude above the Earth’s surface, atmospheric compensation is the process of deriving the 
surface reflectance values from the at-aperture radiance images recorded by the sensor. The magnitude of the atmospheric 
effects on measured electromagnetic energy can be strongly wavelength dependent, varying across the absorption regions 
of water vapor and trace gas constituents in the atmosphere. Scattering by molecules and suspended aerosol particles is 
also wavelength dependent. Successful analysis of remotely sensed hyperspectral imagery (HSI) is particularly dependent 
upon a robust atmospheric compensation capability. Most HSI applications rely on precise relationships between spectral 
bands and virtually any quantitative HSI analysis must therefore begin with an inversion problem to derive the surface 
reflectance or emittance from the measured at-aperture radiance. Many methods have been developed to accomplish this 
inversion. Most can be categorized as either empirical or physics-based methods.  

HSI datasets contain complete sets of spectral measurements of light passing through the atmosphere at each pixel; 
therefore, information about the atmospheric transmission is present in the measured radiance signal. Empirical 
atmospheric compensation methods use this information along with some additional information about the scene to  

 

*jpowell8@gmu.edu 



 
 

 

 

statistically derive the relationship between radiance and reflectance. Alternatively, the physics of radiative transfer is well 
understood and can be accurately modeled using radiative transfer algorithms. Physics-based (PB) methods use radiative 
transfer codes to estimate the atmospheric effects on transmission and determine the surface reflectivity from the model. 
Both approaches perform best when ancillary ground truth data are available – high fidelity in situ radiometric observations 
and/or atmospheric profile measurements.  

In practice, outside of controlled experiments, detailed ground truth data are rarely available. PB methods are routinely 
applied using broad climatological atmospheric parameters as input to the models. PB methods can use the atmospheric 
transmission information contained within the radiance data to refine the parameters; for example by using band ratios to 
extract the information and convert it to conventional meteorological parameters (water vapor mixing ratios, aerosol 
concentrations, etc.). The PB models then use radiative transfer algorithms to translate the meteorological information 
back into spectral effects during the reflectance inversion. Undesirable artifacts are inevitably introduced into the data with 
each translation between domains. Empirical methods must rely on indirect methods to supply reference reflectance 
signatures, either through supervised or statistical means; no climatologies currently exist for empirical methods. 

Where well-calibrated ground truth measurements are available, the empirical line method (ELM) has been shown to 
produce reflectance retrievals that are overall equivalent or superior to those produced by other methods.1 However, the 
native spectral information about the atmosphere captured in the ELM coefficients is not compiled for use outside of the 
scene from which they were derived. These coefficients comprise an untapped resource for climatological information 
relevant to HSI atmospheric compensation. In a previous work2 we introduced a new type of atmospheric climatology, 
using a statistical approach in which empirically derived spectral information is the fundamental datum rather than sensible 
atmospheric state variables. This paper expands the empirical techniques for extracting the coefficients and correcting for 
small nonlinear features, and updates the modeling methods used to standardize the coefficients across varying collection 
and illumination geometries. The resulting climatological database is analyzed to determine the separability of the 
climatological classes.   

2. BACKGROUND 

2.1 Empirical Line Method  

The empirical line method3 is a proven empirical method of atmospheric compensation in which the conversion factors to 
retrieve reflectance values are derived by performing a linear regression of observed at aperture radiance values against 
corresponding measured ground truth reflectance factors. The context of this model is hyperspectral Earth remote sensing 
in the visible through short wave infrared part of the spectrum. The radiance reaching the sensorSL can be written2 as: 

bmLS += ρ        (1) 

where m and b are the gain and offset vectors given by: 
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π
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sd EEm += cos0       (2) 

pathLb = .       (3) 

0E  is the solar irradiance at the top of the atmosphere, dτ  is the downward path transmittance, sE  is the skylight 

irradiance at the surface,uτ  is the upward path transmittance, ρ is the surface reflectance factor, and σ  is the incident 

angle to the surface. Each quantity is a function of wavelength. Here it is assumed that the entire hemisphere of the sky is 
visible to the surface and the surface is Lambertian. Adjacency and multiple surface scatter effects are neglected, as are 
thermal emissive radiance contributions. 

In ELM, the gain and offset coefficients m and b in equation 1 are assumed constant across the image, and are therefore 
one-dimensional vectors in wavelength space. They are determined by selecting two or more groups of pixels for which 
the reflectance values are known (or assumed known) and performing a linear regression of the measured radiance against 
the ground truth reflectance. These vectors are then applied against each pixel to estimate the reflectance. 



 
 

 

 

2.2 MODTRAN 

The Moderate Resolution Transmittance (MODTRAN) radiative transfer code serves as the U.S. Air Force standard 
moderate spectral resolution radiative transport model for wavelengths extending from the visible through the thermal 
infrared region.4,5 MODTRAN solves the radiative transfer equations from a fundamental physics approach, using a narrow 
band model of molecular and particulate absorption, emission, and scattering, as well as surface reflection and emission. 
The software models the solar and lunar illumination based on geographic location, date, and time. It can simulate a number 
of different remote sensing geometries, including the airborne Earth surface sensing application treated in this study.  The 
atmosphere is modeled as stratified layers that can be user-defined or defaulted to one of several standard climatological 
profiles. MODTRAN is also used as the radiative transfer engine for many atmospheric compensation programs, including 
the commercial standard Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH).6  

MODTRAN provides great flexibility for the user to specify input parameters defining the model operating modes and 
features, as well as the environmental conditions. The use of MODTRAN in this study was not intended to provide the 
absolute most realistic simulation for a given set of conditions, but rather to generate a reasonable estimate of the effects 
of changing imaging geometry and illumination. In this research, the parameters that were exercised consist mainly of 
geometric, spatial and temporal inputs (for illumination definition), and of those describing the modeled atmospheres. 
MODTRAN is used here to adjust ELM coefficients derived from different HSI scenes to account for differences in 
geometry and illumination conditions. 

2.3  QUAC 

The Quick Atmospheric Correction (QUAC) model of Bernstein, et al. is an unsupervised empirical atmospheric correction 
algorithm.7 QUAC assumes a linear radiative transport equation like ELM, but uses a ratio of scene-derived statistics to 
those of a reference scene to calculate the gain coefficients. The reference scene is a spectrally diverse collection of 
laboratory reflectance measurements.  

QUAC has become a prevalent method for visible to short wave infrared (VNIR/SWIR) HSI atmospheric compensation 
among practicing HSI analysts. It is fast, needs no external ground truth or atmospheric information, is tolerant of 
radiometric uncertainty, and highly robust. Even when other methods are ultimately used, QUAC often serves as a baseline 
for comparison. QUAC’s main deficiency is in absolute accuracy of the reflectance returns, shown to be accurate within 
approximately 15% compared to the best FLAASH results (best meaning highly accurate radiometric input and 
characterization of the atmosphere).7 QUAC is included in this research because it is a widely used, well-documented 
approach that yields consistent relative accuracy. QUAC gain and offset coefficients are analogous to ELM coefficients; 
however, QUAC defines the gain to be ρ/(L-b) rather than equation 1, so the QUAC coefficients were inverted for direct 
comparison to ELM coefficients. 

2.4 Hyperspectral data  

The hyperspectal data used in this research was collected by the HYDICE sensor between the years 1995 and 2000 over a 
range of climatic regions, backgrounds and seasons. Each collection was accompanied by ground truth information to 
characterize the scene. HYDICE was a pushbroom hyperspectral sensor with a spectral range of 0.4 to 2.5 micrometers 
(VNIR/SWIR). It used a Schmidt prism spectrometer with a single indium antimonide (InSb) focal plane. HYDICE 
collected 210 spectral bands with a nominal bandwidth of 10 nm and 320 spatial samples. A 0.5 mrad instantaneous field 
of view (IFOV) produced ground sample distances (GSD) ranging from approximately 1 m to 4 m at typical operating 
altitudes (5000 to 20,000 ft above ground level (AGL), respectively).8 The HYDICE sensor employed an onboard tungsten-
halogen calibration source for in-situ calibration measurements. Error sources have been well studied and absolute 
radiometric uncertainty is approximately 5%.9,10 

HSI scenes were collected over a variety of environments representing distinct climate regimes. In each environment, data 
were collected at several altitudes and with varied illumination conditions. Each environment was typically collected over 
a 2-4 day period. Several of the environments were imaged in different seasons. Each scene analyzed contained four to six 
gray scale calibration panels ranging from 2% to 64% reflectance. The calibration panels were measured with a field 
spectrometer, averaging 5-15 spot measurements across the panel to provide ground truth reflectance spectra for the scenes. 
In most cases the panels were measured on the day of the collects. The panels were sized relative to the HYDICE 
instantaneous field of view to ensure that at least one image pixel would fall entirely on the calibration panel at maximum 
flight altitude, providing a pure pixel corresponding to the ground truth reference spectra. A total of 181 HSI images were 



 
 

 

 

used in the research, 127 of which produced atmospheric compensation coefficients. Most of the remaining 54 images 
lacked acceptable ground truth information or metadata to permit full analysis. 

2.5 Imaged sites  

Sites included in the study were selected for diversity of climate, ground cover and season. The images included in the 
research encompass 14 collections over nine geographic sites. The sites include continental plain and mountainous terrain 
as well as littoral regions. Environments range from tropical to mid-latitude temperate to arid conditions. Ground 
elevations range from sea level to nearly 10,000 ft. Background land cover includes bare earth, open shrub, agricultural 
vegetation, forest and urban environments. Each collection event occurred over a period of two to five days, and three to 
five images from each day are included in this research. Imaging times are from 9 am to 3 pm local time, with the majority 
of the images nearer to local noon. Imaging conditions were mostly clear skies but occasionally included broken clouds or 
thin high clouds. 

Table 1 summarizes the characteristics of the sites and images used in the research; Table 2 and Table 3 define the 
associated climate and land cover classes. Land cover classes are based on USGS National Land Cover Database (NLCD) 
2001 categorization11.  The classification scheme was developed for remote sensing-based land classification, specifically 
the LANDSAT Thematic Mapper. In this research, categories are assigned by manual review of the HSI imagery in true 
color and infrared false color composites compared to the descriptions in the classification system. Two categories are 
assigned for each site. The primary category refers to the immediate environment surrounding the calibration panels 
(within approximately 10 pixels). The secondary category describes the dominant land cover of the region (within 
approximately 500 m). 

 

Table 1 Summary of site characteristics. Climate and land cover categories are described in the following tables. 

 

 
 

 

 

 

 

 

 

 

 

Table 2  USGS Land Cover Institute (LCI) land cover class definitions. 

Site Climate Category Elevation (ft)
Land Cover 

Category (pri, sec)
Seasons Imaged (MMM)

Number of 
Images

1 H 6810 31, 51 SON 19

2 H 8498 31, 42 SON 12
3 H 9754 31, 51 SON 12

4 BW 5267 31, 51 JJA, DJF 8
5 BW 786 31 JJA, SON, DJF 24

6 Cs 62 23, 51 JJA 4
7 Cf 1025 71, 82 JJA 11

8 Dc 18 71, 41 JJA 22
9 Ar 193 71, 41 MAM 15



 
 

 

 

 
 

 

 

 

 

 

 

 

Table 3  Köppen–Trewartha climate classification categories.  

 

 

 

 

 

 

 

The modified Köppen climatic classification system as described by Trewartha12,13 is used to characterize the climatic 
zones of the sites. The Trewartha-Köppen system considers prevailing atmospheric factors (e.g., temperature, humidity, 
rainfall) as well as geographic and geological aspects in defining the classes. This produces climatic regions that are better 
related to dominant flora and soil types, and thus better related to the typical atmospheric characteristics than are strictly 
geographic/morphological categorization systems. 

3. METHODOLOGY 

The central argument of this study is that empirically derived reflectance inversion coefficients can be used to characterize 
the atmosphere. The mathematical model used to represent the observed radiance is described in section 2.1, reducing the 
reflectance retrieval to the form of the empirical gain and offset coefficients. The methodology to derive the coefficients 
is presented in this section, as well as the analysis employed to evaluate and correct the coefficients.  

ELM coefficients are specifically tied to the illumination and imaging geometry present at the time of the image from 
which they are derived, as all the factors affecting the radiative transfer are encapsulated within the coefficients. In order 
to isolate the atmospheric effects and to compare coefficients amongst different images, a method to account for varying 
illumination and geometry is required. This methodology is described in the latter part of this section. 

3.1 ELM analysis 

Standard ELM techniques were used to derive gain and offset coefficients that describe the inversion from at aperture 
radiance to reflectance.3 The method is described in detail in a preliminary study.2 ELM produces vectors m and b 
containing the gain and offset coefficients for each channel and an RMSE vector r. An example of the coefficients is shown 
in Figure 1. HYDICE radiance cubes were provided in scaled spectral radiance units of (1/75) * W / m2 sr �m. All radiance 
quantities presented in this study are converted to “microflick” units (�W / cm2 sr �m), and all gain coefficients are scaled 
such that they produce standard radiance units when applied to normalized reflectance values (ranging from 0 to 1). The 
band center wavelengths of the HYDICE sensor shift slightly from collect to collect due to prism distortion, so the sensor 
is calibrated for each flight path. To facilitate comparison, all ELM coefficients were resampled to the mean wavelengths 
averaged over all collects. The gain and offset coefficients are plotted on different axes in order to overlay them on the 
same plot. These coefficients comprise the basic observational quantity used in the study. 

Land Cover 
Category 

Level I Class Level II Class

23 Developed Commercial/Industrial/Transportation 

31 Barren Bare Rock/Sand/Clay

41 Forest Upland Deciduous Forest

42 Forest Upland Evergreen Forest

51 Shrubland Shrubland

71 Herbaceous Upland Grasslands/Herbaceous 

82 Herbaceous Planted/Cultivated Row Crops

Climate Category Climate Class Type

Ar Tropical Rainy

BW Dry Arid or desert

Cf Subtropical Humid

Cs Subtropical Dry-summer maritime subalpine 

Dc Temperate Continental

H Highland N/A



 
 

 

 

Figure 1 (left) depicts a classic, physically reasonable shape for the ELM coefficients – rising to a peak in the visible region 
and exponentially decaying toward the longer wavelengths – with relatively low residuals. The majority of the images 
produced ELM coefficients with similar spectra, as expected. A sizable number of images, however, produced coefficients 
with unexpected offset spectra. Normally when ELM is used to obtain a reflectance image, the shape and values of the 
coefficients are of little consequence as long as they produce an acceptable reflectance inversion. For that reason the 
coefficients themselves have been rarely studied in the literature. In this application, however, we attribute the gain and 
offset to a physical partitioning of radiative transfer effects, so non-physical anomalies are important to address. 

The artifacts of greatest concern are similar to those depicted in the right hand side of Figure 1. The areas of negative offset 
values are completely nonphysical from the standpoint of our imaging model, i.e., the offset representing the path radiance. 
These artifacts appear episodically; for instance, several images might produce normal coefficients, and subsequent images 
on the same flight using the same ground truth produce coefficients with the negative gain artifacts. For this reason, the 
artifacts are attributed to the ELM linear regression not fully partitioning the radiative transfer in the way described by the 

image model, rather than some systematic error in the analysis.  

 
Figure 1 Example of typical ELM coefficients. The left y-axis scales the gain (m, in black) and the right y-axis scales the 
offset and RMSE residual (b and err, in red). Left plot (Site 4, 1998-08-25, 17:14z) shows typical behavior; right plot (Site 
5, 1995-10-21, 20:20z) exhibits strongly negative offset values from 0.55 to 1.8 �m. 

 

3.2 ELM coefficient correction 

It should perhaps not be surprising that this sort of variability is observed in the offset coefficients, particularly when the 
RMSE residuals are large. ELM is fitting a line to a set of 4-6 radiance-reflectance pairs (one set per wavelength), and 
scatter in the data can easily shift the intercept when the values are so small relative to the gain (commonly over an order 
of magnitude smaller). In a preliminary paper on this work, the issue was minimized by leaving one or more reflectance 
panel observations out of the ELM analysis, trying various combinations to reduce RMSE and improve the offset 
coefficients2. This was largely effective at producing more physical offset coefficients, but there was no objective measure 
to indicate whether the regression was improved or harmed by the reduction of observation points because the goodness 
of fit is often improved simply by reducing the number of data points from four to three, for example. 

To understand the causes of the negative offset coefficients, it is necessary to scrutinize the wavelength-by-wavelength 
linear regressions in the ELM process. This was done by performing the linear regression at each wavelength in sequence, 
animating the line fit against the data points, and summing up the residuals at each point. Every scene has a very dark 
panel, approximately 4% reflectance, that was useful to show how well the linear fit is “anchored” at low reflectance value 
near the y-axis. It was observed that while there were regions of scatter-related negative offsets (i.e., the linear fit passing 
below the dark panel observation point due to scatter in the data), that was not a consistent pattern in the large regions of 
the spectrum where the negative values occur. This was born out by the arithmetic sums of the dark panel residuals, which 
did not in general show a negative bias in the problem regions. The pattern that emerges is a slight apparent nonlinearity 
in the dark tail of the distribution, such that the slope of the line is reduced near the y-axis. 



 
 

 

 

Second and third order fits were compared, but over the full range of wavelengths either worsened the overall fit or over-
fit the data in images containing only four panels, in agreement with the body of work indicating a linear relationship. 
Instead, a small nonlinear term was added to equation 1 of the form: 

1+ρg

h
.       (4) 

This term has value h at ρ = 0, decaying toward zero with an effective width defined by the parameter g (Figure 2). To 
constrain the parameters g and h, we require that the slope be positive at ρ = 0, requiring: 

      
h

m
g ≤ .       (5) 

To express the constraints in terms of departure from linearity as shown in figure, we introduce a new parameter α such 
that g=m/αh. Then the slope at ρ = 0 is given by: 
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so α can be used to constrain the departure of the slope from m and h gives the departure of the intercept from b.  

Figure 2 Generalized nonlinear correction function (solid red) and base linear function (dashed blue). 

The correction can be incorporated in the ELM regression as follows. The ELM equation with the nonlinear correction is 
linearized as: 

     δρ hbmLS ++= ,      (7) 

where δ is an estimated nonlinear term given by: 
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Here hest is an initial estimate of h. The linearized form (equation 7) can then be fitted to the data using conventional linear 
regression. The problem remains of how to determine hest from the data. An algorithm was developed to calculate the 
estimated intercept in four ways: 1) linear regression (conventional ELM); 2) second order polynomial fit; 3) third order 
polynomial fit; and 4) using the linear regression value of the slope but forcing the line to exactly intersect the lowest 
reflectance/radiance pair.  These four vectors (across all wavelengths) were evaluated by a set of objective criteria to reject 
sets that deviated too greatly from the ELM result (in peak magnitude), and those that had significant negative values. The 
estimated intercepts from the remaining methods were averaged to determine hest. The α parameter controls how quickly 
the nonlinear term falls to zero and was set empirically to a constant value that matched the bulk of the data well. 

Equation 7 was then fitted to the data using linear regression and a set of nonlinear ELM coefficients was generated. 
Because the corrections are small in all cases and negligible in the majority of cases, it is desirable to keep the improved 



 
 

 

 

offset values but still form a linear fit to the data. The linear regression was therefore repeated by forcing the offsets to the 
nonlinear values and optimizing the gain to minimize the RMSE residuals. These adjusted linear coefficients were used in 
the end analysis for all coefficients for consistency. The difference in the goodness of fit due to the adjustment procedure 
averaged across the entire collection is shown in Table 4. Over all images used in the study, the nonlinear function provided 
a slightly better fit than the linear regression. The adjusted linear regression produced larger residuals as expected, but 
only 5.6% greater than the linear case on average. 

 

Table 4 RMSE residuals for linear, nonlinear, and adjusted linear regressions, averaged across all wavelengths and all image 
coefficients in the study. 

 
Linear Regression Nonlinear Regression Adjusted Linear Regression 

RMSE (�W / cm2 sr �m) 65.50 62.18 71.13 

 

The improved fit of the nonlinear regression suggests that the functional form shown in Figure 2 more accurately matches 
the data than the linear form. Care was taken to minimize the departure from linearity, and to confine the nonlinearity to 
the low reflectance region of the relationship, so it is unlikely to be a result of over-fitting with a higher order polynomial. 
Additional tests were conducted on the reflectances returned from the adjusted linear coefficients, comparing to ground 
truth measurements, to validate the fact that the adjustment procedure did not adversely affect the end reflectance retrievals. 
The specific form of the nonlinear term in fact has a physical basis. Conel develops the form as an effect of the background 
spherical albedo, or the portion of incident radiance that is scattered isotropically.3 

3.3 Coefficient adjustment 

ELM derived coefficients correct for illumination and geometric factors as well as atmospheric effects. In order to compare 
coefficients derived from images collected under differing imaging conditions, it is necessary to modify the coefficients 
for variations in illumination and altitude of the observation. To diagnose these effects, the scenes were modeled using the 
MODTRAN radiative transfer software. MODTRAN can also provide solar illumination based on geographic position, 
date, and time. Thus the terms in equation 1 can be modeled explicitly.  

In preliminary work, a “two stream method” was used to model the radiative transfer terms in equation 1, in which two 
MODTRAN simulations were run. Input parameters were identical except for the ground surface albedo, which was set to 
zero in one run and one in the other. This isolated the path radiance term and allowed the other terms to be calculated using 
ratios of the MODTRAN outputs.2 The method was not optimal for two reasons. The method tries to force the PB model 
to provide radiative partitioning to the terms in equation 1, but the MODTRAN output fields are not consistent with that 
model and the results are therefore inexact. Second, setting the ground albedo to one across the entire field of view is an 
artificial extreme that amplifies any errors or artificialities present in the scattering model. 

Fortunately, the updated MODTRAN 5.3 software provides access to radiometric fields that directly align with the model 
described in section 2.1. The derivation is fully developed in Appendix G of the MODTRAN 5.3 User’s Manual;14 the 
salient relationship is equation 11 from the reference: 

ρσ
ρρ
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1
0

BA
LLS ,      (9) 

where ρ is target (pixel) reflectance, ρ is the average reflectance of the surrounding area, and σ  is the spherical albedo. 

LS is the sensor radiance and L0 is the sensor radiance for the zero reflectance case. A and B are numerically derived 
coefficients described below. (The variable names have been changed from the reference to be consistent with the model 

developed in section 2.1, and the wavelength notation has been dropped. All variables except σ  are wavelength dependent, 
and radiances LS and L0 are integrated over the instrument spectral channel.) 

Each of the variables on the right hand side of equation 9 is either an input to the simulation or can be calculated from 
MODTRAN output data. Coefficient A is defined as the product of the total transmitted solar irradiance and the sensor-
to-ground direct transmittance, and B is the product of the total transmitted solar irradiance and the sensor-to-ground 
diffuse transmittance, each convolved with the channel spectral response function (SRF)14. Spherical albedo is the fraction 



 
 

 

 

of the incident irradiance that is reflected by the surface in all directions, summed over all wavelengths. This radiative 
transfer construct can be related to the ELM model by writing equation 8 as: 

** bmLS += ρ        (10) 
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The star superscript is introduced to specify modeled rather than empirical coefficients. Equation 11 can be thought of as 
modifying the gain by accounting for the contribution of the spherical albedo term, and equation 12 as separating the offset 
into direct and diffuse parts. 

Using equations 11 and 12, PB modeled gain and offset coefficients can be computed from the output of a single 
MODTRAN run with ρ = 0. This approach has been shown to be superior to two- or three-stream methods14. The 
computation of the coefficients is simple as the variables are readily available in the MODTRAN output. The ability to 
model the gain and offset coefficients is the key enabler for this research. The PB model allows us to simulate coefficients 
under a variety of observational conditions, which can be used to standardize ELM coefficients so they can be compared 
and studied together as a whole, despite being derived under varying observational conditions. 

3.4 Coefficient standardization 

One of the strengths of ELM is that the method implicitly accounts for illumination conditions, imaging geometry in 
addition to correcting for the atmospheric propagation and secondary surface interactions. However, the goal of this 
research is to use the empirical coefficients to compile a broad climatology relevant to HSI remote sensing. Therefore the 
illumination and geometric factors implicit in the coefficients must be factored out before the coefficients can be compared. 

As described in the preceding section, modeled gain and offset coefficients can be computed for the imaging parameters 
relevant to each set of empirical coefficients derived from the imagery. The modeled coefficients can then be used to 
estimate corrections to the ELM coefficients for differing illumination and sensor altitude above ground. All images are 
nadir-looking, so geometry is completely described by the altitude above ground level. For a set of ELM coefficients m1 
and b1 derived from one image, modeled coefficients m1

* and b1
* are computed for the imaging conditions using equations 

11 and 12 as described above. To estimate the ELM coefficients under differing conditions, at a later time, for instance, 
modeled coefficients m2

*  and b2
* are computed for the new conditions. Scale corrections are then computed from the 

modeled coefficients: 

M21= m2
*/ m1

*        (13) 

B21= b2
*/ b1

*.       (14) 

Then the ELM coefficients at the new time are estimated as: 

m2’= M 21* m1        (15) 

b2’= B 21* b1       (16) 

where the primes delineate estimated (adjusted) ELM coefficients. 

Using this procedure it is possible to model the effects of differing illumination and geometry and to scale the ELM 
coefficients accordingly.  This provides an estimate of what the ELM coefficients would be under differing imaging 
conditions and therefore allows comparison of coefficients across varied times and geometries.  The atmospheric inputs 
to the PB model are identical in the two runs, so the scale correction will only account for changes in the illumination and 
imaging geometry. The variability that remains is assumed to be due to differences in the atmosphere. This method 
leverages strengths of the PB approach, e.g., calculating precise illumination and high fidelity atmospheric propagation, 
but by applying the ratios of modeled coefficients, it has the advantage of offsetting any systematic errors in the modeled 
results. Any artifacts caused by artificialities in the scattering models are present in both model runs and, to first order, 



 
 

 

 

cancel each other out. The accuracy of the estimated coefficients will decrease as the magnitude of the change in imaging 
conditions increases, but within some bounds of variability, the method produces accurate estimates. 

4. ANALYSIS 

The standardized ELM coefficients constitute the basis for the climatological analysis. When properly standardized to 
remove the effects of illumination and scene geometry variability, they are directly comparable and are analyzed as proxy 
atmospheric variables (transformed through atmospheric transmission and the ELM process into spectral space). A series 
of optimizations and validations are performed to produce the most consistent standardization of the coefficients. Lastly, 
the standardized coefficients are clustered and analyzed to develop separable climatological classes. 

4.1 Modeled coefficient optimization 

In preliminary work, the coefficient standardization method was shown to be resilient to magnitude errors in the modeled 
coefficients, for the reasons cited in section earlier2. However, unusual scattering behavior was noted in some 
environments. MODTRAN provides tremendous flexibility to tailor the environmental inputs and it is desirable to use the 
most realistic modeling results possible in the analysis. To that end, an optimization study was completed for each site to 
determine the optimal set of input parameters to use. 

The list of major radiative transport driver parameters used in the all trials is given in Table 5. Complete descriptions of 
all input parameters and their use are contained in the MODTRAN Users Manual14. Multiple scattering and the first-
principle, plane parallel atmosphere discrete ordinate multiple scattering algorithm (DISORT) are required to produce the 
atmospheric compensation outputs used to compute the modeled coefficients, as are the related DSAZM and DSALB 
parameters. Surface reflectance is specified as Lambertian, and the surface skin temperature is set to 1 K to eliminate 
thermal emission in the computation of the reflected/scattered fluxes. The full 1 cm-1 resolution band model is used in the 
final MODTRAN runs.  

Table 5  List of major radiative transfer driver parameters (common to all MODTRAN runs). 

Input 
card 

Field name Value Meaning 

1 MODTRN M Use MODTRAN band model 
1 ITYPE2 2 Slant path between two altitudes 
1 IEMSCT 2 Spectral thermal plus solar/lunar radiance 
1 IMULT 1 Multiple scattering mode 
1 SURREF LAMBER Lambertian surface approximation 
1 TPTEMP 1 Boundary temperature of image pixel (K) 
1A DISORT t DISORT scattering algorithm is used 
1A DISAZM t Azimutal depedence enabled for DISORT 
1A DISALB t Sperical albedo calculated 
1A LLFLTNM t Apply instrument SRF filter 
1A H2OAER t Aerosol properties modified per water vapor specification 
1A LBMNAM f Band model data file name (defines model resolution)  
1A CO2MX 390 CO2 mixing ratio 

 
The MODTRAN input parameters defining the sensor geometry and illumination conditions are populated from the image 
metadata, specifically geographic location, date, time, sensor altitude, and ground elevation. Those related to atmospheric 
profiles (aerosol and water vapor models), seasonal models, scattering models and surface reflectance are also specified 
based on the characteristics of the site and environment. The multiple scattering mode includes radiance that scatters off 
of the background surface (not in pixel IFOV) and into the sensor. Experimentation with the generic MODTRAN 
backgrounds showed the modeled offset coefficients to be sensitive to these values, and best values did not always 
correspond to the type of land cover in the images. Representative HSI scenes were analyzed to extract mean reflectance 
signatures from each site; these were written to the MODTRAN library data and used as the background reflectance 
spectra. The spatial extent of the background that will contribute to the image will vary depending on altitude and 
atmospheric conditions, but an average effective radius of ~25 pixels was used. This is consistent with the background 
smoothing kernel size used in FLAASH15. 

Much more optimization was required to set the scattering related input parameters. An initial run was executed for image 
at each site, using the most appropriate settings for the known environments. With that run as a baseline, parameters 
controlling atmospheric profile, aerosol extinction model, visibility, and wind speed were modified to find the best set of 



 
 

 

 

input parameters. At each iteration, the differences between the modeled and corresponding actual ELM coefficients, 
averaged over all images at the site, served as the metric for suitability for that site. 

4.2 Modeled coefficient optimization 

To validate that the coefficient standardization can adjust for illumination variations, the method is tested against a time 
series of images at a single site. The series of seven images were collected from similar altitudes (~10,000 ft AGL) over a 
90-minute period. The ELM coefficients from the first image (10:14 Local time) ELM coefficients were adjusted to the 
time of the last image (11:42L) using the method described in section 3.4. Figure 3 shows the ELM coefficients before the 
illumination adjustment, and Figure 4 shows the coefficients standardized to 11:42L. The figures show that the gain 
variability from the change in illumination is almost completely corrected. The offset adjustment is not as complete, but 
the difference between the coefficients is reduced by the standardization by approximately 50%. 

 
Figure 3 Gain (left) and offset (right) ELM coefficients for beginning and ending times in image sequence. 

 

 
Figure 4 As in Figure 3 but after 1714z coefficients are adjusted to 1842z. 

 

4.3 Geometric adjustment validation 

Since all images in the study are nadir looking, the only major geometric variables are the sensor altitude and site elevation, 
i.e., the sensor altitude referenced to ground level (AGL). The validation method used above was repeated, but where the 
two observations differ in altitude in addition to time. In this example, the first scene was imaged at 12:48 PM local time 
from an altitude of 5.0 kft AGL. The second scene was imaged 26 minutes later from an altitude of 10.4 kft AGL. Figure 
5 shows the ELM coefficients before the geometric adjustment, and Figure 6 shows the coefficients standardized to 10,407 
ft AGL. 



 
 

 

 

The pre-adjustment gain coefficients changed little between the two observation times. This is because the altitude change 
(higher altitude means greater transmission loss) and the time change (higher sun angle means greater illumination) have 
opposing influences on the gain coefficient. The standardization routine decreases the gain for altitude change but increases 
gain for the time difference. With both geometry and illumination changing, the error is expected to be higher than in the 
illumination only case, but the size of the difference suggests that the geometric correction has higher uncertainty. This 
makes physical sense, because in the altitude correction, the PB model is simulating transmission path that is not present 
in the ELM coefficients that are being standardized. The results are therefore sensitive to variability in the atmospheric 
properties with altitude. The gain is corrected to within 10% RMS and the offset to within 60% RMS, averaged across the 
spectrum (excluding low SNR wavelengths in the broad water absorption bands and where the offset values are near zero). 

 
Figure 5 Gain (left) and offset (right) ELM coefficients for 5 and 10 kft images. 

 

 
Figure 6 As in Figure 5 but after 5 kft coefficients are adjusted to 10 kft altitude AGL. 

 

 

4.4 Seasonal adjustment validation 

The goal of the study is to identify and separate distinct climatic regimes, so the coefficients must be compared across 
differing seasons and geographic regions. An example of a seasonal comparison is shown in Figure 7. Coefficients from a 
summertime collection of seven images were standardized to an image collected at the same site in the wintertime. To the 
extent that the coefficient adjustment procedure adequately corrected for the differing illumination and scene geometry 
conditions, the differences in the coefficients are due to differing environmental states. In Figure 7 the wintertime ELM 



 
 

 

 

coefficients are shown (thick black line) against the collection of standardized summertime ELM coefficients (colored 
lines).  

 
Figure 7 Standardized gain (left) and offset (right) coefficients for the seasonal adjustment validation. The heavy black lines 
are the Dec reference ELM coefficients; the colored lines are the standardized August coefficients. 

The ensemble of standardized summertime coefficients is clearly separate from the wintertime ELM coefficient, 
suggesting that the environmental variability is larger than the variability remaining after the illumination and geometric 
adjustments. This is confirmed by the fractional seasonal differences (not shown), which are significantly larger than the 
variability among the ensemble members. RMSE for the gain is 40% in the inter-seasonal case versus 3% for the summer 
ensemble. RMSE for the offset is 42% versus 27%. The images in the summertime ensemble were all collected from the 
same altitude as the wintertime image, so although the time of day varied by up to 3.5 hours, the consistent altitude gives 
this case less variability than one would expect on average. Still, the study suggests that the seasonal atmospheric signal 
can be large enough to detect through any residual error from the standardization procedure. 

4.5 Global coefficient standardization 

All examples shown to this point have coefficients from some number of images standardized to correspond to the imaging 
conditions of another image to facilitate direct comparison. In order to form classes from the global collection of 
coefficients, it is necessary to standardize them all to a single reference point. The exact geospatial and temporal 
coordinates of the reference point can be somewhat arbitrary, but to minimize error, the reference point was chosen to lie 
near the median of the various imaging observational conditions comprising the study. Thus all coefficients are 
standardized relative to the coordinates listed in Table 8.  

Table 6  List of standard reference coordinates for coefficient comparison 

Coordinate Reference Value 

Geographic location 35○ N, 95○ W 

Altitude 10,000 ft AGL 

Date 8/15/1997 

Time 17:00z 

 

Now standardized to a set of common geometry and illumination conditions, the coefficients can be compared to determine 
variation in the atmospheric conditions under which they were collected. The variation of the coefficients within each 
site/collection event varies from site to site depending on the range of imaging conditions encompassed in the collection. 
Figure 8 shows a typical distribution of the standardized gain coefficients (Site 3, a high mountain location). Figure 9 
shows the distribution of the mean standard gain and offset coefficients from all sites and imaging events. Separate means 
are included in cases where the same site imaged in different seasons or years. The tropical site (Site 9) showed a distinct 
bimodal distribution, with separation in the visible wavelength region greater than two standard deviations. There are no 
apparent indicators in the ground truth or image metadata to suspect an observational reason for the bimodal pattern, so it 
is likely caused by an environmental change during the five-day imaging timeframe. Site 9 is treated in the figure and in 
the remaining analysis as two separate distributions.  



 
 

 

 

 

  Figure 8 Site 4 mean standard gain (upper) and offset (lower) coefficients (JJA). Standard deviation is plotted in black. 

 

 

Figure 9 Means of the standard gain (left) and offset (right) coefficients for all sites and imaging events. 

 

4.6 Coefficient classes 

The mean standard coefficient spectra in Figure 9 visually appear to have some groupings, and it is desirable to determine 
classes of coefficients from the data to compare to climatological characteristics of the corresponding sites and images. 
The groupings of coefficients are explored by clustering the coefficients based on band-to-band spectral magnitude, and 
then by clustering based on the common spectral similarity metrics.  

4.6.1 K-means clustering 

A k-means clustering16 was performed on the set of all coefficients to compare to the site means. The clusters were formed 
by concatenating each standard gain coefficient with its corresponding offset, the computing the k-means cluster analysis 
for k=7. The number of clusters (7) was chosen as an approximate number of climate classes represented in the data. Figure 
10 shows the means of the gain and offset coefficient clusters superposed against the site means from Figure 9. The plot 
shows correspondence between some of the cluster means found from the full set of gain coefficients and the means of the 
site-specific gains. 

 



 
 

 

 

 

Figure 10 K-means clustered gain means (black) with site means in color (left), clustered offset means (right).  

 

Figure 11 maps the cluster members to their sites’ respective Köppen –Trewartha climate categories; e.g., 66% of the 
coefficients in cluster 1 are from the highland category, 7% from dry/desert, etc. Overall 67% of the coefficients clustered 
together with coefficients from the same category to form the majority, and 77% clustered with the same or a similar 
category. 

 

 

Figure 11 Aggregate Köppen –Trewartha climate category membership of the k-means coefficient clusters. Green indicates 
the primary category, orange indicates a category with similar characteristics, and other colors indicate dissimilar categories. 

 

4.6.2 Spectral similarity clustering 

Because k-means uses a distance metric to define the clusters, the clustering is heavily dominated by the contribution of 
the gain coefficients, which are typically an order of magnitude larger than the offset coefficients. The effects of aerosol 



 
 

 

 

scattering and background adjacency will have the greatest effect on the empirical offset coefficients, so it is preferable to 
have a contributing input signal to the clustering algorithm. 

To better explore the contributions from and relationships between the gain and offset coefficients and the empirical 
clustering of the data, the two spectral similarity metrics are introduced into the cluster analysis - Spectral Angle Mapping 
(SAM)17 and Euclidean Distance (ED)18. These metrics are complimentary because SAM is more sensitive to spectral 
features such as depth of absorption features and relative shape of the spectra, while ED is heavily weighted by the 
magnitudes of the spectra. The overall mean of all gain and offset coefficient site means was used as the reference spectra 
against which to apply the similarity metrics. SAM and ED were applied to each gain and offset coefficient, denoted 
SAMm, SAMb, EDm, and EDb. All binary combinations of these metrics are plotted in Figure 12. The colors and symbols 
represent differing sites and collection seasons. The scatter plots suggest which combinations of similarity metrics may be 
used to separate environmental classes. The EDm vs. SAMb plot is selected here for cluster analysis.  

 

Figure 12 Similarity metrics SAM and ED for all standard gain and offset coefficients plotted against each other to show 
relationships. Colors/symbols represent differing sites and collections. 

 

Because of the vastly different scales for SAM and ED, the metrics are normalized prior to clustering. An agglomerative 
hierarchical clustering scheme16 is used in which a dendrogram is created from closest proximity pairs, which are then 
consolidated pair-wise in successive iterations until the tree is reduced to only two classes. A clustering criterion can then 
be applied to any level of the dendrogram desired to produce the desired number of clusters. The distance metric used is 
Euclidean Distance. Many differing objective functions can be used to define the clusters. The best results were obtained 
using Ward’s minimum variance criterion19, which minimizes the variance of the points within the cluster at each step. 

Figure 13 shows the full set of standard coefficients mapped as SAMb vs. EDm. The upper left plot colors/symbols represent 
the sites and collection groups of the source coefficients. The other plots show representative levels from the hierarchical 
clustering from 6 to 16 clusters. In these the colors/symbols represent cluster membership. Note that the specific color and 
symbol combination assigned to a coefficient is arbitrarily assigned and does not map from one plot to another. Rather, 
the groupings of color/symbol combinations are the points of comparison. As the number of clusters increases, the cluster 
membership becomes more aligned to the site membership in the upper left panel. The figures show that the similarity 
metrics are, to a significant degree, able to separate the coefficients in accordance with their source image collections. 
Single clusters generally represent cohesive groupings coefficients from the same or similar sites (i.e., groups of same 



 
 

 

 

colored symbols in the upper left plot), particularly as the number of clusters increases. Those site member coefficients 
that are not grouped together in the site grouping scatter plots are of course not separable in this analysis. 

Figure 13 Full set of standard coefficients plotted as SAMb vs. EDm. Upper left colors/symbols represent sites and collection groups 
of source coefficients. Other plots show clustering with increasing numbers of clusters; colors/symbols represent cluster 
membership. 

 

These analyses were repeated for other pairs of similarity metrics, by mapping clusters to climate category and land cover 
in addition to site number, and with varying numbers of clusters. Table 7 summarizes some of these results. The overall 
performance with respect to numbers of coefficients clustered with same-site coefficients is not markedly improved by 
using the spectral similarity metrics; the percentage is ~40-50% in most cases. In fact, the greatest correlation to site occurs 
in an 11-cluster k-means trial (60% of the primary members of the clusters were from the same sites). However, the use 
of the expanded similarity metrics does provide greater separability of environments in some cases as noted in the Table 
7, particularly in distinguishing between certain land cover types. The results suggest that the gain coefficients are the 
primary drivers for classifying the remote sensing environment. The offset coefficients add discrimination power in cases 
where the background scattering is a large component, such as those sites containing dense vegetation. Despite the pains 
taken to ensure the offset coefficients were as consistent as possible, the relatively high noise in the offset coefficient 
signal, likely caused by transient, synoptic scale variations in aerosol content, makes it difficult to characterize in all but 
the strongest cases. 



 
 

 

 

Table 7  Summary of cluster statistics. 

 

4.6.3 Cross validation 

In the preceding sections, the dataset used to form the clusters was also used to “score” the results in terms of homogeneity 
of clusters and ability to identify component climate or site membership. Without an independent test dataset, the results 
are likely positive biased, because the training data are not independent of the validation dataset. To reduce this bias, an 
“n-1” cross validation16 was performed on the data. In this technique, one coefficient is held out as the validation sample, 
and the other n-1 coefficients are used to form the clusters or means, where n is the total number of samples. Then the next 
coefficient is held out and the other n-1 coefficients (including the first validation sample) are used to form the clusters or 
means. The process is repeated n times such that each sample is used once as the validation dataset and each validation 
trial is independent of the data used to form the means. The results are averaged across all n trials. The cross validation 
was performed on the clusters resulting from k-means clustering for k=3 to k=20 clusters. Site membership is used as the 
test criterion, expanded such that multiple-season sites are treated as multiple categories (i.e., one for each season).  

 

Figure 14 Result of the cross validation of the k-means clusters, from n=3 to n=20 clusters, showing the percentage of samples 
correctly matched to site classes using the SAM similarity metric. 
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Figure 14 shows the result of the cross validation. The figure confirms that seven is too few clusters, at least in the expanded 
twelve-class case. The maximum score of with respect to site identification occurs between 13 and 18 clusters, suggesting 
that the number of separable classes is in that range. The values for primary identification and primary or similar 
identification for k=11 compare well with the corresponding values in Table 7. 

 

5. CONCLUSION 

The research shows that environmental information embedded within the ELM coefficients can be standardized, cataloged, 
and used to form a climatological compendium in spectral space. Common spectral similarity metrics are used to show 
that the climatological classes are separable to a degree of detail commensurate with the relatively modest size and range 
of the imaging conditions comprising the study.  

Largely unstudied aspects of ELM process and coefficients are revealed in the work. The small but highly leveraged trades 
between gain and offset coefficients that are not significant to ordinary ELM retrievals become problematic in this context 
because the imaging model equates the offset coefficient with path radiance, which should physically never be negative. 
In addition to random scatter, a small nonlinear effect of the spherical albedo was discovered in the data and a model 
developed to correct the coefficients to account for the effect. 

Some of the imaged sites and climatological conditions were very conducive to the model and aligned nearly exactly with 
the standardization process. Others showed considerable variability that was not explained by the model. This is not 
surprising; although the body of conditions represented in the study data is relative large for an HSI collection, it is tiny 
compared to the universe of environmental conditions that can be present on the Earth. Much more data will be required 
to more fully characterize climatological means and variability. Even so, the data in the study is over broad enough 
conditions to demonstrate separable climatological classes. 
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